

- 3D Seismic—Don Marlin
- Stability—Will Pettitt
- Blue Ribbon Commission—Perry Franklin
- Situational update—Gary Hecox

3D Seismic Results Don Marlin, CPG

BAYOU CORNE 3D SEISMIC FINDINGS

MARCH 2013 DATA INTEGRITY CONFIRMED AND ENHANCED BY REPROCESSING REPEATED A SIX STEP APPROACH AFTER GETTING ALL DATA.

Local Attribute

ary lave

moeten

ince area:

1) ESTABLISH THE SALT INTERFACE by historical wellbores, 2010 and 2013 VSP surveys, review of three 3D processing volumes (2007 Legend, April 2013 TBC processing, and August 2013 LDNR re-processing), and 2013 (NMO) corrected gathers;

2) LOOK FOR DISTURBANCE EXTERIOR TO THE SALT interface by Using stack volumes from all 3D datasets but primarily using Spectral Balance SBLA or high frequency resolution LDNR re-processing), Ener and Similarity (TBC 3D) volumes to indicate where reflectors boundaries were not uniform or layered;

3) MAP THE EXTERIOR GEOLOGIC CONDITIONS . Look lithologic markers tied to seismic from well control are

) IDENTIFY SUGGESTIONS OF HYDROCARBONS by analyzing AVO volumes and NMO gathers in and adjacent to the disturbance;

5) MAKE FORWARD 1D & 2D synthetic fluid-substitution models from well logs to compare to AVO, stack, NMO gather responses for hydrocarbon saturation validation, and log data;

6) ESTIMATE A HYDROCARBON VOLUME by using well log control thickness, porosity, water saturation or by using anomaly boundaries as a limit.

AUGUST

E-W Vertical Slice through the Salt Interface and Sinkhole Center Resulting Final Salt Contour Lines versus Caprock area in Blue

<u> DNR Processing vs. ~Coherence</u>

Interpreted SBLA

TBC Processing vs. ~Coherence

Applied SBLA interpretation to TBC data

DNR Processing vs. Legend Processing (Far Angle)

1450' Fluid Substitution Models

1D & 2D Fluid Substitution Model using Patrick Petroleum Dugas & LeBlanc #1

UPPER 3000' OF THE 3D CUBE VIDEO WITH KEY SEDIMENTARY LAYERS (HORIZONS)

N

Э

16

Stability Update Will Pettitt, Ph.D.

		What we thought at the start of 2013	What we think now based on knowledge gained	Future uncertainty and knowledge to gain – input being provided by BRC	
	DRZ shape and size	 Known material properties predicted a smooth banana shape to surface. 3 ft vertical displacement at 600 ft from salt. 	 More complicated DRZ caused by geological structure – funnel shaped upper DRZ to 1200 ft depth with pinching of lower DRZ. Consistent with mechanics in models. 	 Uncertain structure of lower DRZ and condition of rock? Essential to understand DRZ accurately as it drives the sinkhole, subsidence and gas. 	
	Sinkhole Size	 Original estimate of sinkhole size is a maximum of 1500 ft circular diameter. Typical 25° angle of repose, 300 ft diameter DRZ, bulking to 1.3. 	 Shape is an oval. Weak surface materials causing low angle of repose and bulking factor - meaning increased size. 	 Final stable angle of repose? Contribution of DRZ and bulking? Salt dissolution around collapsed Oxy 3 wall – volume of salt in collapse? 	
	Cavern Fill	 >85% with solid material. 	• Consolidating mud in upper section with more solid plug beneath.	 Material settlement and densification? Effect of mixing is to reduce bulking? 	
	Salt Dome Stability	 Unknown stability of Oxy 3 cavern and effect on surrounding salt and caverns. 	 Models predict minor effects in cavern walls and above Oxy 3. No indication of instability in Oxy 1. Shallow seismic array shows activity in and around salt cap rock. 	 Salt structure could give uncertainty in predictions? Behavior of the cap rock? Microseismic array being installed to help image stability around deep caverns. 	
	Bayou Corne				

www.itascacg.com

17 September 2013

Slide 19

DRZ Shape and Size

Conceptual Model – Mechanics of a "Burp"

Slide 21

Critical Angle-of-Repose (CAR)

Critical Angle-of-Repose: A characteristic property of the soil strength

ITASCA

Estimated Critical Angle-of-Repose

7.5 degrees minimum CAR estimated from June 6, 2013 Miller Engineering and Associates sinkhole survey

ITASCA

Current Sinkhole – DRZ – Cavern Connection

Monitoring of Cavern Debris Floor

17 September 2013

Resistance to Tag movement in the Debris

ITASCA

www.itascacg.com

17 September 2013

Oxy Geismar 1

TECLA14

TEC LAI1

Slide 26

LA17 1000 ft geophone well. 3C Trillium Compact Broadband ~626 ft depth 3C 2 Hz Geophone ~940 ft depth.

TBC LA12

TASCA

TBC near-surface seismic array

Approx Loc 1000 ft Geophone Well

Sinkhole

TBC LA13

Borehole LA10

Borehole LA10 3C Trillium Compact 440 ft Two 3C 2 Hz Geophones 384, 174 ft TBC LA11, 12, 14, 15, and 16. 3C Trillium Compact Broadband Sensors in ~80 foot boreholes.

Five near surface stations

Two shallow boreholes with 5x further sensors.

TBC LA16

TBC LA15

17 September 2013

Slide 27

In-salt Microseismic Array

ITASCA[™]

Diagram from MEQ Inc. – Sep 2013

Long Term Seismic Monitoring

- What does it do for us?
 - We now have a capacity to observe rock disturbance around the caverns and DRZ.
 - We can observe progressive build up of activity leading to a sinkhole burp.
 - We are able to provide advice on the daily safety level.
 - We can observe progressive disturbance of the rock and combine with numerical models to simulate long term behavior.
 - We can use this to assess stability and formulate further emergency response plans and monitoring if needed.
 - The measurements can provide feedback to our simulations and risk assessments on an ongoing basis.
- We are monitoring and responding...

ITASCA

Situational Update Gary R. Hecox, Ph.D.

Sinkhole Nomenclature

Sinkhole 2012/08/03

Sinkhole 2013/06/16

Sinkhole & Subsidence Area Volume and Area

Active Sites

Deep Gas Distribution

Max Gas Thickness and Base Clay Structure

Max Gas Thickness and Base Clay Structure

Daily Flare Total

1. Control shallow gas above the MRAA with dual-phase vapor extraction

2. Remove gas from MRAA using similar gas/water extraction

Gas Mitigation Program Initial Locations

Dual-Phase Vapor Extraction System

3D Lithology Model of Site

