

AUSTIN · HOUSTON · WICHITA · DENVER · BATON ROUGE · COLLEGE STATION · CALGARY · EDMONTON

May 19, 2023

Stephen H. Lee, Director Louisiana Department of Natural Resources Injection and Mining Division 617 N. 3rd Street Baton Rouge, Louisiana 70802

Re: Response No.2 to Notice of Deficiencies in Reference to the LDNR's April 19, 2023 Response to the 1st Supplement to Compliance Order No. IMD 2022-027 Eagle US 2, LLC – Well 6X (SN 57788) & Well 7B (SN 67270)

Dear Mr. Lee,

This response letter is submitted on behalf of Westlake US 2, LLC ("Westlake") who received the second Notice of Deficiencies ("NOD") letter on April 19, 2023; in reference to the Response to the 1st Supplement to Compliance Order No. IMD 2022-027. The NOD required a response within thirty (30) days from receipt of letter, unless otherwise stated.

NOD's:

Attachment A – USDW/Surface Water Impacts & Monitoring Plan:

- 1. No action required.
- 2. Refer to Number 23 response.
 - Note that the NOD letter stated to refer to Number 25, which we interpreted as a typo, needing to be Number 23.
- 3. Refer to Westlake response to 2^{nd} Supplement of CO 2022-027.
 - The water well survey is being prepared, with an expected mailing date by the end of May. The timeline for the water well survey completion is expected to be 30 days following the original mailing, toward the end of June 2023.
- 4. Per verbal communications with LDNR on May 4, 2023, the water well sampling is on a monthly schedule. Currently, the 5 industrial water wells are being sampled monthly, as well as the Cottages well located west of Cavern 7. The analytical data will be submitted to IMD following receipt of the final lab reports.
- 5. No action required.
 - Nickel and vanadium have been added to the analyst lists and were included as analytes for the samples collected in April. Going forward, all water samples will include nickel and vanadium.
- 6. Bubble sites located on the well pads are very difficult to locate during dry conditions. On May 17, the bubble site located at the Brine Well 7A location was

Response No. 2 to Notice of Deficiencies in Reference to the LDNR's April 19,2023 Response to the 1st Supplement to Compliance Order No. IMD 2022-027 05/19/2023 - Page **2** of **7**

identified by pouring water on the location. A gas cap was used to attempt to isolate the bubbling gas. A gas sample was collected. The results of the effectiveness of this method are pending. After receipt of the lab results, additional adjustments may be needed to the sampling procedure to isolate the gas.

The bubble site observed near SN 110159 was not located during the May 17, 2023 site visit. Multiple areas were checked by pouring water into holes, gaps, and cracks. However, none of these locations produced visible bubbling. Future attempts to identify the location of the gas seep will be made so samples can be collected.

- 7. No action required.
- 8. No action required.
- 9. Refer to Westlake response to 2^{nd} Supplement of CO 2022-027.
- 10. While there may be some minor influence of atmospheric air, the dissolved gas samples have generally contained enough methane to evaluate the stable isotopes of methane. Composition of the gas is more difficult to constrain with the dissolved gas samples, but the stable isotopes can be determined. There are several reasons for using the dissolved gas analysis:
 - Attempts have been made to trap gas to collect a sample. However, the volume of gas and pressure of the gas is too low to effectively trap the gas for sampling.
 - Handling water samples is much lower risk to health and safety. Shipping water samples to the lab is more time effective as gas samples must be shipped under hazardous goods and can take much longer to get to the lab.

The sampling procedure is continuing to be modified to try and get a gas sample from the Central Lake. To date, all attempts have failed so dissolved gas samples are continuing to be collected. If a suitable method is identified, gas samples can be collected.

- 11. The 1992 Environmental Remedial Evaluation Report was received and reviewed. According to this report, the surface water tends to drain toward the Central Lake or other small ponds near the dome. Shallow groundwater (upper 30 feet below ground surface) also generally flows toward the Central Lake. Salt Lake, the large water body west of the salt dome, also receives surface water runoff. However, there is no natural connection between the Central Lake and Salt Lake, nor any apparent connection between Salt Lake and other receiving water bodies under normal conditions. Extreme flood events might provide temporary connection between the lakes and ponds near the salt dome. Bayou d'Inde is the only drainage feature for flood water. There is no evidence that the surface water within the operational area or surrounding the dome is connected to any other receiving water bodies, with the exception of Bayou d'Inde.
- 12. The first data submittal was provided to IMD on May 9, 2023, containing all laboratory data received to that date. Additional submittals will be made as laboratory reports are received.

Response No. 2 to Notice of Deficiencies in Reference to the LDNR's April 19,2023 Response to the 1st Supplement to Compliance Order No. IMD 2022-027 05/19/2023 - Page **3** of **7**

- 13. Refer to Number 6 response.
- 14. Water parameters of pH, specific conductivity (SC), oxidation-reduction potential (ORP), and temperature will be collected from the upper, middle, and deep portions of the water column and the deepest area of the Central Lake using a hand-held field meter.
- 15. See Attachment A.
- 16. Refer to Number 25 response.
- 17. No action required.
- 18. No action required.
- 19. Refer to Number 27 response.
 - Note that the NOD letter stated to refer to Number 26, which we interpreted as a typo, needing to be Number 27.
- 20. Refer to Number 28 response.
- 21. No action required.
 - Serial number of Yellowrock FEE 969 provided to IMD as 189416.
- 22. No action required.
 - Projected time of completion for a fault plane map is in September 2023.
- 23. No action required. Response within Second Supplement to CO No. IMD 2022-027.
- 24. No action required.
 - IMD has since approved/accepted the Westlake Emergency Response Plan.
- 25. Regarding quantity of Sulphur Mines Dome caverns included in the Geomechanical Study Plan:
 - As of the May 4, 2023 conference call with IMD, the understanding is that Westlake will continue with the current geomechanical model path in that not all caverns within Sulphur Mines dome will be included in the model in an effort to obtain a geomechanical evaluation more promptly. This is based upon RESPEC's opinion that for the purposes of evaluating low pressure conditions of Cavern 6 and 7 and the associated salt stability, the inclusion of caverns a greater distance away from the subject Caverns will not influence the results.
 - An additional model inclusive of all caverns within Sulphur Mines Dome will be considered at a later date, and the scope of that study will incorporate the learnings from the above-mentioned study.

Regarding utilization of a more representative core for the Geomechanical Study:

• RESPEC has conducted two rock mechanical testing programs on salt core recovered from the Sulphur Mines salt dome. The first testing program was performed in 2010 on salt core from PetroLogistics Well Nos. 1 & 2. The second testing program was performed in 2015 on salt core recovered from PPG Well No. 22. Each of the RESPEC testing programs provided valid and reliable sets of test data for estimating the mechanical properties of the Sulphur Mines salt. Specifically, the RESPEC testing provided data that can

Response No. 2 to Notice of Deficiencies in Reference to the LDNR's April 19,2023 Response to the 1st Supplement to Compliance Order No. IMD 2022-027 05/19/2023 - Page 4 of 7

> be used to estimate the elastic properties, dilation strength, and creep properties of the Sulphur Mines salt. The salt core from PPG Well No. 22 was recovered from a depth interval beginning at 3,520 ft, which is approximately 200 ft below the floor of Cavern No. 7. Furthermore, PPG Well No. 22 is approximately 250 ft from Cavern No. 7 in plan view, while the PetroLogistics wells are more than 1,500 ft from Cavern Nos. 6 & 7. Therefore, the salt core from PPG Well No. 22 is considered to be the most representative available core for estimating the mechanical properties of the salt stock near Cavern Nos. 6 & 7.

The TerraTek testing conducted in 2008 on salt core recovered from LGS Well No. 2A was also reviewed for potential use in estimating mechanical properties of the Sulphur Mines salt. Unfortunately, the test specimens and testing methods employed in this testing program do not provide sufficient, accurate data to estimate the mechanical properties of the Sulphur Mines salt. The elastic properties were incorrectly estimated based on fits to triaxial tests during load-up sequences, without the necessary unload-reload cycle within the elastic regime to properly estimate elastic properties. The reported elastic modulus is significantly lower than the expected value for rock salt and the estimated Poisson's ratio has substantial variation. The reported dilation strength of the salt from the TerraTek testing is estimated based on the volumetric strain of the specimens during triaxial tests using the Mohr-Coulomb failure criterion. This method does not accurately estimate the dilation strength of rock salt. The reported salt creep testing method and results do not provide sufficient data to evaluate the estimated steady-state creep rates. The test specimens are described as sidewall cores, which implies they were likely 1-inch diameter specimens. Based on our knowledge of Sulphur Mines salt, these specimens may have consisted of 1 or 2 grains of salt across their diameter, which is not sufficient for measuring the creep deformation of the salt. Consequently, RESPEC has very little confidence in the testing that was conducted in 2008 and the validity of the data set to estimate mechanical properties of the Sulphur Mines salt.

Summary of Core Data Reviewed To-Date:

- PPG Well No. 22
 - RESPEC report RSI-2533 (2015) Mechanical Properties Testing
 - Brazilian indirect tensile strength (BRZ) 5 tests
 - Constant mean stress dilation tests in triaxial compression (CMC) – 8 tests
 - Triaxial compression creep tests 6 tests
 - Salt core recovered from depths of 3,520 ft through 5,415 ft
 - Standard 4-inch salt core

Response No. 2 to Notice of Deficiencies in Reference to the LDNR's April 19,2023 Response to the 1st Supplement to Compliance Order No. IMD 2022-027 05/19/2023 - Page **5** of **7**

- Testing resulted in a good dataset to use for estimating mechanical properties of Sulphur Mines salt.
- PetroLogistics Well Nos. 1 & 2
 - RESPEC report RSI-2085 (2010) Mechanical Properties Testing
 - Brazilian indirect tensile strength (BRZ) 6 tests
 - Constant strain rate (CSR) unconfined compressive strength tests – 5 tests
 - Constant mean stress dilation tests (CMS) 18 tests
 - Triaxial compression creep tests 4 tests
 - X-ray diffraction (XRD) analyses
 - Salt core recovered from depths of 3,995 ft through 4,620 ft
 - Standard 4-inch salt core
 - Testing resulted in a good dataset to use for estimating mechanical properties of Sulphur Mines salt.
- LGS Well No. 2A
 - TerraTek report TR08-402338 (2008) Failure & Petrographic Characterization and Creep Testing
 - Unconfined (1) & triaxial compression (4) tests to determine Mohr-Coulomb failure envelope delineation
 - Triaxial compression creep tests 1 test for 19 days, 1 test for 30 days
 - Petrographic analyses
 - X-ray diffraction (XRD) analyses
 - Salt core recovered from 2,462 ft through 2,520 ft
 - Sidewall plugs (likely 1-inch diameter) used for testing
 - Testing does not provide a valid dataset for estimating mechanical properties of Sulphur Mines salt.
- PPG Well No. 18
 - TerraTek report TR09-402721 Petrographic and Core Evaluation
 - Samples taken from core recovered from depths of 4,000 ft, 4,015 ft, and 4,027 ft
 - o No rock mechanical testing documentation found to-date.
- 26. No action required.
- 27. Full TREA report provided to IMD on April 21, 2023 (Fall 2022 Sulphur Subsidence Survey).
- 28. No action required.
- 29. Westlake confirms visual observations for the Central Lake are being performed daily. Within 14 days of the letter, Westlake secured an air boat to perform inspections of the Lake on a two-week frequency.
- 30. Within 14 days of the letter, Westlake secured a device capable of monitoring and detecting VOC's. Additionally, daily FID readings are collected at each well pad and bubbling location, and included in the daily reports to IMD.

Response No. 2 to Notice of Deficiencies in Reference to the LDNR's April 19,2023 Response to the 1st Supplement to Compliance Order No. IMD 2022-027 05/19/2023 - Page 6 of 7

If there are any questions, please contact Josh Bradley (Westlake US 2, LLC) or Coleman Hale (Lonquist & Co., LLC).

Sincerely,

leun Hale

R. Coleman Hale Vice President Lonquist & Co., LLC

ATTACHMENT LIST

A. Central Lake Pond Pump Specifications

LONQUIST & CO. LLC

PETROLEUM ENERGY ENGINEERS ADVISORS

AUSTIN · HOUSTON · WICHITA · DENVER · BATON ROUGE · COLLEGE STATION · CALGARY · EDMONTON

ATTACHMENT A

Central Lake Pond Pump Specifications

WESTLAKE CHEMICAL

2190 WEST BURTON SULPHUR, LOUISIANA, 70663 ITT-Goulds Pumps 11211 Industriplex Blvd. STE 700 IBaton Rouge, LA 70809

March 8, 2023

EXISTING POND PUMP - TECHNICAL DATA PKG REF. Original Pump SN-746C547.28 (supplied in 1984) REF. Pump Repair by ITT Goulds Repair Shop (Jan 2023)

MODEL: 3796 MTi SIZE: 6x6-13/6V QTY: 1

Operating Conditions

operating cond	
SERVICE	Electric Pond Pump
LIQUID	Water , Rated Temp. 70.0 deg F, SP.GR 1.000, Viscosity 1.000 cp, Rated/Max. suction pressure 0.0 / 0.0 psi g
CAPACITY Rated	800.0 gpm
HEAD	82.0 (ft)
Performance at	1775 RPM per HI 14.6 1B basis power
PUBLISHED EFFY	68.5% (CDS)
RATED EFFY	68.5%
RATED POWER	24.4 hp (Run out 27.2 hp)
NPSHR	14.2 ft
DISCH PRESSURE (R)	35.9 psi g (42.4 psi g @ Shut off) based on 0.0 psi g rated suction pressure
PERF. CURVE	3127-2 (Rotation CW viewed from coupling end)
SHUT OFF HEAD	97.9 ft
MIN. FLOW	Continuous Stable: 295.4 gpm Hydraulic: 295.4 gpm Thermal: N/A
Materials	
CONSTRUCTION	316SS
CASING	316SS (max.casing pressure @ rated temperature 275.0 psi g)
ST.BOX COVER	316SS
IMPELLER	316SS - Open (10.1250 in rated, max=12.6250 in, min=10.0000 in)
CASING GASKETS	Aramid Fiber with EPDM and Silicate Filler
IMPELLER O-RING	Teflon
SHAFT MATERIAL	SAE 4140
SHAFT SLEEVE	316SS
LUBRICATION	Flood oil
SEAL CHAMBER	Standard non cooled
BEARINGS	6309 (Inboard) / 3309 (Outboard)
Seeling Method	

Sealing Method MECHANICAL SEAL

John Crane

Casing Connections Casing drain tapped

Casing filler

Flanges

150# flat face

Liquid End Features

Impeller balance holes

Frame Connections

Bearing frame drain Frame cooler access Oil fill connection

Frame Features

Ductile iron frame adapter Inpro VBXX-D Hybrid Bearing Isolators Premium Severe Duty Thrust Bearings

Assembly and Testing

Casing & Cover - Standard hydro test Impeller balanced to ISO G6.3

Piping

CPI Plan 7354 No piping furnished by Goulds

Painting

Goulds Blue standard painting

Noise Level Data

Maximum predicted sound pressures level pump only in Decibels (db) Re 0.0002 microbars measured 3ft horizontally and 5ft from the floor per QCP 580

Noise Level	31.5	63	125	250	500	1k	2k	4k	8k	Α
Pump	57.0	60.0	72.0	68.0	70.0	72.0	73.0	76.0	78.0	85.0

Driver : Electric motor Manufacturer : Siemens

FURNISHED BY	Pump Mfg	MOUNTED BY	Pump Mfg
RATING	30.0 hp (22.4 KW)	ENCLOSURE	IEEE841 Severe Duty Premium Efficient
PHASE/FREQ/VOLTS	3/60 Hz/460	SPEED	1800 RPM
INSULATION/SF	F/1.15	FRAME	286T

Weights and Measurements (pump & motor unit)

 TOTAL NET UNIT WEIGHT / VOLUME
 1,115.0 lb / 10.8 ft³

 TOTAL GROSS UNIT WEIGHT / GROSS VOLUME
 1,260.0 lb / 28.9 ft³

COMMENTS / CLARIFICATIONS:

All information provided is based on original records of original pump units supplied (SN-746C547.28), combined with information specific for recent repair job.

No records of the original specified hydraulic requirement are available. The specified design operating point (800 gpm @ 82 ft TDH) is estimated, based on the known pump model/size, operating speed and impeller diameter.

Hydraulic Details

Item No	ITEM 001	Pump Type	3796
Proposal #	AC23-03-08 01		
Liquid Characterist	ics	Hydraulic Require	ements
Service	Electric Pond Pump	Rated capacity	800.0 gpm
Liquid	Water	NPSHa	
Specific Gravity	1.000	Suct. pressure	
Temperature	70.0 deg F	Viscosity	1.000 cp
Solids size			

GENERAL PUMP DATA	VALUE	PROTECTED
ERP Material Code	1203	
ERP Size Code		
Case thickness (in)	0.6875	
Maximum Suction Head (ft)	34.0	
Maximum Solids Size (in)	1.0000	
Max Drive Power per 100 RPM (hp)	3.42	
Maximum RPM	1,800	
Disch. Size	6"	
Suction Size	6"	
Suction Specific Speed	8,795 gpm(US) ft	
Maximum casing pressure at 70.0 (deg F)	275.0 psi g	
Volute	Single	
WEIGHTS / MEASUREMENTS	VALUE	PROTECTED
Bare Pump Weight (Ib)	710.0	
Total Unit Weight (bare pump, driver, etc) (lb)	1,115.0	
Gross Total Weight (lb)	1,260.0	
Net Volume (ft ³)	10.8	
Gross Volume (ft ³)	28.9	
SHAFT DATA	VALUE	PROTECTED
Shaft diameter between bearings (in)	2.1250	
Shaft diameter at coupling (in)	1.1250	
Shaft diameter at impeller (in)	1.0000	
Shaft diameter at stuffing box less sleeve (in)	1.7500	
Shaft diameter at stuffing box with sleeve (in)	1.5000	
Shaft overhang (in)	8.3750	
Shaft separation (in)	3.7500	
Sleeve diameter (in)	1.7500	
IMPELLER DATA	VALUE	PROTECTED
Maximum Impeller diameter (in)	12.6250	
Minimum Impeller diameter (in)	10,0000	

Minimum Impeller diameter (in)	10.0000	
<u>SEAL / DYN. SEAL</u>	VALUE	PROTECTED
Diameter of mechanical seal with sleeve (in)	1.7500	

Hydraulic Details

BEARING DATA	VALUE	PROTECTED
Inboard bearing	6309	
Outboard bearing	3309	
Bearing Span (in)	6.7500	
TEMPERATURES	VALUE	PROTECTED
Max Temperature Limit (deg F)	350.0	
Min Temperature Limit (deg F)	-350.0	
Viscosity Factors	VALUE	PROTECTED
Flow viscosity correction factor (rated)-1st stage	1.000	
Head viscosity correction factor (rated)-1st stage	1.000	
Efficiency viscosity correction factor (rated)-1st stage	1.000	
Motor Data	VALUE	PROTECTED
(C) Length of driver including shaft (in)	27.00	
(D) Motor dim. (in)	7.00	
(O) Driver O dimension (in)	14.50	
(U) Driver Shaft Diameter (in)	1.8750	
(AK) Inner diameter of motor mounting flange (in)	7.8800	
(B) Motor dim. (in)	14.00	
Driver Weight (Ib)	405.0	

Noise Level Data

Maximum predicted sound pressures level pump only in Decibels (db) Re 0.0002 microbars measured 3ft horizontally and 5ft from the floor per QCP 580

Noise Level	31.5	63	125	250	500	1k	2k	4k	8k	Α
Pump	57.0	60.0	72.0	68.0	70.0	72.0	73.0	76.0	78.0	85.0
Motor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Combined	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Program Version 1.76.0.0

Standard Datasheet	CENTRIFUGAL PUMP SPECIFICATION
WESTLAKE CHEMICAL	
	CONTRACT NO: BY: Adam Carpenter DATE: 3/8/2023
ADDRESS: Sulphur, LA PLANT LOCATION: UNITED STATES	Audin Cal penter DATE: 5/8/2025
ITEM: ITEM 001 ELECTRIC POND PUMP	
PUMPING	CONDITIONS
FLUID PUMPED: Water	PUMP MATERIAL CLASS 316SS
PUMPING TEMP. (PT) 21.1 deg C 70.0 deg F	VISCOSITY @ PT 1.000 CP PH
SPECIFIC GRAVITY @ PT 1.000	DENSITY @ PT 0.00 Lb/ft ³
VAPOR PRESS. @ PT mmHg 0.00 PSI ABS	SOLIDS CONTENT %WT
PERFORMANCE	CHARACTERISTICS
CAPACITY, GPM RATED 800.0	MIN. HYDRAULIC 295.4
TDH, FT: NORMAL RATED 82.0	DISCH.PRESSURE 35.9 PSI G
SUCTION PRESS., PSI G RATED 0.0	MAXIMUM 0.0
NPSH, FT ABS: AVAIL.(NORMAL) 0.0 (RATED) 1	4.2 REQD BY PUMP CURVE NO. 3127-2
BHP, hp (RATED) 24.4 (MAX) 27.2	EFFICIENCY (NORMAL) (RATED) 68.5
PUMP DE	SCRIPTION
TYPE 3796 MTi SIZE 6x6-13	RPM 1775 ROTATION CW CCW
IMPELLER TYPE Open DIA. in (RATED) 10.1 2	
PACKING TYPE SIZE	NO. OF RINGS 0 SEAL CAGE YES NO
MECH.SEAL MFR and MODEL/DYN SEAL	
	CING FF POSITION CL SIDE FACING UP
	CING FF POSITION TOP CTR TANGENT SIDE
	IRUST 3309 (VERT.) THRUST UP DOWN
MATERIAL: CASING 316SS IMPELLER 316SS	SHAFT/SLEEVE SAE 4140 / 316SS
SPECIAL MATERIAL	SAE 4140 / 51055
	GAGE CONN. SUCTION DISCHARGE 3/8 / 3/8 NPT
STUFF.BOX: TAP FOR FLUSH NPT TAP FOR DRAIN	NPT JACKETED NPT CONN:COOL WATER RQD GPM
CASING: NO OF STAGE 1 MOUNTING: CENTERLINE	FOOT BRACKET VERTICAL
CASING SPLIT: HORZ VERTICAL TYPE OF VOLUTE: SINGLE	DOUBLE DIFFUSER
COVER PLATE JACKETED NPT CONN GLAND COOLING NPT C	CONN. BEARING HOUSING JACKETED NPT
PUMP BUILT TO: ANSI API STD 610 SPECIAL	SPECIFICATIONS
COUPLING TYPE: Spacer MAKE: /	GUARD:
	TIC TEST PRESSURE: 0.0 PSI G
WEIGHT (LB): PUMP 710.0 DRIVER	405.0 BASEPLATE 0.0
PUMP SERIAL NO.:	
PUMP CURVE NO.: 3127-2	
SECTIONAL DWG.NO.:	
DR	IVER
ELECTRIC MOTOR 30.0 HP 460 V	3 PH CPS 1800 RPM EQUIP #
MFR Siemens CLA	ASS DIVISION
	SAM PSI G EXHAUST PSI G
SPECIAL: MFR	
REMARKS:	

COMMENTS / CLARIFICATIONS:

All information provided is based on original records of original pump units supplied (SN-746C547.28), combined with information specific for recent repair job.

No records of the original specified hydraulic requirement are available. The specified design operating point (800 gpm @ 82 ft TDH) is estimated, based on the known pump model/size, operating speed and impeller diameter.

Model 3796 MTi Size 6x6-13 **BARE PUMP DRAWING** ITT An ITT Brand 35.25 9.57 10.12 8.50 -7.50 • 2.57 3.62 - 3.62 Discharge Suction + ¢ 1/4x1/8 in. 15.00 Keyway_ e 1 COULDS 7.00 PLINES 2.38 ł 1-FRAME Ŧ Ŧ 1.125 in. 1.124 in. 27.00 12.00 1.93-0 +ŧ 0.62-**-−**2.00 -3.38 2.50 2.50 0.50 dia (4-Bolts) -2.00 4.88-4.88 0.62-12.50 15.75-11.00 VIEW FROM TOP -15.12 -

Pump Specification

FACING FF	FINISH SERRATED
FACING FF	FINISH SERRATED
CW	
	COOLED NO
	COOLED NO
	FACING FF

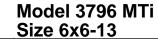
Weights and Measurements

Notes and References

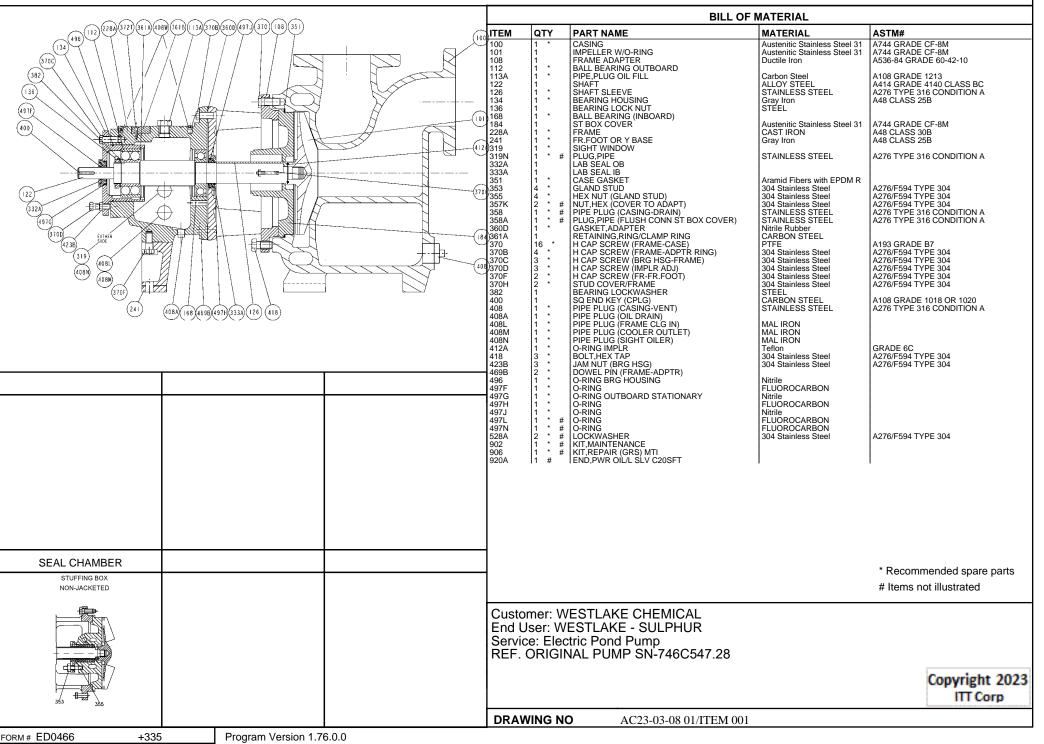
PUMP	710.0 lb
MOTOR	405.0 lb
BASEPLATE	lb
TOTAL	1,115.0 lb
GR.VOLUME w/BOX	28.9 ft³
GR.WEIGHT w/BOX	1,260.0 lb

Motor Specification

MOTOR BY	PUMP MFG	MOUNT BY PUM	P MFG	MFG.	SIEMENS			
FRAME	286T	POWER	30.0 hp		RPM	1800		
PHASE	3	FREQUENCY	60 HZ		VOLTS	460		
INSULATION	F	S.F.	1.15		-	·		
ENCLOSURE	IEEE841 SE	IEEE841 SEVERE DUTY PREMIUM EFFICIENT						

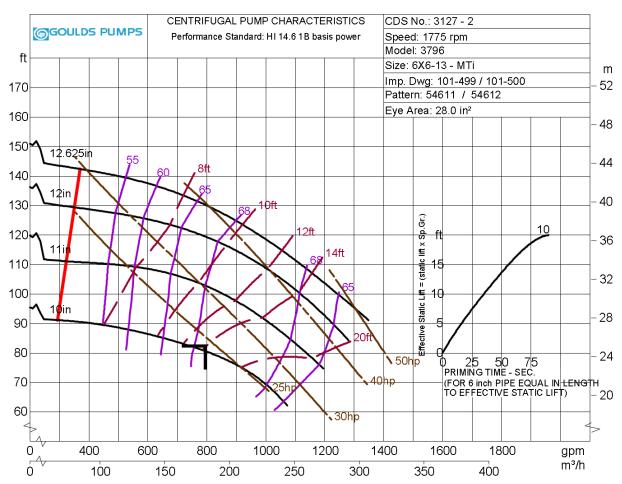

Auxiliary Specification

Thanker y specification		
COUPLING BY CUSTOMER	CPLG TYPE	
CPL GUARD BY	CPLG GUARD MATL	
BASEPLATE		FOR PUMP TAPPED OPENINGS REFER TO DWG.:
MECH.SEAL BY CUSTOMER		TAC23-03-08 01 / ITEM 001


		DRAWING IS FOR REFERENCE ONLY.	
	All dimensions are in inches. Drawing is not to scale	Customer: WESTLAKE CHEMICAL End User: WESTLAKE - SULPHUR Service: Electric Pond Pump REF. ORIGINAL PUMP SN-746C547.28	Copyright 2023
	Weights (lbs) are approximate	DRAWING NO AC23-03-08 01/ITEM 001	
FORM #_ED0017	Program Version 1.76.0.0		

CROSS SECTIONAL DRAWING

An ITT Brand



Model: 3796	Size: 6	x6-13 Grou	p: MTi	60Hz	RPM: 1775	Stages: 1	
REF. Original Pump SN-746C547.28 (supplied in 1984)							
End User:	WESTLAKE - SUL	PHUR			_		
Item/Equip.No. :	ITEM 001 (Base C	Issued I	by: Adam	Carpenter	D	eate : 03/08/2023	
		,					
Service :	Electric Pond Pum	þ					
Operating Con	ditions		Pump Per	rformance			
Liquid:	Water	Published Efficiency:	68.5 %	Suctio	on Specific Speed:	8,795 gpm(US) ft	
Temp.:	70.0 deg F	Rated Pump Efficiency:	68.5 %	Min. H	lydraulic Flow:	295.4 gpm	
S.G./Visc.:	1.000/1.000 cp	Rated Total Power:	24.4 hp				
Flow:	800.0 gpm	Non-Overloading Power:	27.2 hp				
TDH:	82.0 ft	Imp. Dia. First 1 Stg(s):	10.1250 in				
NPSHa:		NPSHr:	14.2 ft				
Solid size:		Shut off Head:	97.9 ft				
% Susp. Solids		Vapor Press:		Max.	Solids Size:	1.0000 in	

% Susp. Solids (by wtg):

 Power and efficiency losses are not reflected on the curve below.
 Curve shown is at ambient temperature conditions. Notes:

🔶 ітт

Model: 3796	Size: 6x6-13	Group: MTi	60Hz	RPM: 1775	Stages: 1

REF. Original Pump SN-746C547.28 (supplied in 1984)

End User :	WESTLAKE - SULP	'HUR Issued b	ov : Adam Car	nenter D	ate : 03/08/2023
Item/Equip.No. : Service :	ITEM 001 (Base Off Electric Pond Pump	er)	y. Adam da		ale. 05/06/2025
Operating Cor	ditions		Pump Perfor	rmance	
Liquid:	Water	Published Efficiency:	68.5 %	Suction Specific Spee	d: 8,795 gpm(US) ft
Temp.:	70.0 deg F	Rated Pump Efficiency:	68.5 %	Min. Hydraulic Flow:	295.4 gpm
S.G./Visc.:	1.000/1.000 cp	Rated Total Power:	24.4 hp	Min. Thermal Flow:	N/A
Flow:	800.0 gpm	Non-Overloading Power:	27.2 hp		

10.1250 in

1.0000 in

Shut off Head:

% Susp. Solids (by wtg):

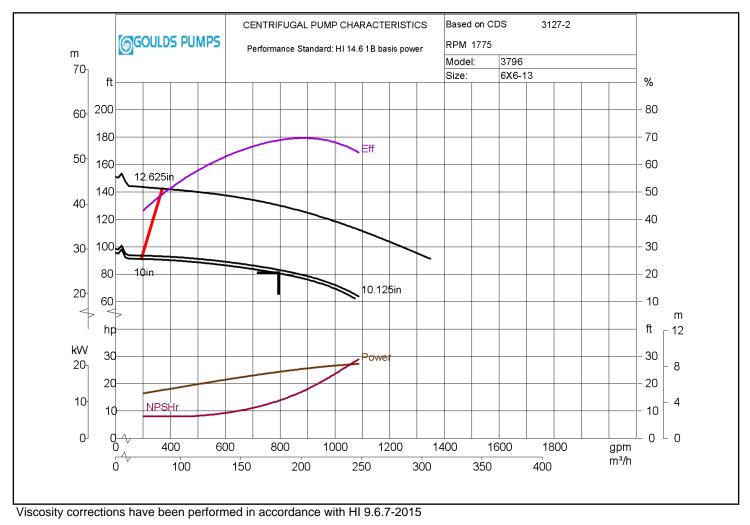
97.9 ft

14.2 ft

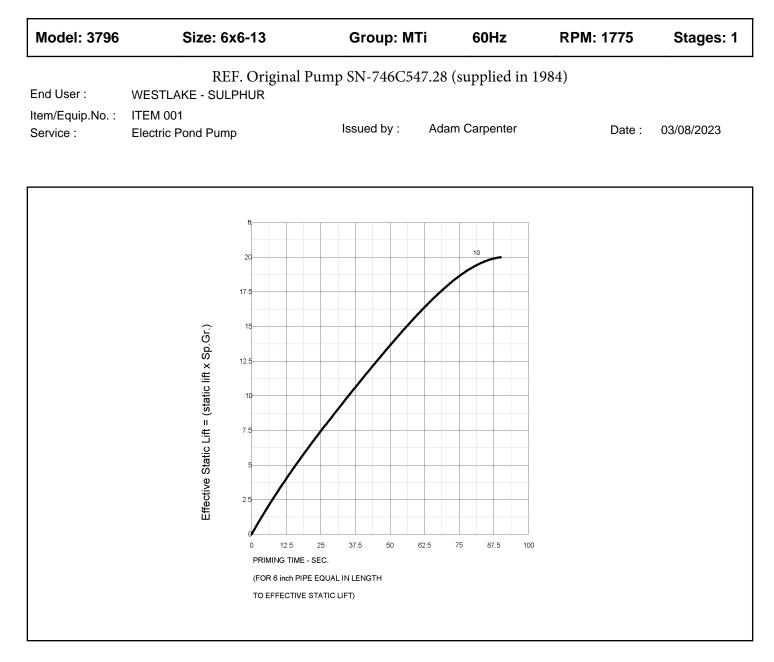
Imp. Dia. First 1 Stg(s):

Max. Solids Size:

NPSHr:


NPSHa: Solid size:

TDH:


Vapor Press:

Notes: 1. Curve shown is at ambient temperature conditions.

82.0 ft

ITT

This priming time data must be corrected for suction pipe diameters different from the pump suction and for suction pipe lengths greater than the effective static lift. Formulas to calculate the total system priming time:

ΙТТ

(1)
$$PT_T = PT_{Les} \times \frac{SPL}{L_{es}} \times \left(\frac{D_p}{D_s}\right)^2$$

$$(2) L_{es} = L_s \times S.G.$$

Where:

- *PT_T*: Total system priming time
- PT_{Les}: Priming time as determined from the curve
- SPL: Total suction pipe length above the free surface of the liquid
- L_{es}: Effective static lift
- L_s: Maximum static lift from free surface of the liquid to the centerline of the pump suction, or the highest point in the suction piping, whichever is greater
- S.G: Specific gravity of the liquid
- D_p: Nominal pipe diameter
- D_s: Nominal pump suction diameter

GOULDS PUMPS

Goulds Trash Hog® Self-Priming Solids Handling Pump

Goulds Trash Hog®

Self-Priming Pumps Designed for Toughest Solids Handling Services

- Capacities to 6,000 GPM (1,363 m3/h)
- Heads to 140 feet (43 m)
- Temperatures to 225°F (107°C)
- Pressures to 85 PSIG (586 kPa)
- Suction Lifts to 25 feet (7.6 m)
- Spherical Solids to 3 inches (76 mm)

Applications Pulp and Paper Industry

- Black Liquor Sump
- Paper Machine Floor Sump
- Knotters Discharge Pump
- White Water Service

General Industry

- Wash Down Sump
- Food Wastes
- Fish Farming
- Rendering Wastes
- Machine Coolant Sump

Mining and Metal Fabrication

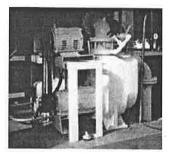
- Mine Dewatering
- Mill Scale Runoff
- Cutting Oil Transfer
- · Construction Site Dewatering

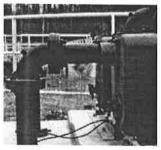
Performance Features for Self-Priming, Solids Handling Services Large Capacity Priming Chamber For reliable priming and repriming

Heavy Duty Power End For extended life in toughest services

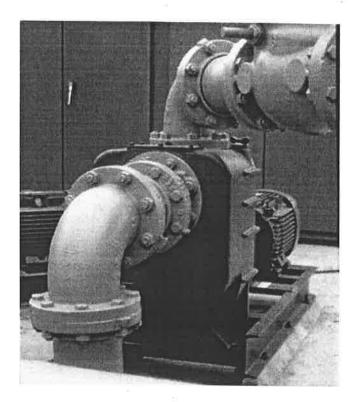
Non-Clog Impeller Capable of passing spherical solids to 3 inches (76 mm)

External Impeller Adjustment Easily renews optimum hydraulic performance


Trimmable Impeller Permits most efficient use of motor horsepower

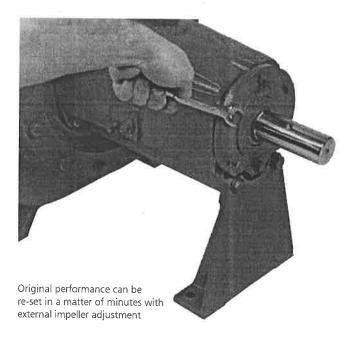

Goulds Trash Hog is designed for superior solids handling capability, optimum pump performance and extreme ease of maintenance for a wide range of industrial, pulp and paper, mining and municipal wastewater services. Whether handling raw sewage, sludge, debris or plant wastes, there's no other pump that compares to the Trash Hog.

Proven Performance


Goulds Trash Hog has been designed to meet the waste handling needs of our industrial customers. Whether it be a remote lift station, an on-site treatment facility or transfer of your process wastes, Goulds has the experience to provide the engineered solution you need.

Trash Hogs are utilized in remote sewage lift stations to pump municipal waste from outlying residential areas to the local treatment plant. Here, Trash Hogs are being driven by overhead belt drives to conserve lift station space. Service will be performed by removing the rotating element to the rear as typical suction piping restricts access to the front of the pumps.

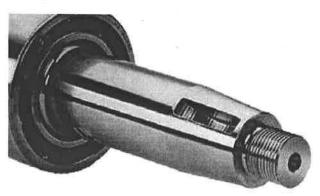
In this installation, two 3" Trash Hogs are being used to control the level of the liquid in these settling ponds. Liquid level controls in the sump determine whether either or both pumps are needed to maintain proper pond level. Trash Hogs were chosen due to their reliable priming capabilities.

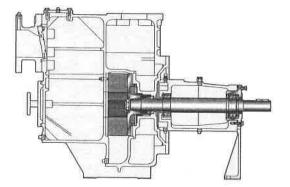

Here, one of several 6" self-priming Trash Hogs is being used to pump process waste at an industrial treatment plant. Trash Hog was specified and installed due to its ability to pass a 3" diameter solid and prime and reprime a 15 feet static suction lift.

Goulds Trash Hog®

Designed for Ease of Maintenance

Easily Renewed Performance


It's common knowledge that as a pump wears, the performance decreases. The Trash Hog's open impeller can be adjusted, simply and quickly, to compensate for wear and renew performance.



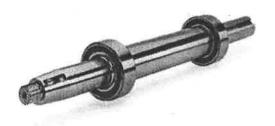
Back Pull-Out

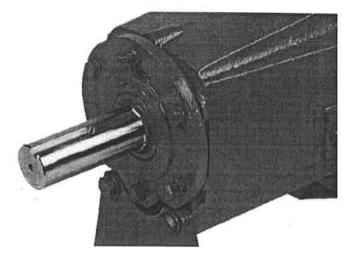
The power end is entirely outside the pump casing. Jacking bolt holes are provided to ease the separation of the power end from the casing.

- No special tools or "T" handles are required to remove the power end.
- No shims are used on the casing bolt circle for clearance adjustments.
- No risk of injury from "wrestling" with an awkward back pull-out design.

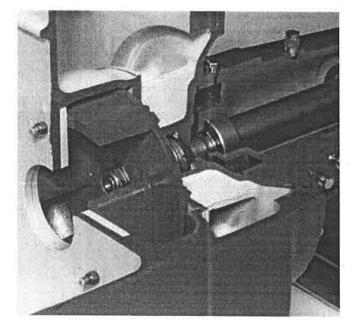
The tapered shaft and woodruff key design allow easy removal of the impeller from the rotating assembly.

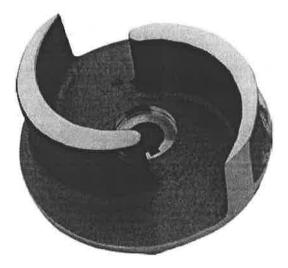
Adjustable cartridge style bearing housing allows adjustment of impeller to wearplate clearance. No shims are required. No need to disassemble or drain pump.


Goulds Trash Hog®

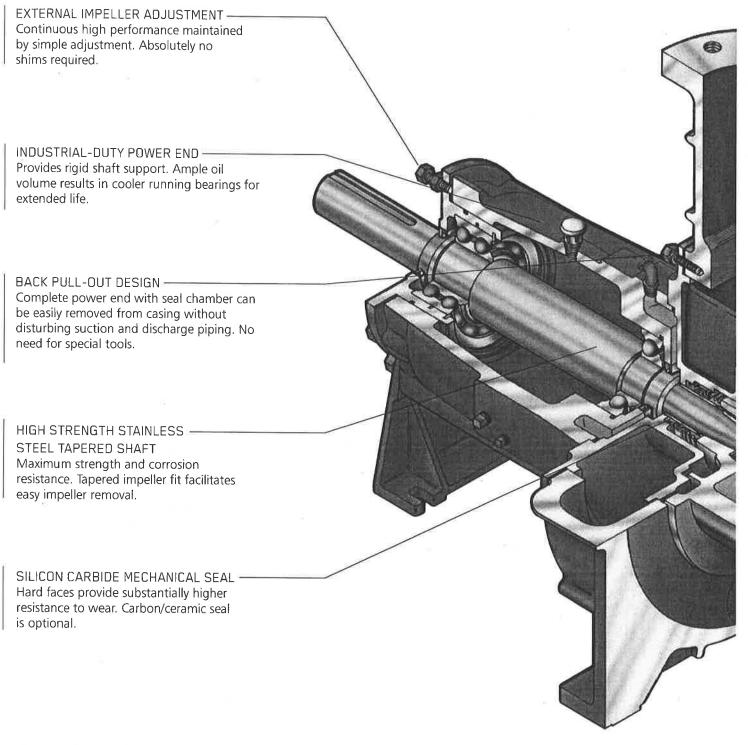

Designed for Extended Pump Life

Goulds Trash Hog is a true heavy duty solids handling pump. No other self-priming solids handling pump is designed with the "beef" of a Trash Hog. All parts are engineered for maximum performance and service life.


The Trash Hog features the heaviest shaft and bearing assembly in the industry. Long bearing span minimizes bearing loads for extended bearing life. Large shaft diameter for minimal deflection, maximum mechanical seal life.


The power end is supported by a rigid cast iron frame foot that provides excellent support for the shaft and thrust bearing. Bearing life is extended.

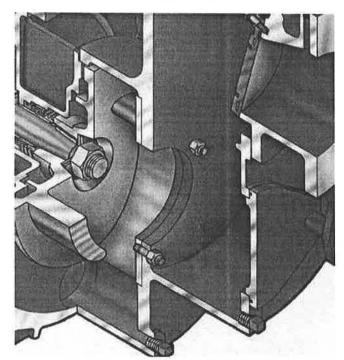
Removable wearplate provides added protection to pump casing from abrasive wear. Easily replaced.



The Trash Hog uses two-vane or three-vane impellers for non-clog solids handling. Trash Hog is engineered for optimum efficiency and priming performance.

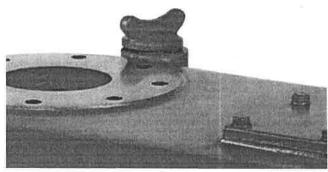
Goulds Trash Hog[®] Self-Priming, Solids Handling Pumps

Heavy Duty Design Features for Wide Range Solids Handling Services



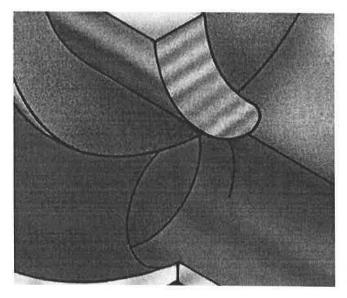
0 REPLACEABLE ELASTOMERIC CHECK VALVE With integral blow-out disc — provides for instant repriming while preventing over-pressurization of casing. 0 0 CLASS 125 FLANGES Standard on suction and discharge for positive sealing in all industrial services. RENEWABLE WEARPLATE Reduces maintenance costs; allows running clearances to be maintained for maximum pumping efficiency and 0 priming capability. LIGHTWEIGHT CLEAN-OUT COVER Maintenance-friendly cover allows access to remove any debris. 26 BACK PUMP-OUT VANES AND REAR IMPELLER RING Reduces seal chamber pressure and axial thrust for extended bearing and seal life. Prevents solids from entering seal chamber. Close radial clearance eliminates need to shim behind impeller. HEAVY VANED OPEN IMPELLER Designed for superior performance in toughest solids handling services.

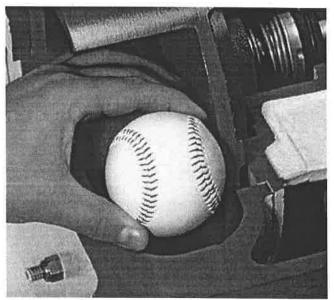
Reliable Self-Priming Operation


Consistent Priming and Repriming

Self-priming pumps require liquid in the priming chamber in order to prime properly. Too small a volume of liquid can adversely affect priming performance or possibly create a dangerous situation by raising the liquid temperature.

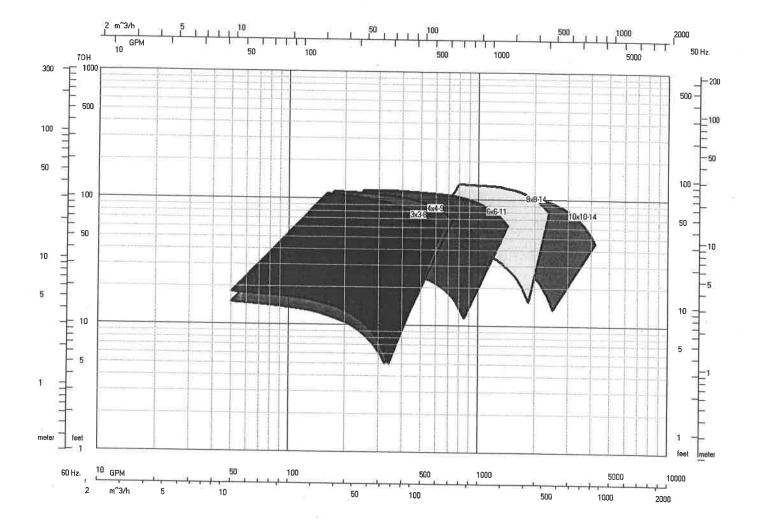
The large capacity priming chamber retains plenty of liquid for consistent priming and repriming.

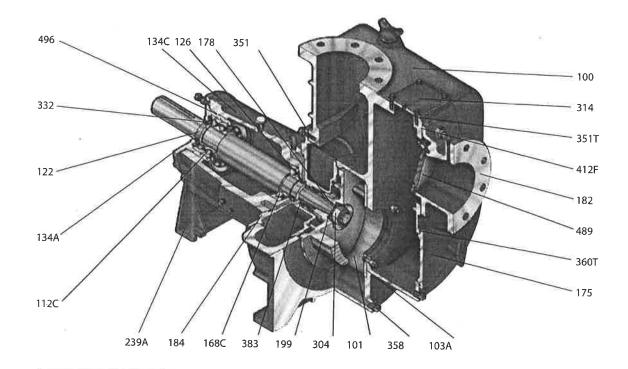

The Trash Hog is designed with an elevated suction inlet to keep liquid in the priming chamber even if the check valve fails. All Trash Hog sizes will prime up to 25 feet in under 5 minutes.



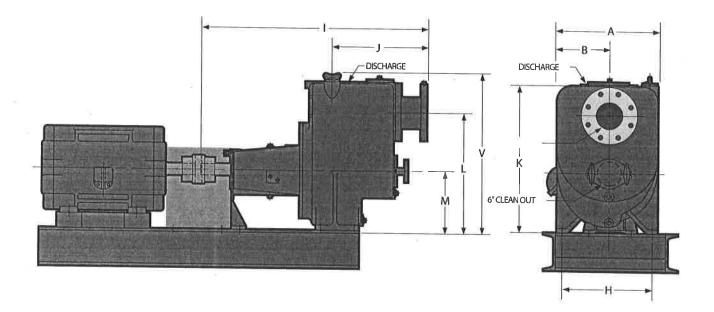
The casing fill plug provides convenient access for filling the priming chamber and provides a connection for an air release system.

Industrial Duty Solids Handling


Goulds Trash Hog is designed to handle up to 3-inch spherical solids in some of the toughest solids handling services. Other manufacturers' light duty pumps cannot match the solids handling or self-priming capability of the Trash Hog.



The Trash Hog uses two-vane or three-vane impellers for non-clog solids handling. Trash Hog is engineered for optimum efficiency and priming performance.


Sectional View

		1.1.1	Material						
ltem Number	Part Name	All Cast Iron	CI\316	CI\316 w\316 SB Cover	C1/ HC600	CI/ CD4	All 31655	All CD4MCu	
100	Casing		Ca	st Iron	A	-	3165.5	CD4MCu	
101	Impeller	Ductile Iron	31	655	HC600	CD4	31655	CD4MCu	
103A	Wear Plate	Ductile Iron	31	655	HC 600	CD4	31655	CD4MCu	
112C	Thrust Bearing			Double R ow	Angular			conned	
122	Shaft				7-4PH (2)			5	
126	S haft S leeve (Optional)				416 5 5			_	
134A	Bearing Carrier			(ast fron	-	-		
134C	Bearing Frame			(ast Iron	-			
168C	Radial Bearing			Double Row	Angular	Contac	r (II)		
175	Clean Out Cover		Ca	st Iron	CONTRACTOR OF	20011000	31655	CD4MCu	
178	Impeller Key	Steel	31	6 5 5			1 01000	CDAMED	
182	Suction Piece		Ca	st Iron	1000		31655	CD4MCu	
184	Stuffing Box Cover	Castin	on	31655	Cast	ron	31655	CD4MCu	
199	Impeller Washer		Carb	on Steel			31655	Alloy 20	
239A	Frame Foot			(ast fron	-	1 51055 1	Pilloy 20	
304	Impeller Nut		Carb	on Steel			31655	Alloy 20	
314	Inspection Cover		Cas	st Iron			31655	CD4MCu	
332	Oil Seal				(Buna\Ste	ille	1 31033 1	CDHNCU	
351	Casing Gasket	Lexide							
351T	Gasket, Inspection Cover			xide		-	-		
358	Casing Drain Plug			COACHE.	bon Steel	-	31655	Alloy 20	
360T	O-ring				Buna N		Vitor		
383	Mechanical Seal		Sing			con Ca	0.1122		
412F	Gasket, Suction Piece	Section 2010	Single (Silicon Carbide vs. Silicon Carbide/Viton) Lexide						
489	Check Valve		Bu	ina N	- unait		Vito		
496	O-ring				Buna N		1 110		

Single row bearings standard on 3x3-8, 6x6-11 and 8x8-14 pumps.
 Carbon steel shaft standard on 3x3-8 and 4x4-10 pumps for all iron construction.
 Single row bearings standard on 3x3-8 pump.

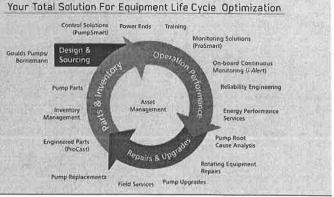

Dimensions

DIMENSIONS													
Pump Size	Discharge	Suction	A	В	н	1	1	к	L	м	v		ight Pump Kgs.
3x3-8	з	3	14,25 (368)	7.56 (192)	13.38 (340)	38,75 (984)	17:19 (437)	25.31 (643)	21.5 (546)	11.5 (292)	26.63 (676)	480	(218)
4x4-9	. 4. 12	4	16.44 (413)	8.63 (219)	15.63 (397)	40.13 (1019)	18:56 (472)	25.75 (654)	21 (533)	11.5 (292)	27.06 (687)	600	(273)
6x6-11	6	6	19.81 (503)	10.25 (260)	18,56 (472)	42.69 (1084)	16.5 (419)	27 (686)	21 (533)	10 (254)	28.56 (726)	705	(320)
8x8-14	8	8	23.25 (591)	10.56 (268)	20.25 (514)	45:56 (1157)	19,75 (502)	34 (864)	26.63 (676)	12 (305)	35.56 (903)	1150	(523)
10x10-14	10	10	28.94 (735)	13 (330)	24.5 (622)	54.13 (1375)	25.63 (651)	44 (1118)	33.5 (851)	14,75 (375)	45.31 (1151)	1800	(818)

Visit our website at www.gouldspumps.com

Wherever you are, we're there too.

Engineered Valves


PRØ

Reliability has no quitting time.

Building on over 160 years of Goulds Pumps experience, PRO Services provides an array of services focused on reducing equipment total cost of ownership (TCO) and increasing plant output, including predictive monitoring, maintenance contracts, field service, engineered upgrades, inventory management, and overhauls for pumps and other rotating equipment.

GOULDS

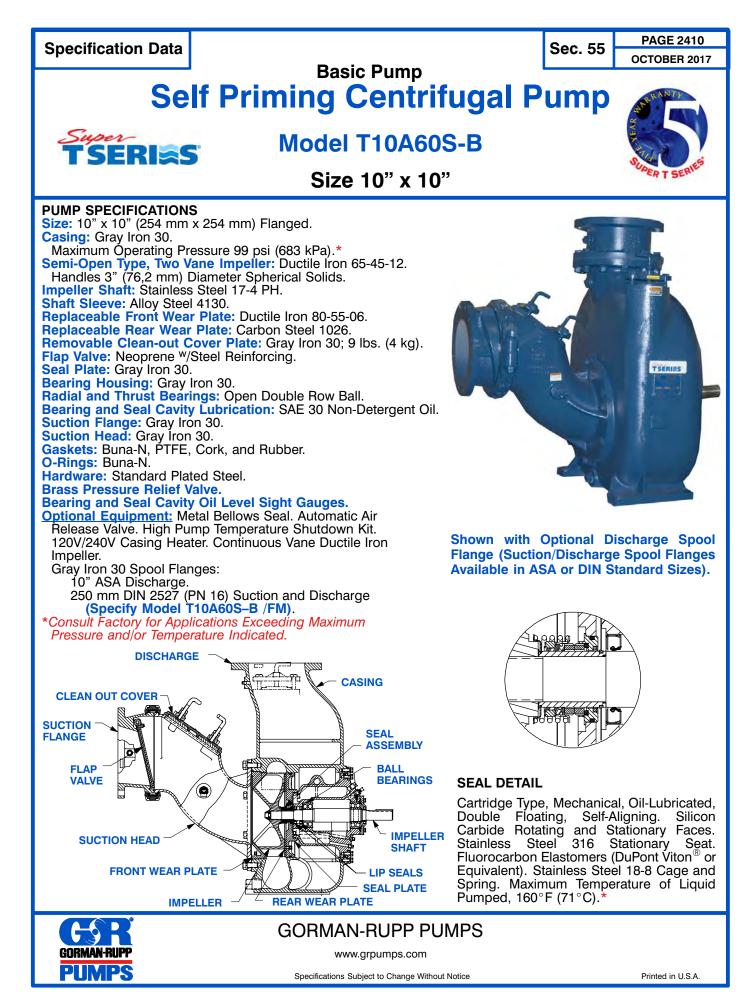
240 Fall Street Seneca Falls, NY 13148 www.itt.com © 2015 ITT Corporation, Inc.

Bornemann

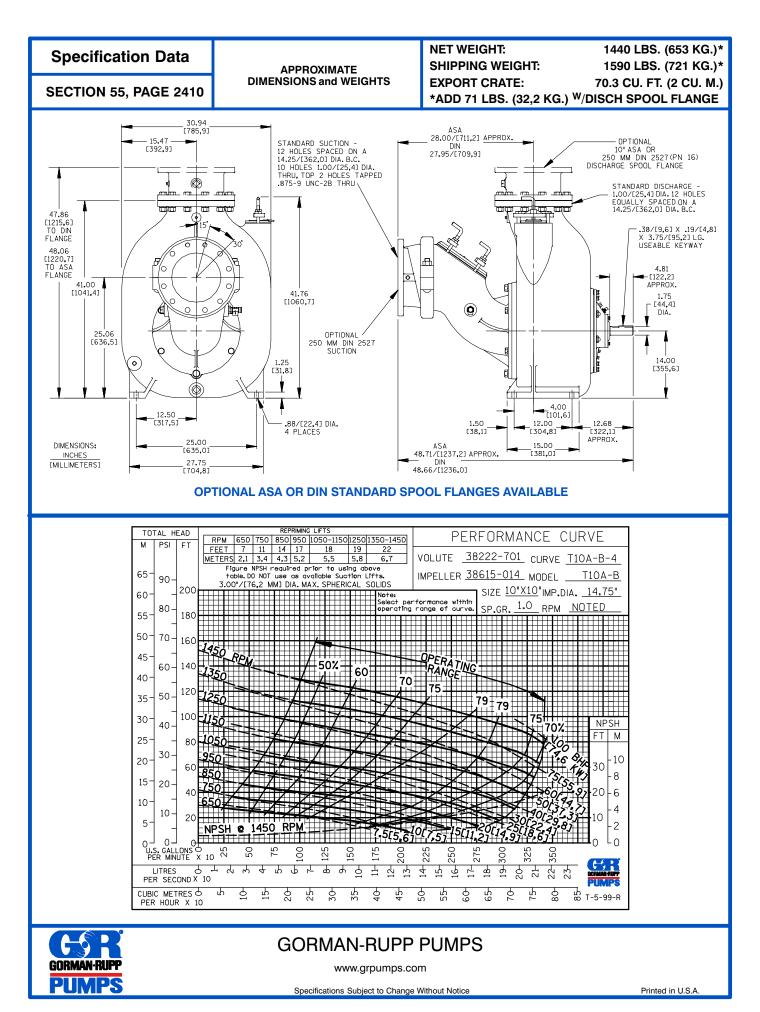
B.TrashHog.en-US.2015-10

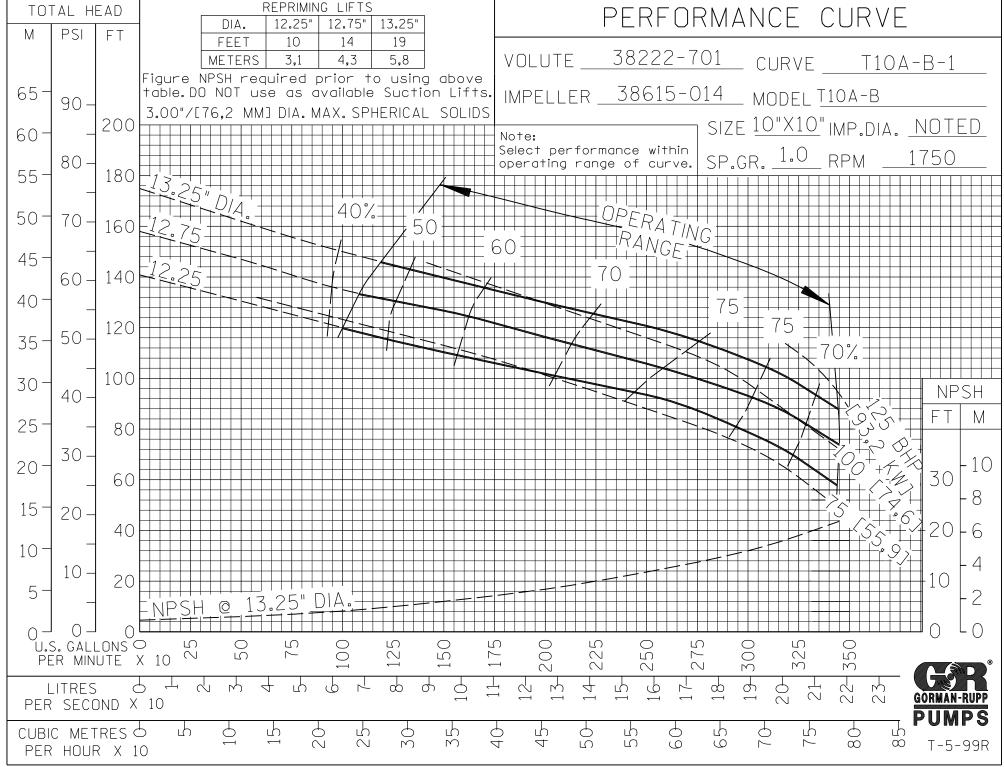
Blakers *L'treat*

March 8, 2023

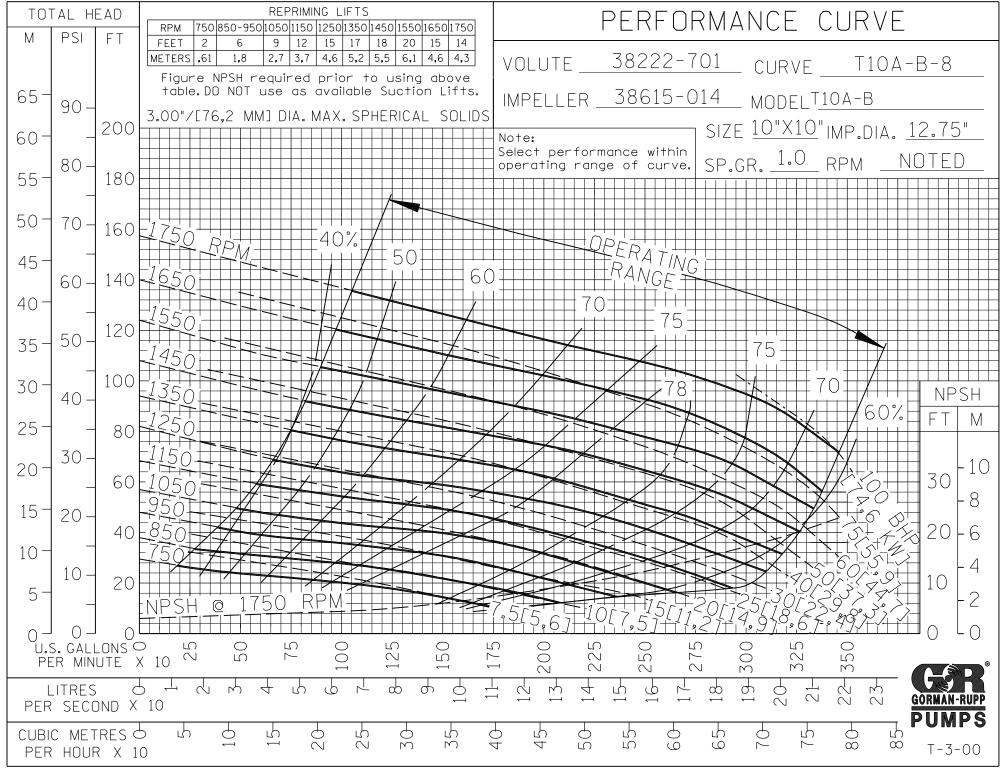

SUBJECT: Summary of Westlake Sulphur Pond Pumps

Westlake brine field operations has (2) pond pumps located on the Southern perimeter of the central lake on the Sulphur dome. The central lake does not have a connection to the main outfall from the Sulphur dome, bayou d'Inde, so pumps are used to control the water levels. The pond pumps are operated based on observed water level increases post rain events and/or prior to a large rainfall event. Both pumps discharge from the central lake water to the adjacent area to the south of central lake (see below image, depicted in yellow). The Sulphur Brine Field is permitted under the LPDES Storm Water Multi-Sector General Permit (MSGP No. LAG480546, AI No. 8990) for discharges of storm water associated with industrial activity, specifically those industrial activities related to chemical mineral mining (brine mining) as governed under the MSGP Sector J (Non-metallic Mining and Dressing).




Thanks,

Josh Bradley Brine Field Superintendent



© Copyright Gorman-Rupp Pumps 2017

FILE NO. +10ab.s01

FILE NO. +10ab.s08

TCD 914 L06 300mm blower Specification data

	0000
General Cylinders Cylinder arrangement	
Bore Stroke Cylinder Displacement Total displacement Compression ratio	102 132 1.08 6.47
Combustion system Aspiration Emissions equipment	Turboch Internal
Fuel system Lift pump suction head, max Lift pump flow @max rpm Max restriction in fuel supply line	1.0 117.0 200
Max restriction in fuel return line Max restriction in fuel pre-filter Fuel filter type Fuel consumption @ max rating Fuel consumption @ peak torque	200 200 Replace 35.0 25.7
Combustion air system Combustion air flow @ max rating Max allowable clean restriction Max allowable dirty restriction	680 30 65
Exhaust system Exhaust gas flow @ max rating Exhaust temp @ max rating Max allowable back pressure	1800 480 75
Cooling system Type Cooling air flow rate @ max rpm Max inlet air temp rise over ambient Discharge air temp rise over inlet Cowling pressure: Max loss due to inlet duct Max loss due to discharge duct	Integrate 6865 10 70 10 10
Lubrication system Lubrication type Oil flow at max rpm (std.)	Forced-f 72

Lubrication type
Oil flow at max rpm (std.)
Oil pump relief valve setting
Max oil temperature in oil sump
Filter volume
Oil change interval

Electrical

Starter motor Max battery CCA Voltage drop, battery (+), max 6 Vertical in-line 102 mm 4.0 in. 132 mm 5.2 in. 1.08 liter 65.8 in.³ 6.47 liter 394.9 in.³ 19.0:1 Direct injection urbocharged, aftercooled ternal EGR

1.0	m	39.4	in.
117.0	l/h	30.9	GPH
200	mbar	80	in. H_2O
200	mbar	80	in. H ₂ O
200	mbar	80	in. H_2O
Replace	eable cart	ridge	
35.0	l/h	9.2	GPH
25.7	l/h	6.8	GPH
680	m³/h	400.2	CFM
30	mbar	12	in. H_2O

1800 m³/h 1059.3 CFM 480 °C 896 °F 75 mbar 30 in. H₂O

mbar

	Integrated air o	cooled
	6865 m ³ /h	4040.1 CFM
nt	10 °C	18 [°] F
	70 °C	126 [°] F
	10 %	
	10 %	

Forced-feed lubrication				
72 l/min	19.0 GPM			
5.5 bar	79.75 psi			
135 °C	275 °F			
1.5 liter	1.6 qt.			
250-500 hr. dep	ending on app.			

250-500 hr. depending on app 12V, 3.1kW 24V, 4.0kW 1250A 750A

1.0V

Engine RPM kW, Gross intermittent Hp, Gross intermittent kW, Net intermittent Hp, Net intermittent kW, Gross continuous Hp, Gross continuous 26 in. H₂O kW, Net continuous Hp, Net continuous **Fuel consumption** g/kWhr lb/hphr **Combustion air** m³/h CFM Exhaust gas @ 500[°] C m³/h CFM **Cooling air** m³/h CFM Noise, dB(A) Avg. @ 1 meter

Physical data

Max bending @ housing:

Max force @ flywheel:

Performance data

Length

Width

Height

Axial:

Radial:

@ rpm

Peak torque

low idle speed

Engine power

Weight, dry

minimum dimensions

54.6 in.

28.1 in.

39.5 in.

1166 lb.

589.6 lb-ft

675.7 lb.

900.9 lb.

461 lb-ft

2300

129.9

174.1

122.3

163.9

125.5

168.2

117.9

158.0

228

0.374

680

400

1800

1059

6865

4040

2150

124.5

166.8

118.3

158.5

120.0

160.8

113.8

152.5

222

0.364

650

383

1650

971

6415

3775

1386 mm

714 mm

1004 mm

530 kg

800 Nm

3000 N

4000 N

625 Nm

750 rpm

2000

119.0

159.5

114.0

152.8

113.0

151.4

108.0

144.7

216

0.354

600

353

1600

942

5970

3513

1600

Not for

Genset

1800

109.0

146.1

105.3

141.1

104.0

139.4

100.3

134.4

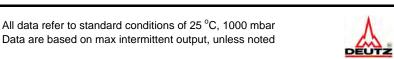
212

0.348

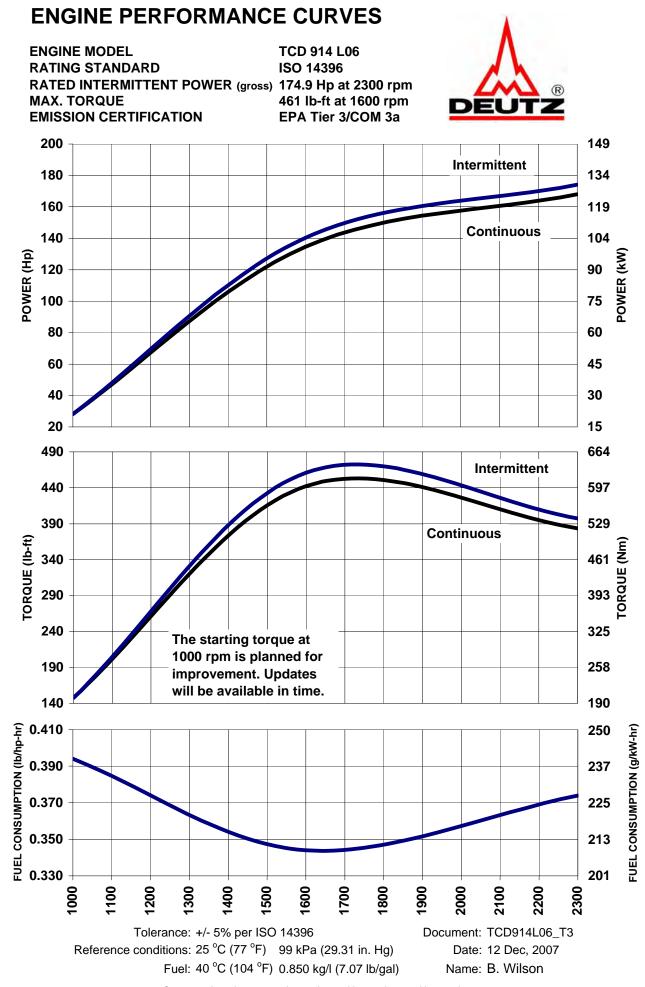
550

324

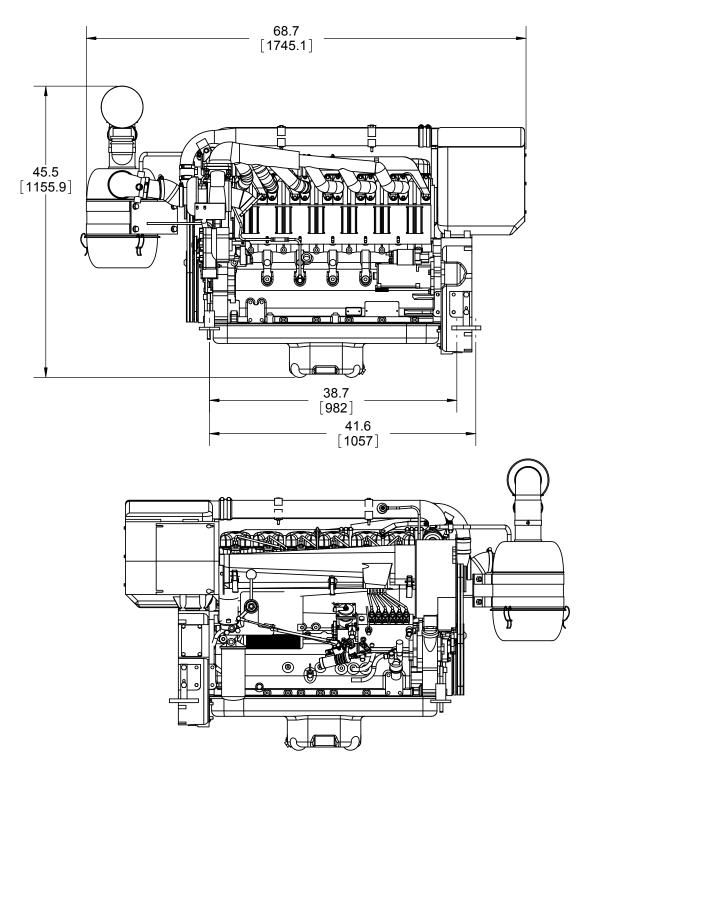
1450

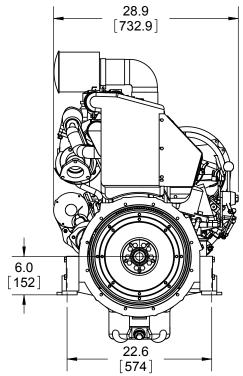

853

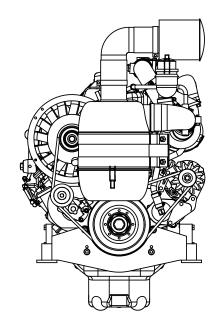
5370


3160

Certifications


U. S. EPA Non-road Tier 3 European COM 3a




DEUTZ Corporation 3883 Steve Reynolds Blvd Norcross, GA 30093 USA

Curves are based on current data and are subject to change without notice.

	DR BY:	DATE	ECN
	EJM	2/7/08	MA
	CK BY:	DATE	DES
	APPROVED	D: DATE	DRA
REV. DESCRIPTION DATE APPROVED			
COPYING OF THIS DOCUMENT, AND GIVING IT TO OTHERS AND THE USE OR COMMUNICATION OF THE CONTENTS THEREOF, ARE FORBIDDEN WITHOUT THE EXPRESS AUTHORITY. OFFENDERS ARE LIABLE TO THE PAYMENT OF DAMAGES. ALL RIGHTS RESERVED IN T	THE EVENT O	F THE GRANT OF	A PATE

			7			
)			
CORPORATION ROSS, GA USA	UNLESS O GEOMETRIC TOLERANCES PER ISO 1101 AND DIN 7167 SURFACE TEXTURE PER ISO 1302	0.XX +/-0	LERANCES: 0.2 MM +/-0.1 IN 0.06 MM +/-0.01 IN 0.013 MM +/-0.003 IN			
MATERIAL: VENDOR	CORNERS PER DIN 6784	١				
DESCRIPTION TCD 914	1.06	PROJECT				
DRAWING NUMBER		SCALE:	SHEET			
TCD091		1:15	1 of 1			
TENT OR THE REGISTRATION OF A UTILITY MODEL OR DESIGN. SIZE B 11x17 PART FORMAT						