APPENDIX N

ADDITIONAL EXPERT ANALYSIS - ECOTOXICOLOGY (ERM)

Ecological Risk Assessment

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company, Grand River Oil & Gas Field, Iberville Parish, Louisiana

November 2, 2022 Project No.: 0645446

The business of sustainability

Signature Page

November 2, 2022

Ecological Risk Assessment

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company, Grand River Oil & Gas Field, Iberville Parish, Louisiana

PLL/

Helen Connelly, Ph.D. Toxicologist

ERM Baton Rouge 804 Main Street, Suite A-113 Baton Rouge, Louisiana 70802 +1 225 292 3001

© Copyright 2022 by The ERM International Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

November 2022

CONTENTS

EXEC	CUTIVE	SUMMAR	Υ	. V
1	INTRO	DUCTION		1
	1.1	Purposeo	f Report and Sources of Information	2
2	PROPE		DLOGY	3
	2.1	Ecoregion		3
	2.2		Communities	
		2.2.1	Wetlands	3
		2.2.2	Waterbodies	4
	2.3	Ecosyster	n Services	4
3	PROPE		PECTIONS AND OBSERVATIONS	5
	3.1	Vegetatio	Characterization and Assessment	5
		3.1.1	Property Vegetation	5
		3.1.2	Reference Area Vegetation	
	3.2	Avian Cor	nmunity Characterization and Assessment	9
		3.2.1	Property Avian Community	
		3.2.2	Reference Area Avian Community	.11
	3.3	Non-Aviar	Fauna Characterization and Assessment	.12
		3.3.1	Property Non-Avian Fauna Community	.12
		3.3.2	Reference Area Non-Avian Fauna Community	
	3.4	HA-3 (Off-	Site) Vegetation and Wildlife	.14
	3.5	Soil Salini	ty and Vegetation	.14
	3.6		Areas Planned for Soil Remediation and in Other Areas	
	3.7	Ecologica	Observation Summary	.17
4	SCREE	ENING-LE	VEL ECOLOGICAL RISK ASSESMENT (SLERA)	19
	4.1	ERA Step	1	.19
		4.1.1	Screening Level Formulation	.19
		4.1.2	Effects Evaluation	.21
	4.2	ERA Step	2	.23
		4.2.1	Screening Level Exposure Estimates	.23
		4.2.2	Screening Level Risk Calculations	
		4.2.3	Risk Characterization	.27
5	BASEL	INE ECO	LOGICAL RISK ASSESSMENT (BERA)	31
	5.1	ERA Step	3	.31
		5.1.1	Northern Cardinal (Cardinalis cardinalis)	.31
		5.1.2	American Robin (Turdus migratorius)	.32
		5.1.3	Spotted Sandpiper (Actitis macularius)	.32
		5.1.4	Mallard (Anas platyrhynchos)	
		5.1.5	Snowy Egret (Egretta thula)	
		5.1.6	Swamp Rabbit (Sylvilagus aquaticus)	
		5.1.7 5.1.8	Marsh Rice Rat (Oryzomys palustris) American Mink (Neovison vison)	
	5.0			
	5.2		4	
		5.2.1	Work Plan and Sampling Plan	.35

	5.2.2	Measurement Endpoints	
	5.2.3	Study Design	
	5.2.4	Data Quality Objectives	
5.3	ERA St	ep 5	
	5.3.1	Field Sampling Plan Verification	37
5.4	ERA St	ep 6	
	5.4.1	Analysis of Ecological Exposures and Effects	37
5.5	ERA St	ep 7	
	5.5.1	Risk Estimation and Characterization	
5.6	ERA St	ep 8	
	5.6.1	Risk Management Decision	
5.7	Current	t and Future Land Use	
	5.7.1	Soil	
5.8	Risk of	Remedy	40
5.9	Uncerta	ainty Evaluation	40
SUM		ND CONCLUSIONS	42
REFE		S	43

FIGURES

6 7

TABLES

ATTACHMENT A PHOTOGRAPHS

ATTACHMENT B FIELD NOTES

ATTACHMENT C RECAP FORM 18

ATTACHMENT D FLORA AND FAUNA

ATTACHMENT E BARIUM SOIL SCREENING VALUE

ATTACHMENT F BACKGROUND CALCULATIONS

ATTACHMENT G LAA DISCUSSION

ATTACHMENT H HQ INPUT FACTORS CALCULATIONS

ATTACHMENT I HQ CALCULATIONS

List of Tables

Table 3-1: Trees Observed at the Property that are Associated with Louisiana Bottomland Hardwood Forest and Swamp Natural Communities

Table 3-2: Louisiana Bird Species of Greatest Conservation Need Observed on the Property

Table 4-1: Ecological Screening Values

Table 4-2: Sample Location Designations

Table 4-3: Maximum Reported Concentrations

Table 4-4: Soil Screening Values for Estimation of Potential Ecological Risks

Table 4-5: Sediment Screening Values for Estimation of Potential Ecological Risks

Table 4-6: COPEC Screening Hazard Quotients using Maximum Soil Concentrations

Table 5-1: Soil Exposure Point Concentrations for Single Point Locations

Table 5-2: Results (Hazard Quotients) for Ecological Preliminary AOI

Table 1: List of Vegetation Observed at the Property

November 2022 Page ii

Table 2: List of Birds Observed at the Property Table 3: List of Non-Avian Fauna Observed at the Property Table 4A: Soil Analytical Data and Screening (All Depths) - Property Excluding LAA Table 4B: Soil Analytical Data (All Depths) - Limited Admission Remediation Areas Table 4C: Soil Analytical Data (All Depths) - Off-Site Table 5: Barium Speciation Table 6: Toxicity Reference Values (TRVs) for BERA Table 7: Soil/Sediment Bioavailability Factors for BERA Table 8: Bioconcentration Factors (BCFs) for Food Items for BERA Table 9: Species Factors for HQ Calculations for BERA Table 10: Exposure Modifying Factors (EMFs) for Receptors for BERA **List of Figures** Figure 3-1: Comparison of Wetland Classifications at the Property (A) and Sherburne Wildlife Management Area (B), Growth Habits (C), and Community Structure (D) Figure 3-2: Comparison of the Avian Food Web between the Property (A) and a nearby Protected Area, Sherburne Wildlife Management Area (B) Figure 3-3: Example of a Terrestrial Food Chain Observed at the Property Figure 3-4: Ecological Habitat in HA-1, HA-5, HA-2a, and HA-2b Figure 3-5: Observed Wildlife Diversity Figure 1: Property Location Figure 2: USFWS Wetlands Figure 3: Observed Habitat Figure 4: Property Vicinity Map Figure 5A: Vegetation Observation Locations: Property Figure 5B: Vegetation Observation Locations: Sherburne WMA Figure 6: USEPA 8-Step Ecological Risk Assessment Process Figure 7A: Soil Sample Locations: Property Figure 7B: Soil Sample Locations: Off-Site Figure 8: Ecological Conceptual Site Model Figure 9A: Soil Concentrations 0-3' (Property): Arsenic Figure 9B: Soil Concentrations 0-3' (Off-Site): Arsenic Figure 10A: Soil Concentrations 0-3' (Property): Barium Figure 10B: Soil Concentrations 0-3' (Off-Site): Barium Figure 11A: Soil Concentrations 0-3' (Property): Cadmium Figure 11B: Soil Concentrations 0-3' (Off-Site): Cadmium Figure 12A: Soil Concentrations 0-3' (Property): Chromium Figure 12B: Soil Concentrations 0-3' (Off-Site): Chromium Figure 13A: Soil Concentrations 0-3' (Property): Lead Figure 13B: Soil Concentrations 0-3' (Off-Site): Lead Figure 14A: Soil Concentrations 0-3' (Property): Mercury Figure 14B: Soil Concentrations 0-3' (Off-Site): Mercury Figure 15A: Soil Concentrations 0-3' (Property): Selenium Figure 15B: Soil Concentrations 0-3' (Off-Site): Selenium Figure 16A: Soil Concentrations 0-3' (Property): Silver Figure 16B: Soil Concentrations 0-3' (Off-Site): Silver Figure 17A: Soil Concentrations 0-3' (Property): Strontium Figure 17B: Soil Concentrations 0-3' (Off-Site): Strontium Figure 18A: Soil Concentrations 0-3' (Property): Zinc

November 2022 Page iii

Figure 18B: Soil Concentrations 0-3' (Off-Site): Zinc Figure 19: Limited Admission Area Figure 20: Ecological Preliminary AOIs

EXECUTIVE SUMMARY

An ecological risk assessment (ERA) was performed by Dr. Helen Connelly for the August Levert Property (Property), located in the Grand River Oil and Gas Field, Iberville Parish, Louisiana. This ERA has been prepared in accordance with U.S. Environmental Protection Agency (USEPA) and Louisiana Department of Environmental Quality (LDEQ) guidance (e.g., USEPA, 1997, 1998; LDEQ, 2003). The ERA evaluates whether oilfield exploration and production (E&P) operations within the Property have damaged the ecology (flora and fauna) on the Property. The ERA demonstrates that there are no unacceptable risks to ecological receptors on the Property from E&P operations and that remedial action based on ecological risk is not required. This conclusion is supported by the following information and evidence:

- Field inspections and evaluations performed by Dr. Helen Connelly (2022), ICON (2022), HET (2022), Dr. Wade Bryant (2022), and Dr. Bernard Kueper (2022);
- Data from 2019 and 2022 investigations of soils, groundwater, wildlife, and vegetation (ERM, 2022; ICON, 2022; HET, 2022; Bryant, 2022; Keuper, 2022); and,
- The results of a Screening Level Ecological Risk Assessment (SLERA) and Baseline Ecological Risk Assessment (BERA) of the Property, which includes a comparison of soil COPEC concentrations with ecological screening values (ESVs) and calculation of potential for ecological risk.

The Property supports aquatic and terrestrial habitats important to the Inland Swamps Ecoregion, in which the Property is located, and includes emergent and forested wetlands, canals, and lakes. Vegetation on the Property is very diverse (87 vegetative taxa observed) and includes 52 different forbs/herbs/grasses and 37 trees and shrubs, of which 15 trees are ones commonly associated with forested bottomland hardwood and swamp wetlands in Louisiana.

The vegetative diversity at the Property was compared to similar habitat within a reference location, Sherburne Wildlife Management Area (WMA), 18.5 miles northwest of the Property. The comparison shows that the Property has a community structure of grasses, forbs, herbs, trees, and shrubs similar to the WMA, and that the species present at the Property are typical and representative of the region. This favorable comparison to a protected area is a line of evidence that the ecosystem is thriving appropriately and is as expected for the region.

The Property supports an intact food web, including 22 species of birds and 46 non-avian taxa, including insects, aquatic invertebrates, reptiles, amphibians, and mammals. The Property bird population compares favorably to the avian trophic structure at the WMA and includes 4 birds listed as Species of Greatest Conservation Need (SGCN) by the Louisiana Department of Wildlife and Fisheries (LDWF). The structure of the avian population, from herbivores to top predators is as expected for forested wetlands in Louisiana and is a line of evidence that the food chain is balanced and functioning on the Property. The observations of all trophic levels of the terrestrial and aquatic food webs on the Property are a line of evidence of a functioning ecosystem.

The Property is providing ecological services that are expected of forested wetland habitats in the Inland Swamps Ecoregion. The forested wetlands provide ecosystem services including the dissipation of storms, soil stabilization, erosion and flood control, water purification, biological productivity and diversity, carbon sequestration, and provision of habitat. These services were observed during the field investigations and are a line of evidence that the wetlands on the Property are functioning as expected for comparable forests in south Louisiana.

November 2022 Page v

The Property is within an ecological hub, as identified by USEPA, and is connected to the WMA and the rest of the Atchafalaya Basin through ecological wildlife hubs, corridors, and auxiliary connections. The Property is a diverse and valuable ecosystem within the larger landscape and ecoregion.

The ecological risk assessment was completed for this Property, per USEPA guidelines, as a SLERA, which includes the first two steps of the 8 step USEPA ERA process, and a BERA, which includes steps 3 through 8 of the process. The Property has three Limited Admissions Areas (LAAs) that include former E&P operational areas. LAA2 and LAA3 include Soil Remediation Areas (SRAs). The Soil Remediation Areas (SRAs) within the Property are evaluated, but due to planned remediation in these areas to meet regulatory (29-B) standards, the SRAs are not included in the SLERA and BERA. The portions of the Property that are not planned for soil remediation (i.e., portions of the Property that are outside of the SRAs) are included in the SLERA and the BERA.

Cadmium, mercury, and zinc were retained as Constituents of Potential Ecological Concern (COPECs) for a more in-depth assessment in a site-specific BERA, based on the results of the SLERA and comparison to conservative ESVs. These COPECs were identified by screening the soil analytical data collected from Property soils located outside of the SRAs (referred to as Property Excluding SRA). These COPECs were further assessed in the BERA.

Soils within the SRAs are planned for remediation (to meet regulatory guidelines) and were not included in the quantitative screening level or subsequent baseline ecological risk assessment. Average surface soil concentrations in the SRAs were evaluated and reviewed separately to determine if ecological risk is expected in these areas. The SRA soils, planned for remediation, are not predicted to be a source of adverse impact to the ecology, based on the evidence of soil analytical data demonstrating limited bioavailability of constituents in the SRAs and concentrations below ecological risk levels, as well as strong field evidence of diverse and thriving vegetation and abundant wildlife, without evidence of ecological impact. The soils in the SRAs are not proposed for remediation for ecological reasons, due to there being no evidence of ecological risk, but are planned for remediation to meet regulatory guidelines.

The BERA for the Property Excluding SRAs was completed using site-specific analytical data, regionspecific wildlife receptor factors, and USEPA protocol. Five bird and three mammal wildlife receptors, representing the ecological populations observed and expected on the Property, were evaluated for potential exposure to site constituents. The BERA quantitatively confirms that historical E&P activities by defendants on this Property do not pose an unacceptable risk to wildlife and the environment.

November 2022 Page vi

1 INTRODUCTION

Dr. Helen Connelly of Environmental Resources Management (ERM) has prepared this ecological risk assessment (ERA) pertaining to the August J. Levert, Jr., et al. matter, in which ERM was retained by BP America Production Company (BP). The August Levert Property (Property) consists of approximately 55 acres of bottomland hardwood and swamp forested wetlands within Section 15, Township 10 South, Range 11E, in the Grand River Oil & Gas Field, Iberville Parish, Louisiana (Figure 1).

The Property contains former operational areas that were historically used for oil and gas exploration and production (E&P) activities, and evaluation and remediation is planned in these operational areas to meet state regulatory requirements (HET, 2022). The areas on the Property planned for evaluation and remediation are within three Limited Admission Areas (LAAs) LAA1, LAA2, and LAA3. Within LAA2 and LAA3, there are three areas planned for soil remediation (SRAs). There is not an SRA in LAA1. The SRAs are not included in the risk calculation portion of the ecological risk assessment due to the remediation planned for these areas, however, the observed ecology and habitat assessment in the SRAs is included in the ERA. The risk calculation portion of the ERA includes all soil data from the Property that is outside of the SRAs (referred to as Property Excluding SRAs).

The Property supports a variety of aquatic and terrestrial habitats important to the Inland Swamps Ecoregion, including both emergent and forested wetlands (Figures 2 and 3). Two canals traverse the Property, and Willow Lake intersects the Property from north to south (Figure 4). The habitats on the Property support a wide variety of wildlife, including wading birds, passerine birds, and raptors, terrestrial mammals, such as rabbits and armadillo, and aquatic species such as crawfish and American alligator (*Alligator mississippiensis*).

This ERA has been performed to evaluate whether historical oilfield E&P operations have damaged the ecology (flora and fauna) at the Property and whether remediation is required to protect the ecology. An ERA evaluates the ecological effects of chemical, physical or biological actions on an ecosystem by quantifying adverse effects on individuals, populations, communities, or ecosystems. This ERA has been performed in accordance with U.S. Environmental Protection Agency (USEPA) and Louisiana Department of Environmental Quality (LDEQ) guidance (e.g., USEPA, 1997; USEPA, 1998; LDEQ, 2003).

ERA, per USEPA guidance, begins with a screening level assessment and progresses to a more sitespecific ecological risk assessment, if needed, to assess if there is unacceptable risk to ecological receptors due to exposure to COPECs in Property media.

The conclusions in this ERA are supported by the following data:

- Field inspections and evaluations performed by Dr. Helen Connelly (2022), ICON (2022), HET (2022), Dr. Wade Bryant (2022), and Dr. Bernard Kueper (2022);
- Data from 2019 and 2022 investigations of soils, groundwater, wildlife, and vegetation (ERM, 2022; ICON, 2022; HET, 2022; Bryant, 2022; Keuper, 2022); and
- The results of a Screening Level Ecological Risk Assessment (SLERA) and Baseline Ecological Risk Assessment (BERA) of the Property, which includes a comparison of soil COPEC concentrations with ecological screening values (ESVs) and calculation of potential for ecological risk.

The purpose of this ERA is to determine if 1) additional investigation and studies are needed, 2) remediation is needed, or 3) no further action is required.

1.1 Purpose of Report and Sources of Information

This report documents the ecological conditions of the Property and provides: 1) a review of Property background information and data; 2) an ERA; and 3) recommendations for a scientifically reliable course of action for the Property.

Fundamental principles of toxicology have been used to evaluate the Property and prepare this report. Basic principles of toxicology that govern the evaluation process include: 1) there must be an exposure to elicit a sufficient dose, response, and subsequent risk; and 2) an implemented remedy, if any, should not cause harm to a functioning ecosystem.

Information reviewed to prepare this report, other than the data in this report and the literature cited, include an expert report and restoration plan from ICON (2022), an expert report from Dr. William J. Rogers (2022), a report from HET (2022), a wetland delineation report from Dr. Wade Bryant (2022), a groundwater report from Dr. Bernard Keuper (2022), and audio/video/photographic recordings taken by third parties, including Neon Media.

Additional information may be reviewed and added to this report if additional information becomes available.

2 **PROPERTY ECOLOGY**

The condition, physical structure, and ecology of the Property ecosystem was assessed during field investigations of vegetation and wildlife performed by Dr. Helen Connelly on May 5, 2022, and August 17, 2022. There is sufficient ecological field data (2022), soil concentration data (2019 and 2022), and support from the scientific literature to evaluate the Property's ecosystem health.

2.1 Ecoregion

The Property is situated within the Inland Swamps Ecoregion of Louisiana, which is a freshwater region, north of the coastal marshes. The Inland Swamps ecoregion covers a large portion of the Atchafalaya Basin, where swamp forest communities are dominated by bald cypress (*Taxodium distichum*) and water tupelo (*Nyssa aquatica*).

The Property is within the Atchafalaya Basin, which is the largest bottomland hardwood forest swamp in North America. The Property is within a globally designated Important Bird Area (IBA) (Audubon, 2015), the Mississippi Flyway for bird migration (Audubon, 2022a), and an ecological hub for wildlife connectivity in the region (USEPA, 2022b). The Property, by these measures, is important to local and regional ecology.

2.2 Ecological Communities

The Property contains emergent and forested/shrub wetlands and waterbodies (canals and Willow Lake) (Figures 3 and 4). Biota expected to occur in these types of ecological habitats and biota observed at the Property during the May 5 and August 17, 2022 field investigations are discussed in in detail in Section 3.

2.2.1 Wetlands

The Property is characterized as submerged wetlands (Bryant, 2022) based on elevation, wetland plants, and soils documented throughout the Property. The Property is dominated by freshwater forested/shrub wetlands with a small area of freshwater emergent wetland along the western Property boundary, per U.S. Fish and Wildlife (USFWS) National Wetlands Inventory (NWI) (Figure 2). The emergent wetlands are categorized by the NWI as persistent and semi-permanently flooded, indicating that the wetlands are dominated by species that normally remain standing until the beginning of the next growing season, and that surface water is persistent through the growing season in most years.

Per USFWS NWI, the forested/shrub wetlands are seasonally and semi-permanently flooded needle- and broad-leaved deciduous communities, represented by bald cypress and tupelo species (*Nyssa* spp.). These wetland communities and others were observed and documented during the 2022 field investigations. The wetland vegetation at the Property is further discussed in Section 3.1 below.

Wetlands provide important habitat and support a complex food web that includes the detrital food chain. At this Property and in many wetlands, the detrital food chain begins with detritus and the small invertebrates that feed on detritus. Aquatic invertebrates, such as crawfish, consume the organisms that feed on detritus. Then, the aquatic invertebrates are eaten by secondary consumers, such as snakes, frogs, and many species of birds, which are then diet for higher trophic level species, such as hawks (*Buteo* spp.) and American alligator. All levels of this detrital trophic food chain have been observed and documented at the Property. The presence of a functioning food chain is evidence of ecosystem function, as well as evidence that the Property is providing the ecosystem service of habitat for many species of wildlife.

Documentation of the expected trophic levels, as performed for this ERA, is part of the ecological risk assessment process (USEPA, 1997). Further discussion of the avian and wildlife communities at the Property is presented in Section 3.2 and 3.3.

2.2.2 Waterbodies

The USFWS NWI indicates the presence of riverine and lake features on the Property (Figure 2). The two canals on the Property are characterized as lower perennial (low gradient), permanently flooded channels. The lake feature on the Property, named Willow Lake, intersects the Property from north to south, and is categorized as permanently flooded (Figures 2 and 4). Based on the documented thriving ecology at the Property there is no indication that these waterbodies have been impacted by E&P operations.

2.3 Ecosystem Services

As part of the ERA, the Property has been evaluated for evidence of ecological services and functions and found to be providing services that are expected for wetlands and waterbody habitats (Barbier, 2013).

The expected and observed ecological services provided by the emergent and forested wetland habitats on the Property include: dissipation of storms (trees provide buffering), soil stabilization (roots hold soil in place), erosion and flood control (soils absorb water), water purification (surface water is cleaned via interactions with plants), biological productivity and diversity (habitat produces diverse vegetative and animal biomass), carbon sequestration (carbon stored in abundant vegetation), and provision of habitat (presence of diverse vegetative species). The waterbodies on the Property provide ecosystem services such as breeding grounds and habitat for aquatic and semi-aquatic species.

The observations of the expected ecosystem functions and services documented on the Property are a line of evidence supporting the conclusion of no adverse impacts to species or their habitats from historical E&P activities.

November 2022 Page 4

3 PROPERTY INSPECTIONS AND OBSERVATIONS

Dr. Helen Connelly performed field investigations and collected wildlife and vegetation data on May 5 and August 17, 2022. These data, along with wildlife and vegetation data collected by Mr. Jody Shugart (ERM, May 5, 2022), Ms. Emily Martin (ERM, May 5, 2022), and Dr. Wade Bryant (2022) were used to prepare the ERA.

Property, off-site, and reference area locations investigated during vegetation/wildlife surveys are shown on Figure 5A and Figure 5B, respectively. Habitat photographs that are representative of the locations investigated are shown in Figure 3. Photographs taken of habitat, vegetation, and wildlife are included in Attachment A and field notes are in Attachment B. LDEQ's Risk Evaluation/Corrective Action Program (RECAP) Form 18 is included in Attachment C.

3.1 Vegetation Characterization and Assessment

Vegetation is diverse throughout the bottomland hardwood forests and swamps at the Property. Eightyseven (87) vegetative taxa were observed and recorded at the Property. This is excellent diversity for habitats in the region and is a line of evidence of good ecosystem function. The abundance of representative forested wetland species indicates that soils and conditions are offering a productive and non-toxic setting for ecological habitats.

A complete list of vegetative taxa observed at the Property is included in Table 1. Photographs of the natural communities, vegetation survey areas, and flora at the Property and at the reference area are provided in Attachment A.

3.1.1 Property Vegetation

The wetland natural communities at the Property are characterized as bottomland hardwood forests and swamps (LDWF, 2009). These areas are dominated by hydrophytic species, which are plants adapted to living in aquatic and semi-aquatic environments.

The forested wetlands at the Property are primarily bottomland hardwood forests and swamps. The mosaic of small-scale changes in relief and elevation (berms) throughout the Property allows for a mixed vegetative community of species that flourish in saturated soils, such as sugarberry (*Celtis laevigata*) and possumhaw (*Ilex decidua*), and species that can thrive in standing water, such as bald cypress and water tupelo. The mid- and under-story vegetative communities at the Property contain a variety of hydrophytic shrubs, herbs, forbs, grasses, including alligatorweed (*Alternanthera philoxeroides*), butterweed (*Packera glabella*), creeping primrose-willow (*Ludwigia repens*), green flatsedge (*Cyperus virens*), Kunth's maiden fern (*Thelypteris kunthii*), ravenfoot sedge (*Carex crus-corvi*), and Virginia dayflower (*Commelina virginica*), as well as floating aquatic plants such as water spangles (*Salvinia minima*).

The Louisiana Department of Wildlife and Fisheries' (LWDF) Natural Heritage Program (NHP) documents 68 types of natural communities in Louisiana, along with the plant and animal species that regularly or often occur in these settings (LDWF, 2009). The vegetative species are described as occurring in a continuous mosaic of communities, rather than in separate discrete communities (LDWF, 2009). The Property and surrounding areas can be characterized as a mosaic of wetland forest communities, including species typical of bottomland hardwood forests and swamps (LDWF, 2009).

Inset Table 3-1, below, lists the trees found at the Property that are commonly associated with and/or dominant in Louisiana bottomland hardwood forests and swamp natural communities (LDWF, 2009). The U.S. Forest Service determines plant community associations based on characteristic range or habitat conditions, and defines a dominant plant as a species with a strong community influence due to size, abundance, or coverage (USFS, 2021).

Table 3-1: Trees Observed at the Property that are Associated with Louisiana Bottomland Hardwood Forest and Swamp Natural Communities

Common Name		Scientific Name	Natural Community Characterization
Bottomland Hardwood F	orests ^a		
American elm		Ulmus americana	Dominant or Associate
Green ash [†]		Fraxinus pennsylvanica	Dominant or Associate
Sugarberry		Celtis laevigata	Dominant or Associate
Water hickory		Carya aquatica	Dominant or Associate
Water oak		Quercus nigra	Dominant or Associate
Boxelder		Acer negundo	Associate
Eastern swampprivet		Forestiera acuminata	Associate
Planertree [†]		Planera aquatica	Associate
Possumhaw		llex decidua	Associate
Red maple [†]		Acer rubrum	Associate
Red mulberry		Morus rubra	Associate
Water locust [†]		Gleditsia aquatica	Associate
Swamps ^b			
Bald cypress		Taxodium distichum	Dominant
Water tupelo		Nyssa aquatica	Dominant
Red maple		Acer rubrum	Associate
Water locust		Gleditsia aquatica	Associate
Black willow		Salix nigra	Associate
Green ash		Fraxinus pennsylvanica	Associate
Planertree		Planera aquatica	Associate
٢	Fotal Taxa	15	

Notes

^a Includes bottomland hardwood tree species from Overcup Oak-Water Hickory Bottomland Forest, Hackberry-American Elm-Green Ash Bottomland Forest, and Sweetgum-Water Oak Bottomland Forest natural communities (LDWF, 2009).

^b Includes swamp tree species from Cypress-Tupelo Swamp and Cypress Swamp natural communities (LDWF, 2009).

[†] Species occurs in both swamps and bottomland hardwood forests in Louisiana. Duplicates have been subtracted from the total taxa count.

Associate species are common in the setting based on characteristic range or habitat conditions.

Dominant species have a strong influence in a community due to size, abundance, or coverage.

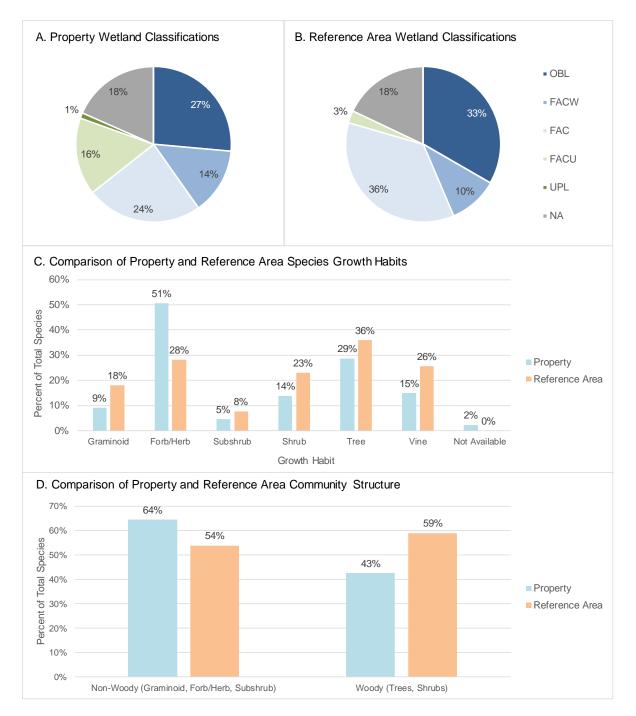
Source

LDWF. 2009. Natural Communities of Louisiana. Louisiana Natural Heritage Program, Louisiana Department of Wildlife & Fisheries.

Fifteen (15) tree species associated with bottomland hardwood forest (BLH) and swamp natural communities in Louisiana are present at the Property, which is evidence that the forested wetlands on the Property are supporting trees that are expected in the region (Inset Table 3-1). The total count of tree species (25 species total) documented during the field investigations includes the 15 trees that are representative of BLH and swamp settings in Louisiana, as well as other trees that are native to the region, such as common persimmon (*Diospyros virginiana*), honey locust (*Gleditsia triacanthos*),

roughleaf dogwood (*Cornus drummondii*), Shumard's oak (*Quercus shumardii*), pecan (*Carya illinoinensis*), nutall oak (*Quercus texana*), and elderberry (*Sambucus* spp.).

The excellent tree species diversity (25 different species) is an important line of evidence that the Property is supporting the trees expected in the region in wetland swamps and bottomland hardwood forests.


3.1.2 Reference Area Vegetation

Sherburne Wildlife Management Area (WMA) is a protected area that is owned by the LDWF and managed together with the USFWS Atchafalaya National Wildlife Refuge, and another adjacent area owned by the U.S. Army Corps of Engineers. The WMA is located approximately 18.5 miles northwest of the Property within the Atchafalaya Basin and is situated in a similar setting to the Property (LDWF, 2022). The WMA contains a mix of bottomland hardwood forest and swamp communities, similar to those at the Property and provides an appropriate comparison. The mix of bottomland hardwood and swamp forested wetlands observed at the Property and reference area is also consistent with the mix of forested wetlands documented throughout the surrounding Atchafalaya Basin (USFWS, 2022). Photographs of the vegetation and natural communities observed in the reference area are provided in Attachment A.

During a reference site investigation on May 5, 2022, Dr. Helen Connelly (ERM) and Mr. Jody Shugart (ERM) identified 39 plant species in the WMA (Figure 5B). Tree species observed in the reference area included: bald cypress, black willow (*Salix nigra*), boxelder (*Acer negundo*), Chinese tallow (*Triadica sebifera*), common persimmon, eastern swampprivet (*Forestiera acuminata*), oak (*Quercus* spp.), red maple (*Acer rubrum*), roughleaf dogwood, Shumard's oak, sugarberry, sweetgum (*Liquidambar styraciflua*), water hickory (*Carya aquatica*), and water tupelo. Grasses and forbs observed included butterweed, dallisgrass (*Paspalum dilatatum*), Carolina geranium (*Geranium carolinianum*), copper iris (*Iris fulva*), eastern bluestar (*Amsonia tabernaemontana*), looseflower water-willow (*Justicia ovata*), and ravenf oot sedge.

Of the 39 total plant taxa observed at the Sherburne WMA, 29 (74%) were also observed at the Property, indicating a strong similarly between the vegetation composition of the Property and the nearby protected area. This similarity to a protected area is evidence that the Property is supporting the expected vegetation. A comparative list of vegetative taxa present at Sherburne WMA is included as Attachment D-1.

A comparison of the wetland classification and growth habit of the plant species observed at the Property and WMA reference area are shown in Inset Figure 3-1. The results indicate that wetland species (including obligate wetland, facultative wetland, and facultative species) similarly dominate both the Property (65%) and the reference area (79%). The community structures between the two areas are also similar, with non-woody (grasses, forbs/herbs, and subshrubs) vegetation comprising 64% of the Property and 54% of the reference area. Trees at the Property are 29% of the observed taxa and trees at the WMA are 36% of the vegetative community, which is excellent tree species diversity for both areas. Both the Property and the WMA habitats have a high percentage of trees, as compared to other forested wetlands throughout south Louisiana. The forests in the region are a treasure and the Property forests are a beautiful example of wetland forests in the Atchafalaya Basin.

Figure 3-1: Comparison of Wetland Classifications at the Property (A) and Sherburne Wildlife Management Area (B), Growth Habits (C), and Community Structure (D)

Property and WMA taxa include all those identified during field investigations of the Property (ERM 2022 and Bryant 2022, as described above) and of the reference area (ERM, 2022). In the wetland classification graphs (Figures 3-1A and B), the hydrophytic wetland species (Obligate [OBL], Facultative Wetland [FACW], and Facultative [FAC]) are shown in shades of blue, and non-hydrophytic upland species (Facultative Upland [FAC], Upland [UPL]) are shown in shades of green (USDA, 2012). In Figures 3-1C and D, the community structure of the Property is shown in blue and

November 2022 Page 8

the Reference area in orange. As some species have multiple growth habits, percentages in the species growth habits and community structure figures may add up to greater than 100. Vines can be categorized as woody or non-woody species and have therefore been excluded from Figure 3-1D. Taxa identified only to the genus level have a status that is considered "Not Available" as species within genera may vary in wetland classification.

These favorable comparisons of the Property to an analogous protected area, including similar proportions of wetland and upland species, similar percentages of trees, and similarity in the specific species present, demonstrate that the vegetation at the Property is as expected for swamps and bottomland hardwood forested wetlands in the Atchafalaya Basin. These similarities are lines of evidence that the ecosystem is functioning as expected, and that the vegetation at the Property is as expected for the region.

3.2 Avian Community Characterization and Assessment

The entirety of the Property and the reference area are contained within the Atchafalaya Basin IBA (Attachment D-2). Important Bird Areas are defined as distinct areas that provide essential habitat for one or more species of birds during breeding, wintering, or migrating (Audubon, 2015). With over 11 million acres designated as IBA throughout the state, Louisiana has one of the greatest concentrations of IBA surface area in the country (Audubon, 2022a). The Atchafalaya Basin IBA is known to support over 270 species of birds, including birds of prey, wading birds, neotropical migrants, and many more. The presence of the Property within the IBA makes the Property a valuable habitat for conservation of bird species.

The Property and the reference area are also within the Mississippi Flyway, which is a major bird migration route from central Canada to the Gulf of Mexico. The flyway covers 13 U.S. states and includes sources of water and food for migrating birds. Property habitat plays a role in the larger flyway as a source of food and refuge for migrating birds.

The location of the Property within both the IBA and the Mississippi Flyway makes it a valuable stopover habitat for millions of migratory birds each season (Audubon, 2022b). By providing nourishing and intact habitat, the Property is playing a role in conservation of species.

3.2.1 Property Avian Community

Twenty-two (22) species of birds were documented on the Property during the May 5, 2022 ERM field investigation. Species observed on the Property that have specific fidelity to forested wetlands, specifically swamps, in Louisiana include Barred Owl (*Strix varia*), Little Blue Heron (*Egretta caerulea*), Prothonotary Warbler (*Protonotaria citrea*), Red-shouldered Hawk (*Buteo lineatus*), and Tricolored Heron (*Egretta tricolor*) (USFWS, 2013).

Four of the bird species observed on the Property are listed as Species of Greatest Conservation Need (SGCN) by the LDWF (LDWF, 2020a; Inset Table 3-2). Species listed on the LDWF list of SGCN are selected based on global and state rarity ranks, threats to the population, extent of historical range, percent of habitat remaining, and amount of data available (Holcomb et al., 2015). The SCGN species observed on the Property range in state rarity from S3, or vulnerable in the state, to S5, very low risk of expiration in the state. The presence of SCGN species observed on the Property is a line of evidence that the Property ecosystem is providing habitat for protected species and helping to preserve avian biodiversity in Louisiana.

A complete list of birds observed on the Property is included in Table 2. Photographs of birds observed during ERM (2022) field investigations are included in Attachment A.

Table 3-2: Louisiana Bird Species of Greatest Conservation Need Observed on the Property

Common Name	Scientific Name	Diet ^a	Global Rank ^b	State Rank ^c
Chimney Swift	Chaetura pelagica	Insects	G5	S5B
Little Blue Heron	Egretta caerulea	Fish	G5	S3N, S4B
Prothonotary Warbler	Protonotaria citrea	Insects	G5	S5B
Yellow-throated Vireo	Vireo flavifrons	Insects	G5	S4B
Ranks G = Global S = State B = Breeding N = Non-breeding 3 = Vulnerable 4 = Apparently Secure 5 = Secure	Notes ^a Diets as listed by The Cornell Lal ^b Global ranks are designated by N ^c State ranks are determined by th (LDWF, 2020a). Sources The Cornell Lab. 2022a. All About <u>https://www.allaboutbirds.ord</u> LDWF. 2020a. Louisiana's Animal Threatened, Endangered An Wildlife Diversity Program. NatureServe. 2022. NatureServe September 2022.	NatureServe (2022). e LDWF under Title 56 of th t Birds: Bird Guide. Available <u>g/quide/</u> . Accessed Septemb I Species of Greatest Conse imals – 2020. Louisiana Dep	e: er 2022. rvation Need (SGC partment of Wildlife	N) – Rare, and Fisheries,

Functioning cypress-tupelo swamp and bottomland hardwood forest ecosystems support avian communities in which all trophic levels are represented (LDWF, 2009). The trophic level of each bird is defined by its diet, and on the Property, all levels of the avian trophic food chain have been observed.

Herbivorous birds, which predominately consume plants and plant material (i.e., nuts, seeds, nectar) are primary consumers. Primary consumers are lower trophic level species, as compared to the secondary and tertiary consumers with omnivorous and carnivorous diets. An example of a primary consumer observed on the Property is the Northern Cardinal (*Cardinalis cardinalis*), which feeds predominately on seeds. Common seed species consumed by the Northern Cardinal include those produced by dogwood, wild grape, grasses, sedges, sugarberry, and blackberry (The Cornell Lab, 2022a), all of which were observed on the Property (Table 1). This observation of thriving vegetation and an abundance of primary consumers on the Property is a line of evidence that the bottom of the food chain is flourishing and available to support higher trophic species .

Secondary consumers are organisms that consume primary consumers, and their diets may be omnivorous or consist predominately of insects and aquatic invertebrates. Examples of avian secondary consumers observed at the Property include Acadian Flycatcher (*Empidonax virescens*), American Crow (*Corvus brachyrhynchos*), Carolina Chickadee (*Poecile carolinensis*), Carolina Wren (*Thryothorus ludovicianus*), Red-eyed Vireo (*Vireo olivaceus*), and Yellow-billed Cuckoo (*Coccyzus americanus*). Secondary consumers typically make up the largest portion of the avian food chain, and this is true at the Property (see inset Figure 3-2), demonstrating that the Property food chain that is structured as expected. Three avian secondary consumers that are SGCN were observed on the Property: Chimney Swift (*Chaetura pelagica*), Prothonotary Warbler, and Yellow-throated Vireo (*Vireo flavifrons*). The presence of these species of greatest conservation need is a line of evidence that the Property is protecting avian diversity by providing protective forested habitat.

The 16 secondary consumers observed on the Property are also evidence that the ecosystem can support multiple avian species with similar diets. For example, the Property supports three insectivorous woodpecker species with varying insect diets. The diet of the Red-bellied Woodpecker (*Melanerpes carolinus*) includes a wide variety of beetles, bees, wasps, ants, grasshoppers, and crickets (The Cornell Lab, 2022b), whereas the larger Pileated Woodpecker (*Dryocopus pileatus*) has a diet that consists

primarily of wasps, bees, and ants (Bull et al. 1992, Raley and Aubry 2006). The smaller Downy Woodpecker (*Dryobates pubescens*) also consumes wasps, bees, ants, and beetles, but also eats moths and butterflies (Beal 1911). The Property is providing a sufficient insect diet for three different species of woodpeckers, which is a line of evidence that the wetlands can support a diversity of insectivorous birds with varying diets, such as woodpeckers, that are dedicated to forested habitats.

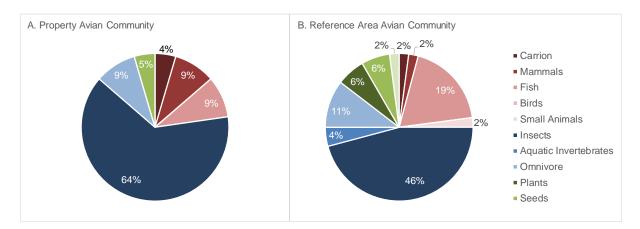
Tertiary consumers, or top predators, occupy the highest trophic levels of the food chain, and have primarily carnivorous diets comprising of carrion (animal carcasses), medium and small mammals, fish, and other birds. Birds of prey observed on the Property include Barred Owl and Red-shouldered Hawk. Scavengers include the Turkey Vulture (*Cathartes aura*) and piscivores include the Tricolored Heron as well as the Little Blue Heron, which is a SCGN. The presence of a diversity of predators with carnivorous diets indicates that the food resources throughout the Property are sufficient to support the hunting needs and high calorie diets of the top trophic levels of the avian food chain. The presence of tertiary consumers at the top of the food chain is evidence that the entire food web at the Property is functioning and intact, and can support the high calorie demands of predatory birds.

In summary, Property habitat is documented as supporting avian species with specific fidelity to forested wetlands, a balanced food chain including birds that are top predators, and birds characterized as in need of greatest conservation efforts (SGCN). All of these findings are evidence that the forested wetland habitat on the Property is supporting a diverse and regionally valuable avian community.

The complete list of birds observed on the Property is included in Table 2. A discussion of the Property and reference area bird community trophic structures is provided in Section 3.2.2.

3.2.2 Reference Area Avian Community

The cypress-tupelo swamps and bottomland hardwood forest habitats of Sherburne WMA provide similar bird habitat to habitat on the Property and are appropriate as a reference area (LDWF, 2022).


During a reference site investigation on May 5, 2022, Dr. Helen Connelly, Mr. Jody Shugart, and Ms. Emily Martin (all with ERM), observed 15 bird species in forested wetland habitats at the WMA. In addition to observations made by ERM, 50 bird species were observed in the WMA by bird enthusiasts (eBird database, May, 2022). These eBird observations were from location #L727380 in the WMA, which is a known public birding location with recorded species data. Thirty-three (33) of the 50 bird species recorded within location #L727380 in the WMA were birds dedicated to forest habitat and 17 were birds that use marsh and field habitats. Of the 50 total eBird observations, the forest species birds (33) were included in the reference list for comparison to the Property, and the marsh and field birds (17) were not, due to the absence of comparable marsh and field habitats on the Property. The complete list of 48 bird species documented at the WMA by ERM (15 species) and in eBird (33 species), that utilize forest habitats similar to those on the Property, is included in Attachment D-3.

The species richness and trophic structure of the Property avian community was compared to the Sherburne WMA avian community (reference). Nineteen (19) of the 22 species observed at the Property were also observed at Sherburne WMA or were reported by ebird.org, indicating that the Property is supporting the expected birds for the region, as compared to these references (Attachment D-3).

The trophic structure of the avian population at the Property is similar to the trophic structure at the WMA reference area (Inset Figure 3-2). At the both the Property and Sherburne WMA, 23-25% of birds observed are tertiary consumers (carnivorous and piscivorous), which is expected for bird populations in forested wetlands in southern Louisiana. The presence of carnivorous and piscivorous birds on the Property is a line of evidence that the Property ecosystem is providing lower trophic level small animals and fish in sufficient quantities to support the high calorie diet of the upper trophic level birds of prey.

At both the Property and reference area, the majority of observed species (60-73%) are secondary consumers, with diets consisting of insect, aquatic invertebrate, or mixed (omnivorous) food sources. The percentage of primary consumers, or herbivorous species, is small in both the Property and the reference area populations (5-15%) and is typical of bird populations in south Louisiana wetland forested areas, where the percentage of herbivores is the smallest trophic feeding group.

The similarity between the bird population feeding groups at the Property and at the reference area is a line of evidence that the Property's ecosystem is functioning as expected for the region.

Figure 3-2: Comparison of the Avian Food Web between the Property (A) and a nearby Protected Area, Sherburne Wildlife Management Area (B)

Property bird species include those identified during the May 5, 2022 ERM field investigation (as described above). Reference area bird species include those observed during the May 5, 2022 ERM reference area survey and those species with appropriate habitat associations (e.g., swamp, forest, forest edge) included on the May 2022 eBird list for the Sherburne Wildlife Management Area (location #L727380) (eBird, 2022). Primary consumers, or herbivores, are shown in green. Secondary consumers, including insectivores, aquatic invertebrate consumers, and omnivores are shown in blue. Scavengers and top predators are shown in shades of red and orange.

3.3 Non-Avian Fauna Characterization and Assessment

3.3.1 Property Non-Avian Fauna Community

A total of 46 non-avian taxa were observed during the May 5 and August 17, 2022 ERM field investigations. Herbivorous primary consumers observed on the Property include pollinating insects (bees [Family Apidae], mosquitos [*Anopheles* spp.], and butterflies, moths, and caterpillars [Order Lepidoptera]), beetles (flea beetle [*Disonycha* sp.] and fourteen spotted leaf beetle [*Cryptocephalus guttulatus*]), oblong-winged katydid (*Amblycorypha oblongifolia*), snails (including Apple snail [*Promacea maculata*]), and ants (Family Formicidae), as well as grazing mammals such as beavers (*Castor canadensis*) and Eastern gray squirrel (*Sciurus carolinensis*), the latter of which are hunted on the Property. The diversity of herbivorous species present on the Property is evidence that the seeds, nuts, nectar, fruits, and berries available on the Property as diet are providing sufficient calories for a variety of primary consumers. Primary producers (plants) are the base of the food chain, and the abundance of plant-eating animals on the Property, including mammals such as beavers and squirrels, is a line of evidence that plants are thriving on the Property.

Secondary consumers observed at the Property include aquatic invertebrates (crawfish [Family Cambaridae]), and terrestrial invertebrates such as dragonflies (Eastern pondhawk [*Erythemis simplicicollis*] and great blue skimmer [*Libellula vibrans*]), short horned grasshopper (Family Acrididae),

spiders (six-spotted fishing spider [*Dolomedes triton*] and harvestman [Order Opiliones]), and wasps (Suborder Apocrita), as well as a variety of reptiles and amphibians. Gulf coast toad (*Incilius nebulifer*) and southern leopard frog (*Lithobates sphenocephalus*) were observed at the Property, in addition to anoles (*Anolis* spp.), common five-lined skink (*Plestiodon fasciatus*), and little brown skink (*Scincella lateralis*). The diversity of insectivorous secondary consumers on the Property is a line of evidence that the insect populations (supported by vegetation) are sufficient to support a variety of wildlife with similar diets. Also, the presence of frogs and toads is evidence that Property water and soil are of sufficient quality to support animals that depend on both aquatic and terrestrial habitats.

In addition to the carnivorous and piscivorous birds of prey (tertiary consumers) described in Section 3.2.1, the tertiary non-avian consumers observed on the Property include a variety of snakes (cottonmouth [*Agkistrodon piscivorus*], diamondback water snake [*Nerodia rhombifer*], and western ratsnake [*Pantherophis obsoletus*]), as well as the American alligator. The presence of cottonmouth snakes at the Property indicates that there are fish (which are the preferred diet of cottonmouths) in the standing water in the forest. Cottonmouths eat fish, frogs, and other snakes. Their preferred habitat is bottomland hardwood forest, as found at the property. The fact that the snakes have a fish diet available, indicates that the soil and water quality on the Property are sufficient to support a fish population. The observation of several terrestrial and aquatic top predators on the Property is a line of evidence that terrestrial and aquatic food webs are functioning to provide a diet for species at the top of the food chain that require a high calorie diet.

All trophic levels of the terrestrial and aquatic food webs (primary to apex) were directly observed on the Property, which is a line of evidence supporting good ecosystem health (USEPA, 1997). See Inset Figure 3-3 below for an example of a terrestrial food chain observed at the Property. A complete list of non-avian fauna observed on the Property is provided in Table 3.

Figure 3-3: Example of a Terrestrial Food Chain Observed at the Property

In this example, the oblong-winged katydid (*Amblycorypha oblongifolia*), an herbivore, is the primary consumer (left). The Gulf Coast toad (*Incilius nebulifer*) (center) is an insectivorous secondary consumer, known to hunt arthropods. The tertiary consumer in this food chain is the cottonmouth (*Agkistrodon piscivorus*) (right), which is a known predator of frogs and toads. Multiple complete food chains such as this one observed on the Property indicate the health of the ecosystem. Photos by Mr. Jody Shugart (May 5, 2022).

3.3.2 Reference Area Non-Avian Fauna Community

A total of 19 non-avian species were observed at the Sherburne WMA during ERM's May 5, 2022 reference area investigation. Similar to the Property, a number of terrestrial insects were observed, including spiders, crickets, mosquitos, ants, wasps, and dragonflies, as well as amphibians (southern leopard frog), and mammals (rabbit [*Sylvilagus* sp.], raccoon [*Procyon lotor*], and feral hog [*Sus scrofa*]), and apex predators (American alligator). The variety of mammals, reptiles, and amphibians observed on the Property and at the reference area represents the three major feeding groups (herbivores, omnivores,

and carnivores), as well as keystone species, such American alligator. This is a line of evidence that the Property is functioning as expected for the region, by providing similar wildlife habitat to the nearby protected WMA.

The Property and surrounding area are in an ecological setting that is recognized by USEPA as important to ecological diversity. The Property, the reference area, and areas between the Property and the reference area, all include USEPA ecological hubs and ecological auxiliary connections, as identified by the National Ecological Framework (NEF) (USEPA, 2022a; Attachment D-4). The NEF is a Geographic Information Systems (GIS) based model that identifies ecological hubs, corridors, and auxiliary connections that connect natural landscapes throughout the contiguous United States (USEPA, 2022b). Based on the proximity of the Property to the WMA reference area (approximately 18.5 miles), and the presence of NEF hubs and auxiliary connections between the two locations, it is likely that mobile species on the Property (e.g., birds) could travel to and from the WMA and the Property for foraging, resting, and nesting. Because the Property is ecologically connected to the larger landscape (USEPA, 2022b), it is a location that wildlife can use to establish new colonies (NRCS, 1999). The existing ecological connections between the Property and the reference area are evident, based on the similarities between habitats and species in the two areas. These similarities between ecologically connected areas are a line of evidence that the Property is playing a role in supporting biodiversity in the larger connected region.

3.4 HA-3 (Off-Site) Vegetation and Wildlife

The HA-3 off-site survey area is characterized as forest and right-of-way. During the HA-3 vegetation survey on May 5, 2022, Dr. Connelly (ERM) and Mr. Shugart (ERM) observed a total of 38 plant taxa, including trees, such as American elm, black willow, boxelder, Chinese tallow, common persimmon, dwarf palmetto (*Sabal minor*), planertree (*Planera aquatica*), and red maple, herbs and forbs, including butterweed, Canadian black snakeroot (*Sanicula canadensis*), carrot (Family Apiaceae), copper iris, spider lily (*Hymenocallis occidentalis*), and spiny sowthistle (*Sonchus asper*), and grassess, such as basketgrass (*Oplismenus hirtellus*), Savannah-panicgrass (*Phanopyrum gymnocarpon*), and shortbristle horned beaksedge (*Rhynchospora corniculata*). The HA-3 area vegetation is predominately hydrophytic, which is also true of the Property and the reference area, and the 12 trees documented in the HA-3 area are also all found on the Property and in the reference area.

In addition to the vegetation observed in the HA-3 off-site area, ERM (2022) also documented 8 species of birds (Great Egret [*Ardea alba*], Great Blue Heron [*Ardea herodias*], Prothonotary Warbler, Blue-gray Gnatcatcher [*Polioptila caerulea*], Neotropic Cormorant [*Nannopterum brasilianum*], Northern Parula [*Setophaga americana*], Tufted Titmouse [*Baeolophus bicolor*], and White-eyed Vireo [*Vireo griseus*]), as well as 13 non-avian taxa. The non-avian taxa observed in the HA-3 area include crawfish (recreational traps were observed in the area), lovebugs, dragonflies, snails, butterflies, mussels, and various skinks (Broad-headed skink [*Plestiodon laticeps*] and Common five-lined skink).

The off-site HA-3 area biota data is included here for reference, but because it is not on the Property, it is not further assessed. Photographs of the flora and fauna observed in the HA-3 off-site area is included in Attachment A.

3.5 Soil Salinity and Vegetation

There is no evidence on the Property of impact to the ecology due to salt or salinity. During the field investigations, efforts were made to identify any signs of impact due to salt or other E&P constituents (USEPA, 1997; USEPA, 1998; RECAP, 2003).

There is no evidence of salinity damage to vegetation in the form of stunting or leaf burn. There were no areas denuded of vegetation or areas with salt crusts on the ground. There were no vegetative species identified on the Property that indicate the presence of salt.

Vegetation at the Property is consistent with freshwater wetlands that are not salt-impacted. Of all 87 plant species observed at the Property, 24 have no tolerance for elevated salinity. In LAA1 specifically, 12 of the 21 plant species identified have no tolerance for elevated salinity. In the SRAs in LAA2 and LAA3, 16 of the 64 plant species identified have no tolerance for elevated salinity. The presence of these plants that have no tolerance for elevated salinity is not elevated on the Property, as these plants would not be present in a saline setting.

Soil EC in the top 0-4' of soil is low, ranging from 0.31 - 4.4 mmhos/cm (average of 1.17mmhos/cm) and is below levels of concern for vegetation (Table 4). Soil sample locations are shown on Figures 7A and 7B.

There is no evidence that salt or salinity are an issue in soils (0-4') in any portion of the Property.

3.6 Habitats in Areas Planned for Soil Remediation and in Other Areas

Ecological field surveys of vegetation and wildlife were performed throughout the Property, including in the SRAs (Figure 19). Observations in the SRAs included observations at:

- HA-1, located in Limited Admission Area 2 Soil Remediation Area (LAA2-SRA);
- HA-2a, located in Limited Admission Area 3 Western Pit Soil Remediation Area (LAA3-WP SRA); and
- HA-2b, located in Limited Admission Area 3 Eastern Pit Soil Remediation Area (LAA3-EP SRA).

As per the Limited Admission (HET, 2022), soil in SRAs within the LAAs are planned for remediation for regulatory compliance. Remediation has not been recommended for these areas for ecological reasons, as the ecosystems in these locations were observed and documented to be thriving, diverse, and without evidence of impact from E&P operations (Inset Figure 3-4).

The habitat in HA-1, which is planned for soil remediation (LAA2-SRA), is primarily bottomland hardwood wetland forest. During the May 5, 2022 ERM field investigation, 33 total plant species were observed at this vegetation observation location, including 9 species of trees: bald cypress, red maple, boxelder, common persimmon, Chinese tallow, sugarberry, Shumard's oak, water hickory, and elm. This represents excellent vegetative diversity and good tree species diversity for wetland forests. At HA-1, a variety of birds were observed, including the carnivorous Barred Owl and Turkey Vulture, and the insectivorous, Red-eyed Vireo, Tufted Titmouse, Carolina Chickadee, Red-bellied Woodpecker, and Yellow-throated Video. Non-avian fauna observed include mammals, such as beavers, reptiles and amphibians, such as western ratsnake, diamondback water snake, and Gulf coast toad, and various invertebrates, such as crawfish, katydid, grasshoppers, and dragonflies. The presence of predators at LAA2-SRA, such as owls and snakes, indicates that the top of the food chain is finding a diet from the lower levels of the food chain at this location. The ecosystem is thriving at LAA2-SRA, and there is no evidence of toxicity or other adverse effects from E&P operations at this location. Although soil remediation is planned for LAA2-SRA to meet regulatory guidelines, there is no evidence that remediation is needed in this area for ecological reasons, due to the documented presence of a thriving ecology.

The habitat in the HA-2a area, which is planned for soil remediation (LAA3-WP SRA), is primarily bottomland hardwood forest and cypress swamp. A total of 31 plant species were observed in the HA-2a area during the May 5, 2022 ERM field investigations, including 12 species of trees and shrubs. This represents very good tree species diversity, as well as excellent overall vegetative diversity. Tree species

associated with bottomland hardwood and swamp forested wetland natural communities, such as bald cypress, boxelder, planertree, red maple, sugarberry, and possumhaw were all observed in the HA-2a area, demonstrating that the soils on the Property are providing a non-toxic environment for these species to grow. The HA-2a area also hosts a variety of wildlife, including primary consumers, such as the Prothonotary Warbler and Eastern gray squirrel, secondary consumers such as frogs, toads, and spiders, and apex predators, such as the American alligator. The wetland forest community at HA-2a includes all trophic levels of the food chain, including recreational species and a diversity of birds. The ecosystem at HA-2a (LAA3-WP SRA) is observed to be thriving, and there is no evidence of adverse ecological effects. Soil remediation is planned for LAA3-WP SRA for regulatory reasons, however there is no evidence that remediation is required in this area for ecological reasons.

The HA-2b area, which consists primarily of bottomland hardwood forest and swamp natural communities, is also planned for soil remediation (LAA3-EP SRA). Very diverse flora and fauna were observed in this area during the May 5, 2022, ERM field investigation. Forty-six (46) vegetative taxa were documented in the HA-2b area, including 12 species of trees and shrubs. In addition to forested wetland tree associates such as bald cypress, red maple, sugarberry, water locust, and water oak, the HA-2b area also supports a variety of other species with fidelity to wetland environments, including alligatorweed, butterweed, Eastern marsh fern (*Thelypteris palustris*), looseflower water-willow, spider lily, and swamp smartweed (*Polygonum hydropiperoides*). Birds in the HA-2b area are predominately insectivorous and include such birds as Acadian Flycatcher and Chimney Swift. Omnivorous species, such as American Crow and Fish Crow were also observed. Non-avian fauna recorded in the HA-2b area includes species across multiple trophic levels, such as herbivores and detritivores (apple snail and grasshoppers) and insectivores (dragonflies, frogs, toads, and skinks). There is no evidence in this location of adverse ecological effects and the ecosystem is thriving. The soil remediation planned for the HA-2b (LAA3-EP SRA) area is for regulatory compliance purposes and there is no evidence that remediation is needed for ecological reasons.

The HA-5 area, located in LAA1, is primarily bottomland hardwood forest with mixed areas of cypress swamp. During the May 5, 2022, ERM field investigation, a total of 21 plant species were observed, including 11 species of trees and shrubs (American elm, bald cypress, pecan, planertree, red maple, and water hickory, among others), as well as herbs and forbs (creeping primrose-willow [Ludwigia repens], marsh seedbox [Ludwigia palustris], resurrection fern [Pleopeltis polypodioides], stiff marsh bedstraw [Galium tinctorium], swamp smartweed [Polygonum hydropiperoides], and bedstraw [Galium spp.]). This is very good vegetative and tree species diversity for wetland forests in the region. Bird observations in this area included the Prothonotary Warbler, which is a dedicated resident of swamps and forests in Louisiana, other insectivores such as Red-bellied Woodpecker, Red-eyed Vireo, White-eyed Vireo, and Yellow-billed Cuckoo, and the Red-shouldered Hawk, a carnivorous bird of prev. Other wildlife observed include terrestrial invertebrates, such as spiders, flea beetles, katydid, dragonflies, and grasshoppers, aquatic invertebrates such as crawfish, and higher trophic level reptiles, such as snakes. Specifically, the cottonmouth was observed in this area, which indicates the presence of standing water and fish, the preferred diet of cottonmouths in bottomland hardwoods. There is no soil remediation planned in the HA-5 area, and based on the presence of a balanced and diverse vegetative community and the evidence of functioning food webs, including all trophic levels, there is no evidence that soil remediation is needed for any ecological reason in the HA-5 area.

November 2022 Page 16

Figure 3-4: Ecological Habitat in HA-1, HA-5, HA-2a, and HA-2b

The photos illustrate the thriving vegetative communities present in the HA-1 (top left), HA-5 (top right), HA-2a (bottom left) and HA-2b (bottom right) areas. Photos were taken by Dr. Helen Connelly (ERM) and Ms. Emily Martin (ERM) on May 5, 2022.

3.7 Ecological Observation Summary

The multiple lines of evidence investigated in this ERA support the finding that the habitats and food webs on the Property, including in the LAAs and SRAs, are functioning and providing services as expected for the region. Vegetation community structure on the Property, including the percentage of trees and percentage of hydrophytic plant species dedicated to wetlands, is as expected for the region based on comparison to similar habitats in a nearby protected area, Sherburne WMA (LDWF, 2009). Vegetative diversity throughout the Property is very good, and the wetland forests on the Property support a diversity of trees, such as the bald cypress, that are representative of swamps and bottomland hardwood forests in the region (LDWF, 2009).

The avian community trophic structure is as expected for the region, with the expected percentages of observed insectivores (largest percentage), omnivores, herbivores (smallest percentage), and top predators, typically found in wetland forests in Louisiana. Birds that are dedicated to forests, such as woodpeckers and warblers were identified on the Property, indicating that the forested wetlands support the expected species of birds found in Louisiana forests. The Property supports 4 birds listed as SGCN by the LDWF, demonstrating that the Property is supporting conservation of species. Birds of prey, such as owls, and apex predators, such as alligators, that depend on a sufficient diet of mammals, fish, and birds were observed on the Property, indicating that the top of the food chain is supported by the lower levels of the food chain.

Water snakes and frogs are present on the Property, which is an indication of good water quality, as these species depend on aquatic habitat. No indicators of effects from salt or other evidence of toxicity were observed in the plants thriving on the Property, and the Property supports 24 plants that have no tolerance for salinity, which indicates an absence of elevated salt in the surface soil. Based on these findings and all lines of field evidence, the aquatic and terrestrial ecosystems on the Property are functioning as diverse and productive habitat (Inset Figure 3-5).

Based on analysis of field observations and data, ecological populations on the Property, including the LAAs and SRAs, do not show evidence of adverse impact by E&P activities. The Property is biologically diverse and functioning as expected for forested wetlands in the region.

Figure 3-5: Observed Wildlife Diversity

The photos illustrate examples of the diversity of wildlife observed at HA-1 (Western ratsnake [*Pantherophis obsoletus*]), HA-2a (Red-bellied Woodpecker [*Melanerpes carolinus*]), and HA-5 (Alligatorweed flea beetle [*Agasicles hygrophila*]), respectively. Photos were taken by Mr. Jody Shugart on May 5, 2022.

November 2022 Page 18

4 SCREENING-LEVEL ECOLOGICAL RISK ASSESMENT (SLERA)

4.1 ERA Step 1

This ERA includes a screening level ecological risk assessment (SLERA) and a BERA. The SLERA includes the first two steps of the eight-step ecological risk assessment guidance (USEPA, 1997): 1) screening-level problem formulation and ecological effects evaluation, and 2) preliminary exposure estimates and risk calculations. The SLERA process is described in the following sections and shown on Figure 6.

4.1.1 Screening Level Formulation

The screening-level portions of an ERA (Step 1 and Step 2) are problem formulation and ecological effects evaluation. At the end of Step 2, the decision is made whether: 1) risks are negligible or 2) to proceed to the site-specific BERA.

This SLERA focuses on potential chemical stressors in soils on the Property. Soil data are presented in Table 4 and sample locations are presented on Figures 7A and 7B. It is appropriate to focus on soils as the primary pathway of concern for Property wildlife (USEPA, 1997), as there is no exposure pathway at the Property for contact with groundwater for wildlife or other animals. Groundwater is not in communication with surface water at the Property (HET, 2022). Surface water ingestion is a minor pathway in mammals and birds, as compared to soil, and is not included in the BERA quantitative risk assessment.

Considered in the problem formulation portion of the screening assessment are information on the environmental setting, known contaminants, fate and transport mechanisms on the Property, ecotoxicity of potential contaminants, likely categories of receptors, complete exposure pathways, and identification of endpoints. Information gathered for Step 1 of the SLERA is discussed in the following Sections 4.1.1.1 through 4.1.2.

4.1.1.1 Environmental Setting

Sampling was performed in former E&P operational areas, which are wetland environments (Figure 2). The Property is traversed by two canals, and Willow Lake intersects the Property from north to south (Figure 2, Figure 4).

Property vegetative habitats are primarily bottomland hardwood and swamp forested wetlands, typical of the Atchafalaya Basin region. The Property habitat is described fully in Sections 2 and 3 of this report.

The Property lies within LDEQ Drainage Basin Subsegment #120107 Upper Grand River and Lower Flat River - From headwaters to Intracoastal Waterway. This subsegment supports primary and secondary contact recreation, and fish and wildlife propagation.

Current land uses of the Property are industrial (former E&P), and recreational hunting and fishing. Land uses in the surrounding area are similar, including E&P activity, and recreational hunting and fishing.

Plaintiffs have alleged that historical E&P activities have left contamination on the Property that is a health risk or a potential health risk to ecological species. The claim made by the plaintiffs is that constituents have been left on the Property in concentrations that could affect ecological populations. This portion of the ERA is a screening level quantitative hazard quotient (HQ) evaluation of the chemical concentrations in soils to determine if risk to the wildlife population is expected.

4.1.1.2 Contaminant Fate and Transport

The primary transport mechanisms possible on the Property are surface runoff and erosion (soil). The effects of these mechanical and physical actions are assessed in this ERA through chemical analyses of soils and surveys of vegetation and wildlife populations.

4.1.1.3 Ecotoxicity of COPECs

Ecotoxicity of COPECs on the Property has been investigated beginning with collecting soil samples (Table 4). The COPECs screened in this level of assessment are arsenic, barium, cadmium, chromium, lead, selenium, silver, strontium, mercury, zinc, polycyclic aromatic hydrocarbons, and total petroleum hydrocarbons (TPH). The potential for these COPECs to cause adverse effects to survival, growth, or reproduction in ecological receptors only exists if the COPECs are: 1) present and bioavailable in toxic concentrations, 2) a complete exposure pathway exists, and 3) exposure occurs.

For the screening portion of this ERA, soils were compared to conservative (protective) USEPA Eco-SSL soil values (USEPA, 2005a, 2005b, 2005c, 2005d, 2005e, 2006, 2007b, 2007c, 2008), NOAA Screening Quick Reference Tables (SQuiRT) Freshwater Threshold Effects Concentration (TEC) and Probable Effects Concentration (PEC) screening values (Buchman, 2008) and a calculated barium soil screening value (Attachment E). These screening values are protective of mammals, birds, invertebrates, and plants. NOAA SQuiRT screening values have been included in the assessment to account for soils that are inundated with standing water. It should be noted that screening values are used to ensure that risk is not overlooked and that all potential constituents that may contribute to risk are evaluated.

4.1.1.4 Potential Receptors and Routes of Exposure

The receptors selected to represent communities or populations on the Property were selected to represent the species that are present or could potentially be present in the habitat of interest, based on the findings of the field investigations described in Sections 2 and 3 of this report. The representative receptors and routes of exposure used to estimate risk are ones for which there is sufficient ecotoxicity information available. Exposure is assessed via ingestion of COPECs through exposure to soil and diet. This exposure pathway (soil) and exposure route (ingestion) is appropriate for ERA per USEPA guidance (1997). The receptors used in this risk assessment are described in the following sections.

Wildlife (Vertebrates)

Wildlife includes four classes of vertebrates in their natural habitats: amphibians, reptiles, birds, and mammals. Because these vertebrates are not domesticated, they are included in the general category of wildlife.

Vertebrate wildlife are consumers that can be assessed through estimates of COPEC doses in their diets. This estimate assumes that dietary exposure could occur in the Property Excluding SRAs. Wildlife is exposed to COPECs via ingestion of other organisms, soil, or water. Other pathways of wildlife COPEC exposure include dermal and inhalation. Generally, wildlife is protected by their fur or feathers from excessive dermal exposure to COPECs, therefore the dermal pathway is not included in the risk assessment. The inhalation pathway is also not included in the quantitative risk assessment, as volatile compounds were not detected in soils 0-3' below ground surface (bgs). Therefore, this risk assessment is focused on the ingestion pathway, per USEPA guidance (1997).

Specific wildlife species, based on their feeding behaviors have been selected to be evaluated as representatives of larger wildlife communities. Mammals and birds are used as the representative wildlife species, because more toxicity data is available for these vertebrates, as compared to reptiles, fish, and amphibians.

This BERA is focused on birds and mammals associated with a terrestrial (soil-based) food web.

Invertebrates

The invertebrate population exists in and on soils and sediments. Invertebrate populations include organisms such as worms, crustaceans, gastropods, arthropods, and mollusks. These organisms function in the ecosystem to digest and degrade other biologic matter and to provide a diet for larger invertebrates and vertebrates. Because they are in direct contact with soils and sediments due to their lifestyles, they are dietary sources of COPECs to higher vertebrates.

Nektonic Aquatic Species

Nektonic aquatic species are larger swimming vertebrates such as fish, alligators, and snakes. These categories of nektonic species are assessed qualitatively in the ERA by direct and indirect field observations. For example, direct observations include observations of the American alligator and the cottonmouth at the Property. Examples of indirect observations include observations of predators, such as fish-eating birds on the Property that indicate that surface water on the Property provides fish as diet. Examples of fish-eating birds seen on the Property include Tricolored Heron and Little Blue Heron.

Plants

Plant communities with a variety grasses, forbs, herbs, vines, shrubs, and trees are present in great diversity on the Property. The plants are primary producers and form the base of the food chain by converting the sun's energy to the carbohydrate energy that other invertebrates and vertebrates use. In this risk assessment, the plant population has been assessed through a vegetation survey at locations of maximum constituent concentrations in Property soils throughout the Property (Section 3).

4.1.1.5 Exposure Pathways and Conceptual Site Model

A Conceptual Site Model (CSM) has been developed to evaluate potential ecological exposure pathways at the Property (Figure 8). A CSM (USEPA, 1997) addresses: (1) the environmental setting and COPECs at the Property; (2) COPEC fate and transport mechanisms; (3) mechanisms of ecotoxicity and likely categories of ecological receptors; (4) complete exposure pathways; and (5) selection of endpoints to screen for ecological risk.

The potentially complete exposure pathways at the Property are through shallow surface soil. The biologically active zone of soils at the Property are assumed to be from ground surface to three feet deep (LDEQ, 2003). To be inclusive of 0-3' data, soil samples collected in the 0-2' and 2-4' depth intervals were included in the evaluation. The depth of 0-3' includes the effective root zone of trees on the Property of up to 24 inches (HET, 2022) and the recommended sampling depth for the biologically active zone for terrestrial species of 25-30 cm (up to 12 inches, USEPA, 2015).

4.1.2 Effects Evaluation

Following the screening level problem formulation is a preliminary evaluation of ecological effects. Ecological effects are estimated using thresholds values for soil and sediment that are referred to as ecological screening values (ESVs). ESVs are COPEC concentrations that are estimated to pose no risk of adverse effects to exposed wildlife. The screening level values are not used as predictors of the occurrence of ecotoxicity, but rather to protectively include all potential COPECs in the risk assessment.

The ESVs used in the SLERA are based on peer reviewed publications of field studies or laboratory studies in which no adverse effects were observed. The ESV is therefore based on the highest observed exposure concentration that does not produce adverse effects. This "no observed adverse effect level" is

referred to as the NOAEL. ESVs can also be based on a LOAEL, which is the lowest observed adverse effect level shown to produce adverse effects (reduced growth, impaired reproduction, increased mortality) in a receptor species. Therefore, the ESV is a dose or a concentration at or below which risk is not expected to occur.

The fact that an ESV is exceeded does not indicate the need for remediation or that there is ecological risk. ESVs are not site-specific and are intended to be overly protective. When ESVs are exceeded, a more specific ecological risk analysis can be performed. A concentration that exceeds a soil screening level (SSL) does not identify that there is risk or that there are soil concentrations that require remediation. Screening is the process of identifying and defining areas, contaminants, and conditions that do not require further attention. When COPEC concentrations fall below screening values, no further action is needed. When COPEC concentrations exceed ESVs, further evaluation is valuable, but the need for remediation is not assumed.

For the initial screening assessment in this ERA, conservative (protective) screening thresholds for soils such as USEPA Eco-SSLs (USEPA, 2005a, 2005b, 2005c, 2005d, 2005e, 2006, 2007b, 2007c, 2008; USEPA Eco-SSLs) for COPECs present in soil are used. The USEPA Eco-SSL for barium represents the toxicity of extremely bioavailable forms of barium, rather than the toxicity of very poorly bioavailable barium sulfate. Barium sulfate is the form of barium present at legacy oil and gas E&P sites and is the form of barium confirmed to be present at this Property (Table 5). A more appropriate barium soil screening value was calculated for the Property using barium sulfate data (Attachment E). Additionally, NOAA freshwater TECs and PECs (Buchman, 2008) were also used to screen COPECs in soil due to the presence of standing water on the Property. The limitations of the use of screening values have been discussed by the National Research Council (2003). The screening values used for this ERA are based on ecotoxicity studies of plants, birds, invertebrates, and mammals (Inset Table 4-1).

Constituent	Eco-SSL Avian USEPA	Eco-SSL Mammal USEPA	Eco-SSL Invertebrate USEPA	Eco-SSL Plant USEPA	Calculated Soil Screening Value	TEC NOAA	PEC NOAA
Arsenic	43	46	N/S	18	N/S	9.79	33
Barium	N/S	2000	330	N/S	2424	N/S	N/S
Cadmium	0.77	0.36	140	32	N/S	0.99	4.98
Chromium	26	34	N/S	N/S	N/S	43.4	111
Lead	11	56	1700	120	N/S	35.8	128
Mercury	N/S	N/S	N/S	N/S	N/S	0.18	1.06
Selenium	1.2	0.63	4.1	0.52	N/S	N/S	N/S
Silver	4.2	14	N/S	560	N/S	N/S	N/S
Strontium	N/S	N/S	N/S	N/S	N/S	N/S	N/S
Zinc	46	79	120	160	N/S	121	459

Table 4-1: Ecological Screening Values

Notes

Concentrations are in mg/kg-dry weight.

The Soil ESV is the lowest of the Eco-SSLs. For barium, the Soil ESV is the calculated soil screening value.

The Sediment ESVs are freshwater sediment TEC and PEC, NOAA SQRT values.

4.2 ERA Step 2

4.2.1 Screening Level Exposure Estimates

The exposure assumptions used in the SLERA are intentionally overprotective. In the SLERA, receptors are assumed to be exposed to the maximum COPEC concentrations detected in soil samples and that the home range of ecological receptors is 100% on the Property, rather than elsewhere. All COPECs are assumed to be 100% bioavailable to receptors. The receptor diets are assumed to be 100% comprised of the most contaminated food source. By making these overly protective assumptions, the exposure estimates are skewed towards over-predicting risk in the SLERA. The SLERA evaluation identifies COPECs that require no further investigation and identifies COPECs that should be carried forward into the BERA.

Soil concentrations are reported up to depths of 38 feet below ground surface (bgs) (HET, 2022). Per LDEQ RECAP (2003), soil results (0-3 feet bgs) are included in ERA. For this ERA, soil concentrations from 0-4 feet bgs have been included in ordered to be inclusive of the 0-3' depth. Soil concentrations for all sample locations are summarized in Table 4 and are shown on Figures 9A through 18B for reference. See Section 4.1.1.5 for a discussion of sampling depth.

Sample concentration data included in the ERA are from locations on the Property that are outside of the Soil Remediation Areas (SRAs). SRAs are planned for soil remediation. The areas included in the ERA (not planned for remediation) are referred to as "Property Excluding SRAs".

The areas that are planned for soil remediation in the Limited Admission associated with HA-1 (LAA2 - Soil Remediation Area (LAA2-SRA)), HA-2 (LAA3 – Western Pit Soil Remediation Area (LAA3-WP SRA), and LAA3 – Eastern Pit Soil Remediation Area (LAA3-EP SRA)) (Figure 19), and sample locations outside the Property boundary (off-site; Figure 7B) are not included in ERA screening or calculations.

There are samples surrounding the LAAs as well as inside the LAAs that are included in the ERA screening process and ERA calculations, because they are not planned for soil remediation. See Inset Table 4-2 below for sample locations included in ERA screening and calculations and sample locations that are not included in ERA screening and calculations.

	Sample Loca	ations Included in ERA ^{a,b}	
HA-4	SB-21	SB-13	SB-06
HA-5	SB-22	SB-14	SB-06R
LT-1	SB-23	SB-15	SB-07
LT-4	SB-24	SB-16	SB-07R
	HA-6	LT-3	SB-08
	LT-2	LT-6	SB-25
	LT-5		SB-26
			SB-27

Table 4-2: Sample Location Designations

November 2022 Page 23

	Sample Locations N	ot Included in ERA ^{b,c}	
LAA2-SRA Samples	LAA3-WP SRA Samples	LAA3-EP SRA Samples	Off-Site Samples
SB-17	SB-9	SB-01	LT-7
SB-18	SB-10	SB-02	LT-8
SB-19	SB-11	SB-03	LT-9
SB-20	SB-12	SB-04	HA-3
HA-1R	HA-2	SB-05	
HA-1		SB-05R	
HA-1		SB-	05R

Notes

^a Constituent concentrations 0-4' are included in the ecological risk assessment calculations.

^b Samples within the Limited Admission Areas are shown in Figure 19.

^c Constituent concentrations are planned for remediation (Limited Admissions Report, HET, 2022), or are not on the Property (offsite), and are not included in the ecological risk assessment calculations.

Maximum soil COPEC concentrations (0-4') have been used in this screening portion of the ERA. These maximum soil concentrations identified in the Property Excluding SRAs (HA-4, HA-5, HA-6, LT-1, LT-2, LT-3, LT-4, LT-5, LT-6, SB-06, SB-06R, SB-07, SB-07R, SB-08, SB-13, SB-14, SB-15, SB-16, SB-21, SB-22, SB-23, SB-24, SB-25, SB-26, and SB-27) are shown in Inset Table 4-3.

Detected soil metal concentrations in the Property Excluding SRAs are generally within the range of typical soil concentrations in Louisiana in unimpacted soils (USGS, 2013; Attachment F and Table 4) or are of low solubility and low bioavailability.

Maximum soil concentrations were compared to soil ESVs and USGS background (Inset Table 4-4). The following constituents (maximum concentration) exceeded ESV and background soil comparison values: cadmium, mercury, and zinc.

Sediment ESVs were used in addition to soil ESVs to account for soils in standing water on the Property. For this evaluation, maximum soil concentrations were compared to TEC and PEC screening values (Inset Table 4-5). Mercury exceeded the TEC and PEC and is included as a COPEC in the ERA. Cadmium and chromium were below the TEC and PEC; and arsenic, lead, and zinc exceeded the TEC and were below PEC, indicating that Property soil concentrations are protective of aquatic life.

Constituent	Maximum Reported Concentration (mg/kg-dry)	Location (Depth feet bgs)	Sample Date
Property Excluding S		1	<u> </u>
Arsenic	16.6	HA-4 (0-2') HET	8/30/2019
Barium	1370	SB-21 (0-2') ICON	6/23/2022
Cadmium	1.7	SB-06R (0-2')	9/27/2022
Chromium	34	HA-5 (0-2') HET	8/30/2019
Lead	42.8	SB-13 (0-2') HET	6/22/2022
Mercury	1.47	SB-14 (2-4') HET	6/23/2023

Table 4-3: Maximum Reported Concentrations

Constituent	Maximum Reported Concentration (mg/kg-dry)	Location (Depth feet bgs)	Sample Date
Selenium	ND	-	-
Silver	ND	-	-
Strontium	448	HA-4 (0-2') HET	8/30/2019
Zinc	199	HA-4 (0-2') HET	8/30/2019

Notes

Concentrations are in mg/kg-dry.

ND = Non-Detect.

Table 4-4: Soil Screening Values for Estimation of Potential Ecological Risks

	Soil Ecological	Pookaround	Screening Comparison		
Constituent	Screening Value	Background USGS	Soil Concentration [Maximum Value]	Soil Screening Exceedance [Y/N]	
Property Excluding	SRAs				
Arsenic	18	12 ^a	16.6	N	
Barium	2424	775	1370	Ν	
Cadmium	0.36	0.8	1.7	Y	
Chromium	26	84	34	Ν	
Lead	11	44	42.8	Ν	
Mercury	N/S	0.11	1.47	Y	
Selenium	0.52	1.0	ND	Ν	
Silver	4.2	ND	ND	Ν	
Strontium	N/S	203	448	Y	
Zinc	46	140	199	Y	

Notes

Concentrations are in mg/kg-dry.

ND = Non-Detect.

Soil Ecological Screening Value is the lowest of the available USEPA Eco-SSLs.

Background, USGS: Background Data for Louisiana, 95% Upper Tolerance Limit, United States Geological Survey, 2013. There are no Eco-SSLs or other reliable ecological screening values for strontium, and strontium is not further assessed. Mercury is retained for BERA due to exceedance of Louisiana soil background (0.11 mg/kg, USGS)

^a Arsenic value is LDEQ-approved soil background for Louisiana.

Table 4-5: Sediment Screening Values for Estimation of Potential Ecological Risks

	NOAA	NOAA	Screening Comparison		
Constituent	TEC	PEC	Soil Concentration [Maximum Value]	Soil Screening Exceedance [Y/N]	
Property Excluding	SRAs				
Arsenic	9.79	33	16.6	N	
Barium	N/S	N/S	1370	N	
Cadmium	0.99	4.98	1.7	N	

November 2022 Page 25

	NOAA NOAA TEC PEC	NOAA	Screening Comparison		
Constituent		Soil Concentration [Maximum Value]	Soil Screening Exceedance [Y/N]		
Chromium	43.4	111	34	N	
Lead	35.8	128	42.8	N	
Mercury	0.18	1.06	1.47	Y	
Selenium	N/S	N/S	ND	Ν	
Silver	N/S	N/S	ND	Ν	
Strontium	N/S	N/S	448	Ν	
Zinc	121	459	199	N	

Notes

Concentrations are in mg/kg-dry.

ND = Non-Detect.

Sediment screening values are included to account for portions of the forest that have standing water. Sediment Ecological Screening Values are NOAA TEC and NOAA PEC (NOAA SQuiRT, 2008). Arsenic, Lead, and zinc exceed the TEC and not the PEC.

4.2.2 Screening Level Risk Calculations

The HQ is used to estimate risk in the SLERA (USEPA, 1997). The HQ is estimated by comparing ESVs to exposure concentrations. The HQ is defined as the estimated environmental concentration (EEC) divided by the ESV:

$$HQ = EEC / ESV$$

The EEC is the maximum dry weight concentration detected in soil in mg COPEC/kg soil. The ESV represents the concentration below which no risk is predicted. For HQ values that exceed 1.0, the potential for adverse effects to a receptor cannot immediately be ruled out. For HQs equal to or less than 1.0, the potential for risks due to that COPEC can be considered minor and are dropped from further consideration. An HQ >1.0 does not mean that unacceptable ecological risks exist or that any remediation is needed, only that further analysis, such as a site-specific BERA, are needed.

The screening level HQs calculated by comparison of maximum soil concentrations to screening values are presented in Inset Table 4-6. At this level of the screening assessment, 3 metals in soil are carried forward into the BERA: cadmium, mercury, and zinc. Hazard quotients (HQ) for these metals are low (2.36 - 8.17) and exceed the HQ benchmark of 1.0.

Table 4-6: COPEC Screening Hazard Quotients using Maximum Soil Concentrations

Constituent	Soil Concentration [Maximum Value] (mg/kg dry)	Location (depth feet bgs)	Lowest Ecological Screening Value (mg/kg dry)	Screening Hazard Quotient (HQ) [Based on Lowest ESV]
Single Point Location HA-4				
Zinc	199	HA-4 (0-2') HET	46	4.33
Single Point Location HA-5				
Cadmium	0.85	HA-5 (2-4') ICON	0.36	2.36
Single Point Location SB-06R				
Cadmium	1.7	SB-06R (0-2')	0.36	4.72

Constituent	Soil Concentration [Maximum Value] (mg/kg dry)	Location (depth feet bgs)	Lowest Ecological Screening Value (mg/kg dry)	Screening Hazard Quotient (HQ) [Based on Lowest ESV]
Single Point Location SB-07R				
Cadmium	1.63	SB-07R (0-2')	0.36	4.53
Single Point Location SB-14				
Mercury	1.47	SB-14 (2-4') HET	0.18	8.17

4.2.3 Risk Characterization

Risk characterization combines data for exposures and effects into a statement about risk. If screening values are not exceeded, no risk exists due to COPEC exposures on the Property, and if screening values are exceeded, a more detailed and focused site-specific ecological risk analysis can be initiated. The term site-specific refers to data that is collected from the Property to characterize the environmental conditions present. Examples of site-specific data collected for this ERA include soil constituent concentration data, soil chemistry data (such as pH, CEC, SPLP), barium XRD speciation data, Property vegetation species counts and classifications, root zone depth studies, ecosystem services assessments, wetland delineation analyses, and Property wildlife surveys. These site-specific data support the conclusions made in the ERA.

Metal concentrations in soil in the Property Excluding SRAs are generally similar to concentrations in unimpacted soil throughout Louisiana. TPH fraction concentrations in soil are non-detect or low in concentration and are typical of weathered hydrocarbons of low toxicity (discussed in Section 4.2.3.2 below).

An important part of characterizing potential ecological risk is the assessment of COPEC bioavailability. A discussion of the low bioavailability and related low toxicity of COPECs in the wetland soils is discussed in the following sections.

4.2.3.1 Metals Bioavailability

The majority of soil metal concentrations in the Property Excluding SRAs are not elevated above unimpacted soil concentrations throughout Louisiana (USGS, 2013) and do not require further evaluation in the BERA. Only cadmium, mercury, and zinc in the Property Excluding SRAs are elevated above ESVs, and these are only slightly elevated at five locations. The bioavailability of cadmium, mercury, and zinc cadmium is discussed here.

It should be noted that the metal concentrations being discussed are low. Mercury and zinc only exceed their respective ESVs in one sample location each. Cadmium exceeded the ESV at three sample locations. There are only a total of five exceedances of ESVs (0-4') in the Property Excluding SRAs.

For reference on the low concentrations in the Property Excluding SRAs, the ESV for mercury is 0.11 mg/kg-dw (maximum mercury detected, 1.47 mg/kg-dw); the zinc ESV is 140 (maximum zinc detected 199 mg/kg-dw); and the ESV for cadmium is 0.8 mg/kg-dw (maximum cadmium detected 1.7 mg/kg-dw). These metal concentrations are low by comparison to ESVs but are further analyzed in the BERA. A discussion of the bioavailability of these metals in soil follows.

Zinc

The ecological toxicity of zinc in wetland soils is related to its bioavailability. Zinc may exist in wetlands soils in bioavailable and/or non-bioavailable forms when soils are of a neutral soil pH, such as found at

the Property (pH 7.5, average and median) for all depths sampled. At this Property, zinc is demonstrated to be in a form of very low bioavailability and therefore, very low toxicity.

Zinc, although detected above the ESV of 140 mg/kg-dw at location HA-4 (0-2', 153 mg/kg-dw/199 mg/kgdw), is not detected in the SPLP sample at that location. SPLP analysis involves dissolving 100 grams of soil into two liters of water over an 18-hour period, to determine if the zinc detected in that soil can dissolve in water. Zinc was not detected in the SPLP solution water (HA-4, 0-2', <0.10 mg/L), and is therefore very poorly soluble (did not dissolve) and is of very low bioavailability. Zinc in soil that does not dissolve in water, is not in a form that can be absorbed, taken up, or accumulated by living organisms, and therefore is not toxic, because there is no complete pathway of exposure, due to the lack of bioavailability of the form of zinc present.

The BERA is completed for zinc using toxicity factors for forms of zinc that have limited bioavailability, and for reference, toxicity factors for bioavailable forms of zinc are also used in BERA calculations.

The results of the BERA are that no ecological risk is predicted (all HQs < 1.0, see Table 5-2) due to wildlife exposure to zinc in soils, for bioavailable forms of zinc or zinc in forms of limited bioavailability.

Cadmium

The soil geochemistry of cadmium mimics zinc soil geochemistry, in that both cadmium and zinc can be present in bioavailable and non-bioavailable forms in neutral pH soils, such as found at the Property. Because zinc was demonstrated to be in a form of limited bioavailability, via SPLP analysis, cadmium, which has the same predicted geochemistry as zinc (Reddy and DeLaune, 2008), is also predicted to be in a form of limited bioavailability.

Cadmium was detected at three locations (maximum cadmium detected 1.7 mg/kg-dw) above the ESV of 0.8 mg/kg-dw.

Cadmium is evaluated in the BERA calculations using toxicity values for cadmium of limited bioavailability and for reference, bioavailable cadmium.

The results of the BERA are that no ecological risk is predicted (all HQs < 1.0, see Table 5-2) due to wildlife exposure to cadmium in soils, for bioavailable forms of cadmium or cadmium in forms of limited bioavailability.

Mercury

Mercury has the potential to be present, in the neutral pH wetland soils in the Property Excluding SRAs, in either bioavailable or forms of limited bioavailability. That is, bioavailable mercury and non-bioavailable mercury are both possibilities. Mercury was detected above the mercury ESV of 0.18 mg/kg-dw at location SB-14 (0.22 - 1.47 mg/kg-dw) and is further assessed in the BERA.

4.2.3.2 Total Petroleum Hydrocarbons

Total Petroleum Hydrocarbons (TPH) are not carried forward as COPECs for a BERA evaluation, due to being non-detect or in low concentrations in the Property Excluding SRAs.

TPH fraction concentrations in soil are non-detect in 12 of 16 samples (0-4') in the Property Excluding SRAs and are very low concentrations (9-128 mg/kg-dw) in the 4 sample locations where TPH fractions were detected. These TPH concentrations are low and are similar to concentrations of hydrocarbons in non-E&P impacted soils (ERM, 2019). In these four sample locations, the TPH are primarily made up of the C₁₆₋₃₅ aliphatic compounds typical of weathered hydrocarbons of low toxicity. This aliphatic range of hydrocarbons preferentially binds soils, rather than dissolving in water, and is therefore of low bioavailability to ecological species.

TPH are below levels of ecological concern and are not further assessed in the BERA.

4.2.3.3 Ecology in Areas Planned for Soil Remediation (SRAs)

The Soil Remediation Areas (LAA2-SRA, LAA3-EP SRA, and LAA3-WP SRA) are former pits and are planned for soil remediation (HET, 2022). Soil concentrations in LAA3-WP SRA, and LAA3-EP SRA are elevated for some metals, and soil concentrations in LAA2-SRA are elevated for some hydrocarbons constituents. Although constituents in LAA2-SRA, LAA3-WP SRA, and LAA3-EP SRA are planned for soil remediation, in order to meet regulatory requirements (HET, 2022), there is no evidence of toxicity to vegetation or wildlife in the SRAs, as discussed in Section 3.6.

The habitat in the SRAs planned for soil remediation was observed to be flourishing. In the SRAs, all levels of the trophic food chain were observed, including avian and non-avian species, and very diverse vegetation assemblages were documented to be thriving. Vegetative and wildlife diversity was directly observed at LAA2-SRA, LAA3-WP SRA, and LAA3-EP SRA. Excellent vegetation biodiversity observed in the SRAs included 33 species at LAA2-SRA, 31 species at LAA3-WP SRA, and 46 species at LAA3-EP SRA. Wildlife observed included 9 birds and 10 other taxa at LAA2-SRA, 11 birds and 16 other taxa at LAA3-WP SRA, and 8 birds and 9 other taxa at LAA3-EP SRA. These plant and wildlife observations are very good field evidence of productive ecosystems in the SRAs. The biodiversity in the SRAs is as expected for bottomland hardwood and swamp habitats in the Atchafalaya Basin and is evidence of lack of impact to the ecology from E&P operations.

In addition to the documented vegetation and wildlife health in the three SRAs, the measured soil analytical data in the three SRAs is supportive of limited constituent bioavailability and low toxicity. A discussion of the low bioavailability and low toxicity of soils in the 0-2' interval in the LAAs planned for remediation is included in Attachment G.

4.2.3.4 Risk Characterization Summary

Property Excluding SRAs:

In the Property Excluding SRAs, the three COPECs for further evaluation in the BERA, cadmium, mercury, and zinc, are only slightly elevated and are predicted to be of low bioavailability and/or low toxicity to ecological species.

TPH are non-detect or low in concentration in the Property Excluding SRAs and are present in weathered and degraded forms that are of low ecological toxicity. TPH are not predicted to be a source of ecological risk in the Property Excluding SRAs and are not carried forward as COPECs in the BERA.

SRAs Overview:

The soil constituent concentrations in the LAA2-SRA, LAA3-WP SRA, and LAA3-EP SRA, which are planned for remediation, are not predicted to be a source of risk to ecological species (see Attachment G).

- LAA-SRAs TPH: TPH are assessed as weathered and degraded and of low toxicity. There are not ecological screening values for TPH, and TPH are assessed for ecological risk by evaluating PAH. PAH data in the LAAs are below ecological screening values, and not predicted to be a source of ecological risk.
- LAA2-SRA Metals: Average metal concentrations (0-2') are generally below ESVs and are not predicted to be associated with ecological risk.
- LAA3-WP SRA and LAA3-EP SRA Metals: Average metal concentrations detected in soils planned for remediation (0-2') are of low bioavailability and low toxicity or are below ecological levels of concern. See Attachment G for discussion of SRA soil ecological risk.

SRAs Summary:

Soil metal, TPH, and PAH concentrations in the SRAs are not predicted to be a source of ecological risk. This prediction of lack of ecological impact from SRA soils (0-2') is strongly supported by the evidence of thriving vegetative and wildlife communities at each SRA. The SRAs will be remediated to meet regulatory standards, but there is not evidence that these areas require remediation for ecological reasons (see Attachment G).

5 BASELINE ECOLOGICAL RISK ASSESSMENT (BERA)

5.1 ERA Step 3

Based on the results from Step 2 of the USEPA (1997) ERA process, the following COPECs on the Property exceed conservative screening values and are further investigated in the BERA: cadmium, mercury, and zinc.

At the conclusion of Step 2, a Scientific Management Decision is made to either proceed to a site-specific BERA or to end the risk assessment at the screening level (USEPA, 1997). Based on the screening results, the Scientific Management Decision at the conclusion of Step 2 is to proceed to a site-specific BERA.

The BERA is a site-specific ecological evaluation based on the chemical forms of constituents present, the concentrations of COPECs, the ecotoxicity of chemical species, and complete exposure pathways. The BERA assesses potential toxicological impacts to ecological populations using indicator or surrogate species.

In the BERA, site-specific data are evaluated. The bioavailability of COPECs is evaluated along with fate and transport, potential for bioconcentration, bioaccumulation, and biomagnification in the food chain. Indicator species are selected to assess ecotoxicity of COPECs. To select appropriate indicator species, trophic level relationships and the physical structure of the habitat are considered. The toxicity endpoints used in this stage of the risk assessment are values based on mortality, reproduction, or growth.

In order to assess toxicity via ingestion exposure in a variety of animal populations, several indicator species are assessed. The following factors are considered in the species selection process: 1) ecological relevance to the Property, 2) vulnerability to exposures, 3) sensitivity to toxic effects of COPECs, 4) social and economic importance, 5) protected species status, and 6) availability of species specific toxicological information.

The following avian and mammalian indicator species were selected for the site-specific BERA: 1) Northern Cardinal, 2) American Robin, 3) Spotted Sandpiper, 3) Mallard, 4) Snowy Egret, 5) Swamp Rabbit, 6) Marsh Rice Rat and 7) American Mink. The following sections discuss the lifestyle of these species.

5.1.1 Northern Cardinal (Cardinalis cardinalis)

The Northern Cardinal was selected to represent birds that eat terrestrial invertebrates and plants. The Northern Cardinal was selected because it has been observed at the Property and is found year-round in semi-open woodlands across the eastern United States.

Northern Cardinals are a common and easily recognized medium-sized songbird throughout Louisiana. Both females and males have a distinctive crest, red-orange bill, and mask on face (The Cornell Lab, 2022b). Males have more distinctive plumage than females with solid bright red feathers with a black mask. Females have a less defined mask and are grayish tan with red tinges in wing, tail, and crest feathers.

Northern Cardinal can be found opportunistically foraging on or near the ground and occasionally from higher branches of a tree or shrub (The Cornell Lab, 2022b). Primarily herbivorous, the Northern Cardinal will feed on vegetable matter such as seeds and fruits and on animal matter such as insects.

Generally, adult Northern Cardinals retain their breeding territories all year-round unless they must move due to food or shelter deficiencies (The Cornell Lab, 2022b). Northern Cardinals are monogamous and nest in denser vegetation with woody plants having a typical clutch size of two to three eggs. Male and

female Northern Cardinals are territorial throughout the breeding season and defend their territory through song matching and over-singing, diving, and physical attacks.

5.1.2 American Robin (Turdus migratorius)

The American robin was selected to represent birds that eat terrestrial invertebrates and plants. Common throughout North America, the American robin was selected because it can be found year-round in Louisiana forests and woodlands (The Cornell Lab, 2022b). The American Robin prefers to breed in edge environments that have short grass areas mixed with shrubs and trees.

American robins are sexually dimorphic with the male presenting dark gray to dark brown upper-parts, a red-orange breast, and a black head streaked with black and white on its throat (The Cornell Lab, 2022b). The female counterpart is paler with less stripes; however, both sexes exhibit a bright yellow bill.

The omnivorous American Robin fruits and invertebrates (USEPA, 1993). American Robins generally forage on the ground, for example on soil invertebrates or fruits that have fallen to the ground, as well as on vegetation that produce fruits or have foliage invertebrates (The Cornell Lab, 2022b).

American robins have several complex calls for communication (The Cornell Lab, 2022b). They will often roost in flocks during non-breeding winter months but are less social during the spring/summer months while it defends its breeding territory. Territories are established by male American Robins through mechanisms such as song and aggressive behaviors. The American Robin is socially monogamous and on average produces two broods per breeding season with an average clutch size of three to four eggs (The Cornell Lab, 2022b). Nests are made of mud inner-lined with dead grass and twigs and are built on an array of substrates that provide firm support and shelter from the rain.

5.1.3 Spotted Sandpiper (Actitis macularius)

The Spotted Sandpiper was selected to represent birds that eat benthic invertebrates. The Spotted Sandpiper was selected because it is common throughout Louisiana's coastal zone. Spotted Sandpipers are small, short-billed sandpipers that prefer to forage along the edges of water bodies (Fontenot and DeMay, 2017). The Spotted Sandpiper receptor represents invertivorous (invertebrate-eating) birds on the Property.

Spotted Sandpipers are most often encountered alone or in small groups, where foraging conditions are favorable. Spotted sandpipers are short-billed, short-legged and short-winged and are identifiable by the dark spots on their underbellies during the breeding season (Fontenot and DeMay, 2017). Females tend to have larger spots that extend lower on the belly compared to males, however both sexes lack spotting altogether while sporting non-breeding plumage (Moore, 2002). Spotted sandpipers use both vocalizations and physical displays to communicate. Their calls are typically described as a 'weet' note that is repeated at various pitches, rates, and intensities to communicate different messages, such as predator alarms or courtship practices (Moore, 2002).

Spotted sandpipers have an important role in the ecological pyramid as secondary consumers. In addition to providing an important food source for a variety of mammalian predators such as American mink, American river otters, and other birds, such as raptors and gulls, spotted sandpipers primarily consume flying insects, and are believed to contribute to pest population control (Moore, 2002).

When foraging, spotted sandpipers habitually teeter their posteriors up and down, and fly low along the water's edge with characteristically rapid, shallow wingbeats (Fontenot and DeMay, 2017). They are opportunistic invertivores that forage on the ground by thrusting their head forward and catching prey in their bill (Moore, 2002). Spotted sandpipers are visual hunters, relying primarily on sight to catch their prey.

5.1.4 Mallard (Anas platyrhynchos)

The Mallard was selected to represent birds that eat benthic invertebrates and plants. The Mallard was selected because it represents migrating species that could use the Property as part of the Mississippi Flyway.

In Louisiana, Mallards are abundant and well-recognized ducks. In comparison with other ducks, Mallards are relatively large, dabbling ducks with broad wings. The male Mallard's characteristic and conspicuous green head, grey flanks, and black tail-curl make it readily identifiable. The female Mallard (hen) is marked in a mottled pattern of light and dark brown streaks with a dark brown streak through the eye. Both male and female Mallards have a violet-blue speculum on their wings. Mallards have excellent eyesight and hearing, often providing the duck an escape opportunity when a predator approaches. The Mallard is more vocal than most other ducks and uses a variety of sounds to communicate its actions and moods. Mallards are popular game birds for hunters.

The majority of mallard populations are migratory in North America. Beginning in the fall of the year, Mallards leave nesting sites in the north and fly as far south as northern Mexico. Factors that influence the Mallard's range or alter its patterns include human interference, habitat, food quality and abundance, and lack of a mate. Mallards are omnivorous and opportunistic feeders. They consume benthic invertebrates, acorns, seeds, tubers and vegetative parts of aquatic plants, as well as crops, such as corn, soybeans, rice, barley, and wheat (Delnicki, 1986; Johnson, 2000; Nichols, 1983; Tamisier, 1976).

5.1.5 Snowy Egret (Egretta thula)

The Snowy Egret was selected to represent the category of fish (piscivorous) and aquatic invertebrateeating birds at the Property. The Snowy Egret was selected as a representative receptor because it uses forested wetlands that are observed on the Property as habitat (Michot, 2001) and because of the abundance of information readily available on Snowy Egret lifestyle.

The Snowy Egret is a common wading bird in Louisiana. It ranges widely in search of food in shallow waters. The snowy egret has been described as a "dashing hunter" by ornithologists because this wading bird employs a gated walking technique that is successful in flushing small prey items in the shallow aquatic habitats where they forage. The Snowy Egret's black legs and yellow feet have been suggested to aid in pursuit of food as the bird wades in shallow water. Small fish are normally prey items for the Snowy Egret. However, farmers raising crayfish have indicated that crayfish are also a preferred food item.

Snowy Egrets nest in colonies in vegetation in somewhat isolated places, such as wetlands, marshes, swamps and even elevated areas. The rookeries and resting sites often change location from year to year. During their breeding season, Snowy Egrets feed in areas that provide a ready source of prey items. Snowy Egrets generally spend the winter months in more protected areas conserving energy.

The diet of the Snowy Egret consists primarily of fish, with smaller portions of benthic invertebrates such as mollusks and crustaceans. These birds use their feet to probe in sediments to find prey items that they secure with their bill. During their feeding activities, snowy egrets may exhibit a variety of behaviors that assist in successful acquisition of prey items. For example, they may stalk prey in shallow water, often running or shuffling their feet, flushing prey into view, as well "dip-fishing" by flying with their feet just above the water. Snowy Egrets may also stand still in order to ambush prey, or hunt for insects mobilized by domestic animals in open fields (Custer, 1991; Custer, 1978; Huner, 2002; King, 1995; Kushlan, 1976).

November 2022 Page 33

5.1.6 Swamp Rabbit (Sylvilagus aquaticus)

Swamp rabbits, also known as cane-cutters, are found in marshy lowlands along the Gulf coast from South Carolina to Texas.

Swamp rabbits often feed at dusk, eating emergent aquatic vegetation and succulent herbaceous vegetation, such as grasses, sedges, and cane. Swamp rabbits breed year-round on the Gulf coast and nests are often constructed underneath brush or fences (Wilson and Ruff, 1999).

Swamp rabbits are hunted in Louisiana. Specific population surveys are not conducted for either rabbit species native to Louisiana; however, the Louisiana Department of Wildlife's Louisiana Big and Small Game Harvest Survey for 2019-2020 reported that 12,300 rabbit hunters harvested 71,800 rabbits (LDWF, 2020b).

5.1.7 Marsh Rice Rat (Oryzomys palustris)

The marsh rice rat has a geographical distribution that extends from the Gulf Coast through the southeastern states and north along the Mid-Atlantic coast towards southern New Jersey (Wolfe, 1982). Due to its predisposition to swimming and diving, the preferred habitats of marsh rice rats include the wetlands and coastal marshlands as well as swamps, freshwater marshes, and meadows.

The marsh rice rat is a medium-sized rat with dorsal coloration that varies from gray to grayish brown with lighter chest, underbelly, tail and feet (Wolfe, 1982). The average total length of the marsh rice rat in the geographic area of Louisiana is 237 millimeters. The marsh rice rat is primarily nocturnal.

In Louisiana, the marsh rice rat's diet is omnivorous, and is primarily comprised of plants and benthic invertebrates (Wolfe, 1982).

Breeding of the marsh rice rat may occur anytime throughout the year with a potentially greater offspring production rate in the spring and a lower production rate in the summer months (Wolfe, 1982). Nests of the marsh rice rat are described to be grapefruit-sized made up of woven grasses and sedges found at the base of shrubs or under vegetative debris. Average litter sizes range from 4-6 young with a gestational period of approximately 21 to 28 days. The marsh rice rat reaches sexual maturity for both sexes at approximately 50 to 60 days.

The marsh rice rat can cohabitate with other small mammals without exhibiting a competitive relationship. Barn Owls are the predominant predator of the marsh rice rat in Louisiana (Wolfe, 1982). Additional predators include hawks, water snakes, and raccoons.

5.1.8 American Mink (Neovison vison)

The fur of American mink is usually deep brown or black in color, although they also have white markings on their chests as well as some other parts of their bodies. These smooth-furred mammals have short limbs, slender bodies, tiny ears, and lengthy necks. Adult males range in total length from 19 to 29 inches and females can grow to lengths of 18 to 28 inches. American mink males are approximately twice the size of females.

American mink inhabit much of Canada and the United States, although they have not colonized a few states and regions like Arizona and Hawaii. These nocturnal mammals usually inhabit forested areas, especially those that are near water sources including ponds, rivers, marshes and swamps. American mink often use rocks and hollow logs for denning purposes.

American mink are carnivorous mammals with their diet comprising primarily of benthic invertebrates such as crawfish, small mammals, and fish (Dolan, 1986). The consumption of larger mammals such as nutria, raccoon, and muskrat are often opportunistic and consumed as carrion as evidenced in samples collected

from mink digestive tracts. There are both seasonal and annual (temporal) differences in the diet depending on availability of prey. Mammals are the preferred food of American mink in cold weather. The distribution of prey animals such as rabbits or mice may cause American mink to move closer to their food (Basu, 2007; Linscombe, 2000; MacDonald, 2003; Svihla, 1931; Thom, 2004).

5.2 ERA Step 4

5.2.1 Work Plan and Sampling Plan

For assessing wildlife receptor exposures, available soil concentration data and vegetation and wildlife survey data (ERM, 2022; Bryant 2022; HET 2019 and 2022; and ICON 2019 and 2022) for the Property were used. Chemical exposure point concentrations were estimated; chemical environmental fate and transport mechanisms were determined; potentially exposed populations were identified; and ingestion exposure routes were identified (Attachment H).

Under RECAP, an area of investigation (AOI) can be used to evaluate exposure to ecological species in the exposure assessment. Preliminary AOIs for ERA purposes were developed to accurately estimate and evaluate ecological exposures (e.g. through concentration averaging) across a distinct relevant exposure area having similar habitat. Because the soil concentrations that exceeded a screening value are low and are limited to five locations in the Property Excluding SRAs, there are only five single point preliminary AOIs. These preliminary AOIs are location HA-4 (zinc), HA-5 (cadmium), SB-06R (cadmium), SB-07R (cadmium), and SB-14 (mercury). See Figure 20 for Preliminary Ecological AOIs.

For a site-specific BERA, exposure estimates can be based on the 95% UCL of the arithmetic mean of concentrations or average concentrations (USEPA 1997; LDEQ 2003). For this BERA sufficient data were not available to calculate 95% UCL values, and the average concentrations were used to calculate risk (Attachment I). Exposure estimates used in the site-specific BERA are presented below and the maximum value is also shown for each COPEC for comparison (Inset Table 5-1, below).

Single Point Locations	Constituent	95% Upper Confidence Limit (UCL) Concentration	Average Concentration	Maximum Concentration
HA-4	Bioavailable Zinc	NA	124	199
	Zinc, Limited Bioavailability	NA	124	199
HA-5	Bioavailable Cadmium	NA	1.32	0.85
	Cadmium, Limited Bioavailability	NA	1.32	0.85
SB-06R	Bio available Cadmium	NA	0.92	1.7
	Cadmium, Limited Bioavailability	NA	0.92	1.7
SB-07R	Bio available Cadmium	NA	0.90	1.63
	Cadmium, Limited Bioavailability	NA	0.90	1.63
SB-14	Total Mercury	NA	0.85	1.47

Table 5-1: Soil Exposure Point Concentrations for Single Point Locations

Notes

1. Concentrations are in mg/kg-dw.

2. Zinc and cadmium are assessed as potentially present in bioavailable forms or in forms of limited bioavailability. Analytical and soil data support the presence of limited bioavailability of both metals, but for a conservative approach, zinc and cadmium are also assessed as potentially bioavailable.

3. Sample sizes for each single point location did not have sufficient numbers of observations to perform 95% UCL calculations.

4. The average concentration for cadmium at the Single Point Location HA-5 was calculated using ½ the detection limit for all sample locations that had a non-detect result. The detection limit for the two non-detect cadmium results were higher than the maximum detected cadmium result; and therefore, skewed the average concentration to be higher than the maximum concentration for cadmium.

5.2.2 Measurement Endpoints

Measurement endpoints for the BERA are Toxicity Reference Values (TRVs). TRVs are estimated to be safe doses for the wildlife being assessed (Table 6).

TRVs used in the BERA calculations for cadmium, mercury, and zinc are based on studies that use the most toxic and bioavailable form of the element being assessed. In addition to these TRVs, because cadmium and zinc have been demonstrated to be present in Property soils in compounds of very limited toxicity and bioavailability, TRVs for zinc and cadmium that are of limited bioavailability have also been used in BERA calculations. The BERA conservatively presents an assessment of zinc and cadmium in both bioavailable forms and forms of limited bioavailability. TRVs for cadmium and zinc of limited bioavailability are based on mortality effects. TRVs for bioavailable forms of cadmium, mercury, and zinc are based on mortality, growth, and reproduction effects (USEPA, 2007a).

5.2.3 Study Design

The BERA uses more realistic input values and assumptions than are used in the SLERA. The following sections describe some of the assumptions used in the BERA, as compared to the SLERA.

Bioavailability and Bioaccumulation: Bioavailability of soil contaminants is assumed to be 100 percent in the SLERA. In the BERA, more accurate bioavailability has been estimated from a review of the scientific literature (Table 7 and Table 8).

Dietary composition: In the SLERA, the assumption is made that a species' diet is entirely comprised of the most contaminated food type available. In the BERA, the diet composition of the receptor is based on scientific research and specifically, the diet composition of animals native to Louisiana is used when that information is available (Table 9).

Area-use factor: The assumption used for home range in the SLERA is that an animal's home range is only in the area of contaminated soil and that the animal spends 100 percent of its time in the contaminated area. The area use factor in the BERA more accurately represents the actual percentage of an animal's home range that may be affected and the percentage of time that the receptor would spend in the contaminated area, by incorporating home range and time estimates in the calculations (Table 10).

Life stage: The SLERA uses toxicity data from the most sensitive life stage of the receptor population. For example, if an animal is the most sensitive to a toxin in its juvenile stage of life, then data from the juvenile life stage is used for the SLERA. In the BERA, data from an average receptor age is used to estimate risk. It is an overestimation of risk to assume that the entire population at the Property is at the most sensitive life stage.

Body weight and food ingestion rates: The BERA uses the body weights and food ingestion rates from the primary scientific literature to accurately estimate risk at the Property. Body weights from studies of Louisiana animals are used when available (Table 9).

Toxicity Values: For the SLERA, toxicity is estimated for entire classifications of receptors (example: invertebrates) by comparing soil concentrations to screening values that are calculated to be overly inclusive. The screening values are designed to "not miss" the possibility of risk being present. For the BERA, TRVs are used for calculating risk. TRVs are species specific and are used to calculate a more accurate risk estimate for a representative receptor population.

5.2.4 Data Quality Objectives

Data Quality Objectives are important to the acquisition of reliable data for quantitative risk assessment. Risk-based decisions must be based on data of known quality which meet LDEQ RECAP and USEPA requirements. The data for this risk assessment were determined to be usable for risk assessment.

The soil data collected and discussed in this report were collected by ICON (2019, 2022) and HET (2019, 2022). The chemical analyses of salinity, metals, TPH fractions, and PAHs in soil were performed by Element Materials Technology Lafayette (Element) in Lafayette, Louisiana, Pace Analytical Gulf Coast (Pace) in Baton Rouge, Louisiana, SGS North America Inc. in Scott, LA, and Waypoint Analytical Louisiana, Inc. (Waypoint) in Marrero, Louisiana. Element, Pace, and Waypoint are LDEQ LELAP certified laboratories.

All qualified data have been included in the risk assessment. Data were generated using LDNR 29-B, USEPA SW-846, TPH MADEP VPH and EPH methods. Additional X-Ray Diffraction (XRD) barium speciation analysis was performed by CORE Mineralogy in Broussard, LA. Data meet the definition of definitive data per RECAP guidelines. Samples were appropriately collected and identified in the field by sample identification number, and date and time of collection. Sample quantitation limits were reviewed and found to be acceptable for ERA.

5.3 ERA Step 5

5.3.1 Field Sampling Plan Verification

In Step 5, efforts are made to determine that the field sampling plan is appropriate for Property conditions. That is, the sampling methods and equipment planned should be effective for the media and populations on the Property. Past experience with working in similar Louisiana habitats was used to determine the sampling efforts needed.

5.4 ERA Step 6

5.4.1 Analysis of Ecological Exposures and Effects

A review of the available sampling data (ICON, 2019 and 2022; HET, 2019 and 2022) identified that sufficient data are available to estimate ecological risk at the Property. Site-specific data from this step replace assumptions made during the screening-level analysis in Steps 1 and 2.

5.5 ERA Step 7

5.5.1 Risk Estimation and Characterization

Risk Characterization includes two major steps: risk estimation and risk description. In the risk estimation step of the BERA, risk is estimated and the uncertainties associated with risk assessment methods are evaluated. All input assumptions to the risk estimate are documented.

Potential exposures and ecological effects were evaluated for COPECs and receptors at the Property. The equation used for calculating potential risk (HQs) for COPECs in the site-specific BERA for the Property is as follows (USEPA 2005a):

		TRV – MQ
HQ	=	Hazard Quotient for analyte/COPEC (unitless)
Soil	=	Concentration of analyte/COPEC in soil (mg/kg dry weight)
Ν	=	Number of different biota types in diet (food types)
Bi	=	Analyte/COPEC in biota type (i) (mg/kg dry weight)
Pi	=	Proportion of biota type (i) in diet
FIR	=	Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
AF_{ai}	=	Absorbed fraction of analyte/COPEC from biota type (i)

November 2022 Page 37

AF_{as}	=	Absorbed fraction of analyte/COPEC from soil (s)
TRV	=	Toxicity Reference Value, based on estimated no adverse effect dose (mg/kg BW/day)
		for the surrogate species
Ps	=	Soil ingestion as a proportion of diet
AUF	=	Area use factor (spatial factor, SF x temporal factor, TF)

Attachments H and I include the HQ calculations, analyses, and input values used to calculate risk estimates.

A summary of the results of the risk assessment and a discussion of uncertainties is included in Sections 5.9 and 6.

5.6 ERA Step 8

5.6.1 Risk Management Decision

Results of the BERA are provided in summary form for the ecological preliminary AOIs (Inset Table 5-2, below). The results of this BERA can be used to support decisions regarding any remediation needed for the ecological preliminary AOIs. The damage caused by any remedy must be considered and weighed against the need for that remedy (USEPA, 1997).

Table 5-2: Results (Hazard Quotients) for Ecological Preliminary AOI

				Soil	Hazard Quotients	(HQs)			
Single	COPEC		Avian Receptor Species				Mammalian Receptor Species		
Point Locations		Northern Cardinal	American Robin	Spotted Sandpiper	Mallard	Snowy Egret	Swamp Rabbit	Marsh Rice Rat	American Mink
Average Co	oncentration as Ex	posure Concen	tration						
HA-4	Bioavailable Zinc	0.000192	0.0124	0.00163	0.00000456	0.00000234	0.00015	0.00571	0.0000261
	Zinc, Limited Bioavailability	0.0000142	0.000919	0.000121	0.000000337	0.000000173	0.0000127	0.000481	0.0000022
HA-5	Bioavailable Cadmium	0.000204	0.014	0.000206	0.000000972	0.00000137	0.000249	0.00264	0.00000852
	Cadmium, Limited Bioavailability	0.00000379	0.00026	0.00000384	0.0000000181	0.0000000256	0.00000243	0.0000257	0.00000083
SB-06R	Bioavailable Cadmium	0.000142	0.00973	0.000144	0.000000677	0.000000957	0.000173	0.00184	0.00000593
	Cadmium, Limited Bioavailability	0.00000264	0.000181	0.00000268	0.0000000126	0.0000000178	0.00000168	0.0000179	0.0000000578
SB-07R	Bioavailable Cadmium	0.000139	0.00952	0.00014	0.000000663	0.000000937	0.000169	0.0018	0.00000581
	Cadmium, Limited Bioavailability	0.00000258	0.000177	0.00000261	0.0000000123	0.000000174	0.00000165	0.0000175	0.0000000566
SB-14	Mercury	0.0000152	0.000942	0.0000464	0.000000176	0.00000942	0.0000556	0.000804	0.00000375
Maximum C	oncentration as E	xposure Conce	ntration						
HA-4	Bioavailable Zinc	0.000308	0.0199	0.00262	0.00000733	0.00000375	0.000241	0.00916	0.000042
	Zinc, Limited Bioavailability	0.0000228	0.00147	0.000194	0.000000542	0.000000277	0.0000204	0.000772	0.00000354
HA-5	Bioavailable Cadmium	0.000131	0.00899	0.000132	0.000000626	0.00000885	0.00016	0.0017	0.00000549
	Cadmium, Limited Bioavailability	0.00000244	0.000167	0.00000246	0.0000000116	0.0000000165	0.00000156	0.0000166	0.0000000535

November 2022 Page 38

	-	,								
	Soil Hazard Quotients (HQs)									
Single	COPEC	Avian Receptor Species					Mammalian Receptor Species			
Point Locations		Northern Cardinal	American Robin	Spotted Sandpiper	Mallard	Snowy Egret	Swamp Rabbit	Marsh Rice Rat	American Mink	
SB-06R	Bioavailable Cadmium	0.000262	0.018	0.000266	0.00000125	0.00000177	0.00032	0.0034	0.000011	
	Cadmium, Limited Bioavailability	0.00000488	0.000334	0.00000495	0.000000233	0.000000329	0.00000312	0.0000332	0.000000107	
SB-07R	Bioavailable Cadmium	0.000252	0.0172	0.000255	0.0000012	0.0000017	0.000306	0.00326	0.0000105	
	Cadmium, Limited Bioavailability	0.00000468	0.000321	0.00000474	0.0000000223	0.0000000316	0.00000298	0.0000318	0.000000102	
SB-14	Mercury	0.0000264	0.00163	0.0000803	0.00000305	0.00000164	0.0000966	0.00139	0.00000651	

Note

The appropriate exposure concentrations for BERA are average concentrations (USEPA 1997; LDEQ 2003). The maximum concentration is a hypothetical exposure concentration and shown for reference.

The calculated HQs, based on average and maximum exposure concentrations in soil, are low for all receptors, and all HQs are less than 1.0. Therefore, based on the multiple lines of field evidence demonstrating expected biological diversity for the region, and low HQ values, there is currently no risk identified and no potential for risk to the ecological receptors on the Property.

There is no need for remediation or for further investigation. See Attachment I for HQ calculations using average and maximum exposure concentrations.

No adverse effects to receptors in soil (0-3') are predicted for the Property.

5.7 Current and Future Land Use

5.7.1 Soil

The Property is a thriving forested wetland that can support recreational uses, such as hunting and fishing. There are no data that indicate that Property E&P related constituents are providing ecological risk to wildlife on the Property, or to the people who may consume wildlife. This assessment of land use for hunting and fishing is based on the assumption that wildlife may be exposed to shallow soils on the Property.

Hunting

The forests on the Property can support game animals, such as squirrels and other birds and mammals, for hunting. Constituents in Property soils are not predicted to be an ecological risk to recreational birds and mammals, that may be hunted, per the site-specific BERA for the Property Excluding SRAs and the evaluation of SRA soils (Attachment G). SRA soil concentrations were not included in the BERA, as these soils are planned for remediation for regulatory reasons, but SRA average soil constituent concentrations are not predicted to be a source of ecological risk to game animals.

Game animals from the Property, are predicted to be safe for human consumption, as Property soil metal and hydrocarbon concentrations, that game animals may be exposed to, are on average, similar to typical Louisiana soil concentrations or are in poorly bioavailable forms that are not well absorbed by animals.

Fishing

The canals on the Property may be used for fishing. There are no data that indicate that Property E&P related constituents are providing ecological risk to aquatic life in the canal or to people consuming fish from the canal. Observations on the Property of fish, alligators, and snakes provide evidence of water

quality sufficient to support aquatic species. Direct observations on the Property of aquatic species include observations of the American alligator and the cottonmouth. Also observed on the Property are predators that rely on aquatic diets, such as fish-eating birds. These birds rely on water quality that is sufficient to support fish for their diets. Examples of fish-eating birds seen on the Property include Tricolored Heron and Little Blue Heron. Based on these observations of aquatic species and their predators, the Property is supporting the ecological service of providing fish and aquatic habitat.

5.8 Risk of Remedy

There are three locations proposed (HET, 2022) for soil remedial action in the areas of HA-1 and HA-2. These are LAA2-SRA, LAA3-EP SRA, and LAA3-WP SRA. These locations are objectively thriving, diverse, and supporting an abundance of wildlife and vegetation (see Section 3.6). The soil remediation in these areas is proposed for the purpose of meeting regulatory guidelines but is not required for any ecological reason. The proposed footprint of remedial action in the SRAs is small (less than 0.054 acres each, for combined 0.12 acres) and may be performed with minimal disturbance to the habitat. However, the soil remedial action is not needed for the thriving ecology that exists in these locations.

There are no locations, other than within LAA2 and LAA3, that are proposed for soil remediation. This is consistent with the findings of the ecological risk assessment performed for the Property Excluding SRAs, that Property soils are supporting wildlife and vegetation expected for the region, and no action is needed for any ecological reason.

5.9 Uncertainty Evaluation

The uncertainty evaluation is an assessment of the qualitative and quantitative methods used in ERA and the measure of confidence in the risk estimates produced from the ERA. The uncertainty analysis is a required portion of USEPA ecological risk assessment. There are three basic categories of uncertainty: 1) conceptual model uncertainty; 2) natural variation and parameter error; and 3) model error.

Parameter error in general is unavoidable, because all members of a population, all soil present, all habitat features cannot be sampled. If all members of a population could be sampled, the true parameter distribution could be known. However, only a few members of the population can be sampled, leaving uncertainty concerning the true parameter value distribution. We have reduced this uncertainty for soil concentrations by sampling the E&P operational areas, biasing the results towards over estimation of risk.

The uncertainty associated with the conceptual model is related to potentially underestimating the number of routes of exposure. This is counterbalanced by using very conservative screening values to estimate the toxicity of the routes of exposure that are assessed, so this is judged to be a small source of uncertainty.

The initial constituent list is a source of uncertainty. All chemicals present cannot be measured and analyzed. We have addressed this uncertainty by measuring and analyzing the chemicals that have historically been associated with oil and gas production sites and that are required by the LDNR and LDEQ for E&P sites. Uncertainty can arise from making estimates of toxicity based on limited data. We have limited this uncertainty by using conservative estimates of toxicity from the primary scientific literature. There is uncertainty in chemical monitoring data and in dose models. We have addressed this uncertainty by analyzing data at qualified labs, certified to do the analyses. The uncertainty in the dose model is based on limiting the model to ingestion. There are other forms of exposure, but they are minor compared to ingestion, so this portion of uncertainty is judged to be low.

The uncertainty due to environmental variability, which arises from true heterogeneity in the environment and receptors, will be inherent in any calculation. There is uncertainty that could potentially be reduced by additional study, but in the instance of this assessment, there is no indication, based on the collected data

and multiple lines of evidence, that further assessment is required. For this reason, that portion of uncertainty is judged to be low.

The effect of the uncertainties in this ERA results in overestimation of risk.

6 SUMMARY AND CONCLUSIONS

The BERA developed for the Property was conducted in accordance with LDEQ (LDEQ 2003) and USEPA (USEPA 1997 and 1998) guidance. Ecological risk assessments evaluate ecological effects caused by human activities or stressors. The term "stressor" is used here to describe any chemical, physical, or biological entity that can induce adverse effects on individuals, populations, communities, or ecosystems. Thus, the ERA process must be flexible while providing a logical and scientific structure to accommodate a broad array of stressors (USEPA, 1998).

USEPA guidance uses a tiered approach (Figure 6) to determine if Property COPECs present an unacceptable risk to ecological receptors. This ERA focused on potential chemical stressors associated with the Property (i.e. in surface soils). The SLERA for the Property conservatively estimated potential risks by comparing maximum detected COPEC concentrations to conservatively-derived ecotoxicity screening values. Per USEPA guidance, site-specific information can be developed and used to accomplish more accurate risk assessment. For the Property, this was accomplished by proceeding with Steps 3-8 of the USEPA ERA process and production of a site-specific BERA.

The conclusions presented in this ERA are based on: 1) data from investigations conducted in 2022 of wildlife and vegetation, and measurements of COPECs in soil data collected in 2019 and 2022; 2) Property investigations; and 3) a site-specific BERA. Multiple lines of evidence including the presence of expected biodiversity in plant and avian populations, observations of functioning terrestrial food chains, calculated hazard quotients below the benchmark of 1.0, and no evidence of damage to wildlife or habitats, demonstrate that there are no unacceptable risks to ecological receptors or their habitats at the Property.

The data, analyses, and lines of evidence presented in the site-specific BERA demonstrate that there are no actual or potential ecological risks for the ecological populations at the Property, and that remedial actions for ecological reasons are not required.

November 2022 Page 42

7 **REFERENCES**

- Audubon. 2022a. Important Bird Areas in Louisiana. National Audubon Society. Available: https://www.audubon.org/important-bird-areas/state/louisiana. Accessed October 2022.
- Audubon. 2022b. Important Bird Area of Atchafalaya Basin, Louisiana. National Audubon Society. Available: <u>https://www.audubon.org/important-bird-areas/atchafalaya-basin</u>. Accessed September 2022.
- Audubon. 2015. Important Bird Areas: A valuable tool for protecting the places more crucial to birds. Available: https://static1.squarespace.com/static/5e8e68295922a6755b0b90e4/t/61f4625a6d99415ee43572

63/1643405915561/ibas_policyuse.pdf. Accessed September 2022.

- Barbier, E.B. 2013. Valuing ecosystem services for coastal wetland protection and restoration: Progress and challenges. Resources 2: 213-230.
- Basu, N., Scheuhammer, A., Bursian, S., Elliott, J., Rouvinen-Watt, K., and H. Chan. 2007. Mink as a sentinel species in environmental health. Environmental Research 103: 130-144.
- Beal, F. E. L. 1911. Food of the woodpeckers of the United States. U.S. Department of Agriculture, Biological Survey Bulletin 37.
- Bechtel-Jacobs Company. 1998a. Empirical models for the uptake of inorganic chemicals from soil by plants. BJC/OR-133. U.S. Department of Energy, Oak Ridge, TN.
- Bechtel-Jacobs Company. 1998b. Biota-sediment accumulation factors for invertebrates: review and recommendations for the Oak Ridge Reservation. BJC/OR-112. Oak Ridge National Laboratory, Oak Ridge, TN.
- Beyer, W.N., Pattee, O.H., Sileo, S., Hoffman, D.J., and B.M. Mulhern. 1985. Metal contamination in wildlife living near two zinc smelters. Environmental Pollution (Series A) 38: 63-86.
- Beyer, W.N., Connor, E.E., and S. Gerould. 1994. Estimates of soil ingestion by wildlife. Journal of Wildlife Management 58(2): 375-382.
- Bleavins, M. and R. Aulerich. 1981. Feed consumption and food passage in mink (mustela vison) and european ferrets (mustela putorius furo). Lab. Anim. Sci. 31: 268-269.
- Bond, B.T., Bowman, J.L., Leopold, B.D., Burger, Jr., L.W., Godwin, K.D., and C.M. Class. 2006. Swamp rabbit (Sylvilagus aquaticus) demographics, morphometrics, and reproductive characteristics in Mississippi. Journal of the Mississippi Academy of Sciences 51(2): 123-128.
- Brookins, Douglas. 1988. Eh-pH Diagrams for Geochemistry. ISBN 3-540-18485-6.
- Bryant, W. 2022. Wetland Delineation Report. August J. Levert Jr. Family, LLC, et al. v BP America Production Co; 18th JDC; Docket #78953 Grand River Field, Iberville Parish, LA.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration. 34 pp.
- Bull, E. L., R. C. Beckwith and R. S. Holthausen. 1992. Arthropod diet of Pileated Woodpeckers in northeastern Oregon. Northwestern Naturalist 73:42-45.
- Chalmers, A. et al. 2013. Characterization of Mercury Contamination in the Androscoggin River, Coos County, New Hampshire, USGS, USEPA, USDOI

- Chen, M. H., and C. Y. Chen. 1999. Bioaccumulation of sediment-bound heavy metals in grey mullet, liza macrolepis. Marine Pollution Bulletin, Vol. 39, No. 1-12, p. 239-244.
- Chibunda, R.T. 2009. Chronic Toxicity of Mercury (HgCl2) to the Benthic Midge Chironomus riparius. Int. J. Environ. Res., 3(3):455-462
- Clench, M. and R. Leberman. 1978. Weights of 151 species of Pennsylvania birds analyzed by month, age and sex. Bulletin of Carnegie Museum of National History.
- Cooksey, C. 2012. Health Concerns of Heavy Metals and Metalloids. Science Progress, 95(1):

73-88.

- Connelly, H. 2022. Ecological Risk Assessment. August J. Levert Jr. Family, LLC, et al. v BP America Production Co; 18th JDC; Docket #78953 Grand River Field, Iberville Parish, LA.
- Custer, T. and R. Osborn. 1978. Feeding habitat use by colonially-breeding herons, egrets, and ibises in North Carolina. The Auk 95: 733-743.
- Custer, T. and D. Peterson. 1991. Growth rates of great egret, snowy egret and black-crowned nightheron chicks. Colonial Waterbird, Vol. 14, No. 1, pp. 46-50.
- Daigle, J.J., Griffith, G.E., Omernik, J.M., Faulkner, P.L., McCulloh, R.P., Handley, L.R., Smith, L.M., and Chapman, S.S. 2006. Ecoregions of Louisiana. U.S. Geological Survey.
- Delnicki, D. and K. Reinecke. 1986. Mid-winter food use and body weights of mallards and wood ducks in Mississippi. The Journal of Wildlife Management, Vo. 50, No. 1, pp. 43-51.
- Dillon, O.W., Jr. 1959. Food habits of wild ducks in the rice-marsh transition area of Louisiana. Soil Conservation Service, Rosenberg, Texas.
- Dolan, A. 1986. Winter food habits of mink in southern louisiana. Master's Thesis. Louisiana State University and Agricultural and Mechanical College. School of Forestry, Wildlife, and Fisheries.
- Dunning, J. 1984. Body weights of 686 species of north american birds. Journal of Field Ornithology, Vol. 55, No. 4, p. 514.
- eBird. 2022. Sherburne Wildlife Management Area South Farm Unit, Iberville, Louisiana, US. https://ebird.org/hotspot/L727380. Accessed September 2022.
- Elner, R. Beninger, P., Jackson, D., and T. Potter. 2005. Evidence of a new feeding mode in western sandpiper (calidris mauri) and dunlin (calidris alpina) based on bill and tongue morphology and ultrastructure. Marine Biology 146: 1223-1234.
- ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Site, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.
- ESG International Inc. 2003. Ecotoxicity evaluation of reference site soils amended with barium sulphate. Technical Appendices for Barite Soil Remediation Guidelines. Alberta Environment and Canadian Association of Petroleum Producers. 2009. Appendix VI: 287-328.
- Feijtel, T.C. 1986. Biogeochemical Cycling of Metals in Barataria Basin (Diagenesis, Mass Balance, Transport, Louisiana). LSU Historical Dissertations and Theses. 4183. January 1986.
- Fernández-Martínez, R., Larios, R., Gomez-Pinilla, I., Gomez-Mancebo, B., Lopez-Andres, S., Loredo, J., Ordonez, A., and I. Rucandio. 2015. Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253–254, 30–38.

- Finerty, M.W., Madden, J.D., Feagley, and R.M. Grodner. 1990. Tissues of Wild and Pond-raised Crayfish in Southern Louisiana, Effect of Environs and Seasonality on Metal Residues. Arch. Environ. Contam. Toxicol. 19: 94-100.
- Fontenot, B, and R. DeMay. 2017. "Spotted Sandpiper." In Louisiana Shorebirds. Barataria-Terrebonne National Estuary Program. Available: https://btnep.org/wpcontent/uploads/2017/07/Final_Proof_161641_ShorebirdsLR.pdf. Accessed September 2022.Gilmer, D., Ball, I., Cowardin, L., Riechmann, J., and J. Tester. 1975. Habitat use and home range of mallards breeding in Minnesota. The Journal of Wildlife Management, Vol. 39, No. 4, pp. 781-789.
- Gould, A. 1974. The home range and habitat preferences of swamp rabbits along a shell road in the intermediate marsh of southwestern Louisiana. Master's Thesis. Louisiana State University and Agricultural and Mechanical College. School of Forestry, Wildlife, and Fisheries.
- Halbrook, R. and M. Petach. 2018. Estimated mink home ranges using various home-range estimators. Wildlife Society Bulletin 42:656-666.
- Hamilton, M.A., Rode, P.W., Merchant, M.E., and J. Sneddon. 2008. Determination and comparison of heavy metals in selected seafood, water, vegetation and sediments by inductively coupled plasma-optical emission spectrometry from an industrialized and pristine waterway in Southwest Louisiana. Microchemical Journal 88 (2008) 52–55.
- HET. 2022. Limited Admission Report. August J. Levert Jr. Family, LLC, et al. v BP America Production Co; 18th JDC; Docket #78953 Grand River Field, Iberville Parish, LA.
- Holcomb, S.R, Reid, C.S., Seymour, M.A., Lorenz, N.F., Gregory, B.B., Javed, S.M., and K.F. Balkum. 2015. Louisiana Wildlife Action Plan. Louisiana Department of Wildlife and Fisheries. Available: <u>https://www.wlf.louisiana.gov/assets/Resources/Publications/Wildlife Action Plans/Wildlife Action</u> <u>n Plan 2015.pdf</u>. Accessed September 2022.
- Honarvar, S. 1975. Effect of drilling fluid components and mixtures on plants and soils. Utah State University. All Graduate Theses and Dissertations. 3497.
- Howell, J. 1942. Notes on the nesting habits of the American robin (turdis migratorius). The American Midland Naturalist, Vol. 28, No. 3, pp. 529-603.
- Huner, J. Jeske, C., and W. Norling. 2002. Managing agricultural wetlands for waterbirds in the coastal regions of louisiana. Waterbirds: The International Journal of Waterbird Biology, Vol. 25, Special Publication 2, pp. 66-78.
- ICON. 2022. Expert Report and Restoration Plan for the Landowners August J. Levert, Jr. Family, LLC, et al v BP America Production Company; Docket No. 78953; 18th JDC, Division "A"; Grand River Field, Iberville Parish, Louisiana. July 29, 2022.
- Johnson, W. and F. Rohwer. 2000. Foraging behavior of green-winged teal and mallards on tidal mudflats in louisiana. Wetlands, Vol. 20, No. 1, pp. 184-188.
- Keuper, B. 2022. Groundwater Report. August J. Levert Jr. Family, LLC, et al. v BP America Production Co; 18th JDC; Docket #78953 Grand River Field, Iberville Parish, LA.
- King, T. and D. LeBlanc. 1995. Foraging behaviors of snowy egrets (egretta thula) and yellow-crowned night-herons (nyctanassa violacea) in south louisiana. USDA National Wildlife Research Center Staff Publications, 545.
- Kuperman, R., Checkai, R., Phillips, C., Simini, M., and J. Speicher. 2002. Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening

Levels (ECO-SSL) Using Enchytraeid Reproduction Benchmark Values. U.S. Army Soldier and Biological Chemical Command.

- Kuperman, R., Checkai, R., Simini, M., Phillips, C., Speicher, J., and D. Barclift. 2006. Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Used Reproduction Endpoints for Folsomia candida, Eisenia fetida, and Enchytraeus crypticus. Environmental Toxicology and Chemistry 25: No. 3: 754-762.
- Kushlan, J. 1976. Feeding behavior of north American herons. The Auk, Vol. 93, No. 1, pp. 86-94.
- Lamb, D.T., Vitukawalu, P.M., Palanisami, T., Megharaj, M., and R. Naidu. 2013. Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite. Environ. Sci. Technol. 47: 4670-4676.
- Langmuir, D. 2003. Issue Paper on the Environmental Chemistry of Metals. USEPA Archive Document
- Louisiana Department of Environmental Quality (LDEQ) Corrective Action Group. 2003. Risk Evaluation and Corrective Action Program (RECAP). 129 pp.
- LDEQ. 2014. Louisiana Water Quality Ecoregions: For Use in Ecologically-Driven Water Quality Standards.
- LDEQ. 2019. Data taken from the LDEQ's Louisiana Environmental Assessment Utility (LEAU) database. https://waterdata.deg.louisiana.gov/
- Louisiana Department of Wildlife and Fisheries (LDWF). 2009. The Natural Communities of Louisiana. Louisiana Natural Heritage Program. Available: <u>https://www.wlf.louisiana.gov/assets/Conservation/Protecting_Wildlife_Diversity/Files/natural_communities_of_louisiana.pdf</u>. Accessed September 2022.
- LDWF. 2020a. "Louisiana's Animal Species of Greatest Conservation Need (SGCN) Rare, Threatened, and Endangered Animals – 2020." Available: <u>https://www.wlf.louisiana.gov/assets/Conservation/Protecting_Wildlife_Diversity/Files/rare_animal</u> s_tracking_list_2020.pdf. Accessed September 2022.
- LDWF. 2020b. Louisiana Big and Small Game Harvest Survey for 2019-2020. <u>https://www.wlf.louisiana.gov/assets/Resources/Publications/Hunting/louisiana_big_and_small_g</u> <u>ame_harvest_survey_2019-2020.pdf</u>. Accessed March 2022.
- LDWF. 2021. Rare, Threatened, and Endangered Ranks and Statuses. Available online: https://www.wlf.louisiana.gov/page/rare-threatened-and-endangered-ranks-and-statuses. Accessed September 2022.
- LDWF. 2022. Sherburne Wildlife Management Area. <u>https://www.wlf.louisiana.gov/page/sherburne</u> . Accessed September 2022.
- Linscombe, G. 2000. An evaluation of the no. 2 victor and 220 conibear traps in coastal louisiana. Louisiana Wildlife and Fisheries Commission. Baton Rouge, Louisiana.
- MacDonald, D.W. and L.A. Harrington. 2003. The American mink: The triumph and tragedy of adaptation out of context, New Zealand Journal of Zoology 30: 421-441. Maxson, S. and L. Oring. 1980.
 Breeding season time and energy budgets of the polyandrous spotted sandpiper. Behavior, Vol. 74, No. ³/₄, pp. 200-263.
- Michot, T., Jeske, C., Mazourek, J., Vermillion, W., and R. Kemmerer. 2001. Atlas and Census of Wading Bird and Seabird Nesting Colonies in South Louisiana. USGS National Wetlands Research Center, Lafayette, Louisiana.Miller, R.W., Honarvar, S., and B. Hunsaker. 1980. Effects of drilling

fluids on soils and plants: I. Individual fluid components. Journal of Environmental Quality. Volume 9. Issue 4. 547-552.

- Moore, K. 2002. Actitis macularius. Animal Diversity Web. Available: https://animaldiversity.org/accounts/Actitis macularius/ . Accessed: September 2022.
- Nagy, K.A. 2001. Food requirements of wild animals: predictive equations for free-living mammals, reptiles, and birds. Nutrition Abstracts and Reviews Series B: Livestock Feeds and Feeding. 71(10): 3R-12R.
- National Research Council. 2003. Bioavailability of Contaminants in Soils and Sediments, Processes, Tools and Applications. Division on Earth and Life Sciences, Water Science and Technology Board, Committee on Bioavailability of Contaminants in Soils and Sediments., Washington, D.C.
- Natural Resources Conservation Service (NRCS). 1999. "Chapter 4: Corridor Benefits." In Part 614.4 Conservation Corridor Planning at the Landscape Level Managing for Wildlife Habitat. U.S. Department of Agriculture Natural Resources Conservation Service. Part 190 National Biology Handbook. Available:

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_014927.pdf. Accessed March 2022.

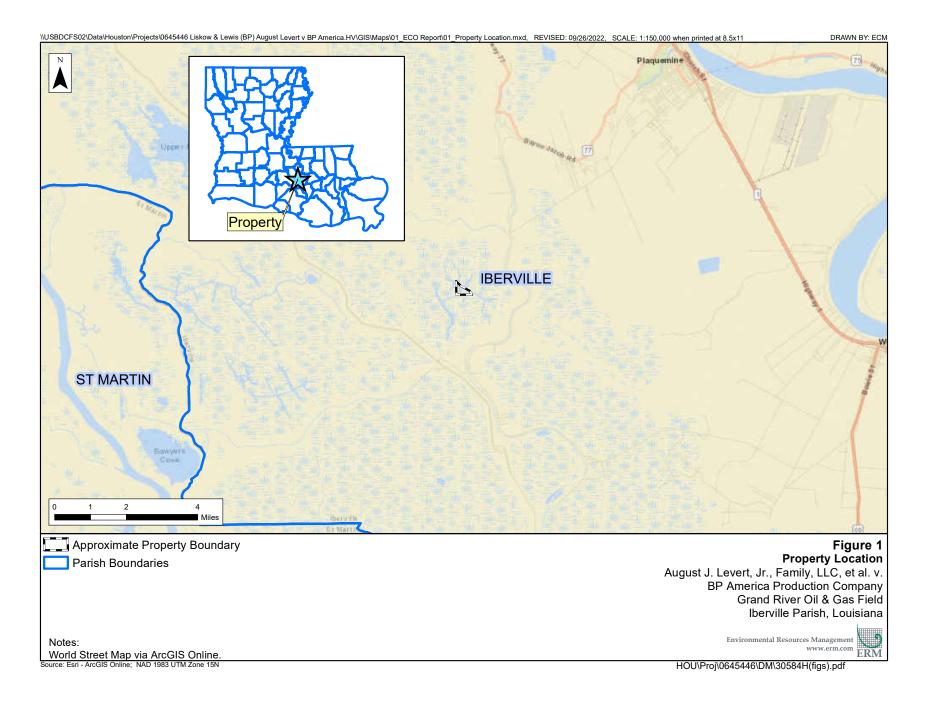
- NatureServe. 2022. NatureServe Explorer. Available: <u>https://explorer.natureserve.org</u>. Accessed September 2022.
- Nelson, A. and A. Martin. 1953. Gamebird weights. The Journal of Wildlife Management, Vol. 17, No. 1, pp. 36-42.
- Newell, A., Johnson, D., and L. Allen. 1987. Niagara river biota contamination project: fish flesh criteria for piscivorous wildlife. Division of Fish and Wildlife, Bureau of Environmental Protection. Technical report 87-3.
- Nichols, J., Reinecke, K., and J. Hines. 1983. Factors affecting the distribution of mallards wintering in the Mississippi alluvial valley. USFWS Patuxent Wildlife Research Center, Vicksburg, Mississippi.
- Oring, L.W., Lank, D.B., and Maxson, S.J. 1983. Population studies of the polyandrous spotted sandpiper. Auk 100: 272-285. Parsons, K. and T. Master. 2000. Snowy Egret (egretta thula). The Birds of North America .
- Pfaff, G. 2021. Cadmium sulfide/selenide pigments. Physical Sciences Reviews; Vol. 6 Issue 6, p211-216, 6p.Pitts, D. 1984. Description of American robin territories in northwest Tennessee. The Migrant, Vol. 55, No. 1, pp. 1-6.
- Prokop, Z., Cupr, P., Zlevorova-Zlamalikova, V., Komarek, J., Dusek, L., and I. Holoubek. 2003. Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environmental Research 91: 119-126.
- Raley, C. M. and K. B. Aubry. (2006). Foraging ecology of Pileated Woodpeckers in coastal forests of Washington. Journal of Wildlife Management 70 (5):1266-1275.
- Razavi, R. 2013. Ebullition Rates and Mercury Concentrations In St. Lawrence River Sediments And a Benthic Invertebrate. Environmental Toxicology and Chemistry, Vol. 32, No. 4, pp. 857–865.

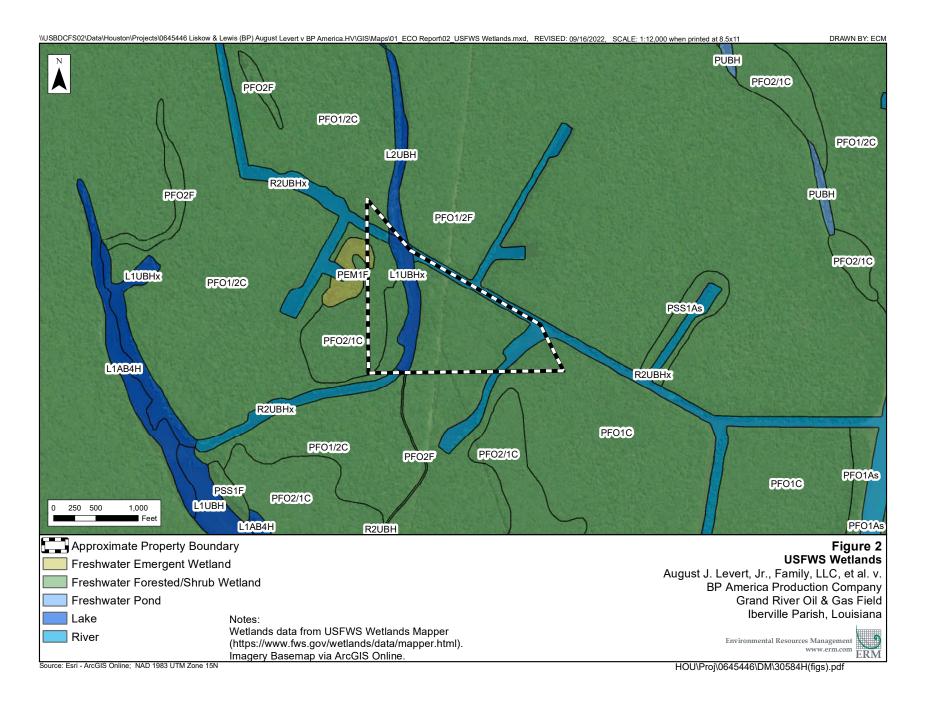
Reddy, K.R. and R.D. DeLaune. 2008. Biogeochemistry of wetlands, science and applications. CRC Press.

Ridal, J., Yanch, L.E., Fowlie, A.R., Razavi, N.R., Delongchamp, T.M., Choy, E.S., Fathi, M., Hodson, P.V., Campbell, L.M., Blais, J.M., Hickey, M.B.C., Yumvihoze, E., and D.R.S. Lean. 2010.

Potential causes of enhanced transfer of mercury to St. Lawrence River Biota: implications for sediment management strategies at Cornwall, Ontario, Canada. Hydrobiologia 647:81–98.

- Rodriguez, L., Rincon, J., Asencio, I., and L. Rodriguez-Castellanos. 2007. Capability of Selected Crop Plants for Shoot Mercury Accumulation from Polluted Soils: Phytoremediation Perspectives. Journal of Phytoremediation, 9:1–13, 2007.
- Rogers, W.J. 2022. Toxicological Evaluation. August J. Levert Jr. Family, LLC, et al. v BP America Production Co; 18th JDC; Docket #78953 Grand River Field, Iberville Parish, LA. Omega EnviroSolutions, Inc. August 16, 2022.
- Sample, B.E. and G.W. Suter II. 1994. Estimating Exposure of Terrestrial Wildlife to Contaminants. Oak Ridge National Laboratory, Tennessee, U.S. Department of Energy.
- Sample, B.E., Suter II, G.W., Beauchamp, J.J., and R.A. Efroymson. 1998a. Literature-derived bioaccumulation models for earthworms: development and validation. Environmental Toxicology and Chemistry 18(9): 2110-2120.
- Sample, B.E., Suter II, G.W., Beauchamp, J.J., and R.A. Efroymson. 1998b. Development and validation of bioaccumulation models for small mammals. ES/ER/TM-219. Oak Ridge National Laboratory, Oak Ridge, TN.
- Seaman, D., Guglielmo, C., and T. Williams. 2005. Effects of physiological state, mass change and diet on plasma metabolite profiles in the western sandpiper calidris mauri. The Journal of Experimetnal Biology 208:761-769.
- Shaheen, S., Rinklebe, J., Frohne, T., White, J., and R. Delaune. 2016. Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils. Chemosphere 150: 740-748.
- Simini, M., Checkai, R., Kuperman, R., Phillips, C., and J. Speicher. 2002. Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening Levels (ECO-SSL) Using Earthworm (Eisenia Fetida) Benchmark Values. U.S. Army Soldier and Biological Chemical Command.
- Smith, J. 1997. Nesting season food habits of 4 species of Herons and Egrets at Lake Okeechobee, Florida. Colonial Waterbirds 20: 198-220.
- Spencer, R.K. and J.A. Chapman. 1986. Seasonal feeding habits of New England and eastern cottontails. Proc. Penn. Acad. Sci. 60: 157-160.
- Svihla, A. 1931. Habits of the Iouisiana mink (mustela vison vilgivagus). Journal of Mammalogy, Vo. 12, No. 4, pp. 366-368.
- Swanson, G., Meyer, M., and V. Adomaitis. 1985. Foods consumed by breeding mallards on wetlands of south-central north dakota. Journal of Wildlife Management 49: 197-203.
- Tamisier, A. 1976. Diurnal activities of green-winged teal and pintail wintering in Iouisiana. Wildfowl, 27: 19-32.
- The Cornell Lab. 2022a. All About Birds: Bird Guide. Available: <u>https://www.allaboutbirds.org/guide/</u>. Accessed September 2022.
- The Cornell Lab. 2022b. Birds of the World. Available: <u>Birds of the World Cornell Lab of Ornithology</u> Accessed September 2022.
- Thom, M., Harrington, L., and D. MacDonald. Why are American mink sexually dimorphic? A role for niche separation. Oikos 105: 525-535.

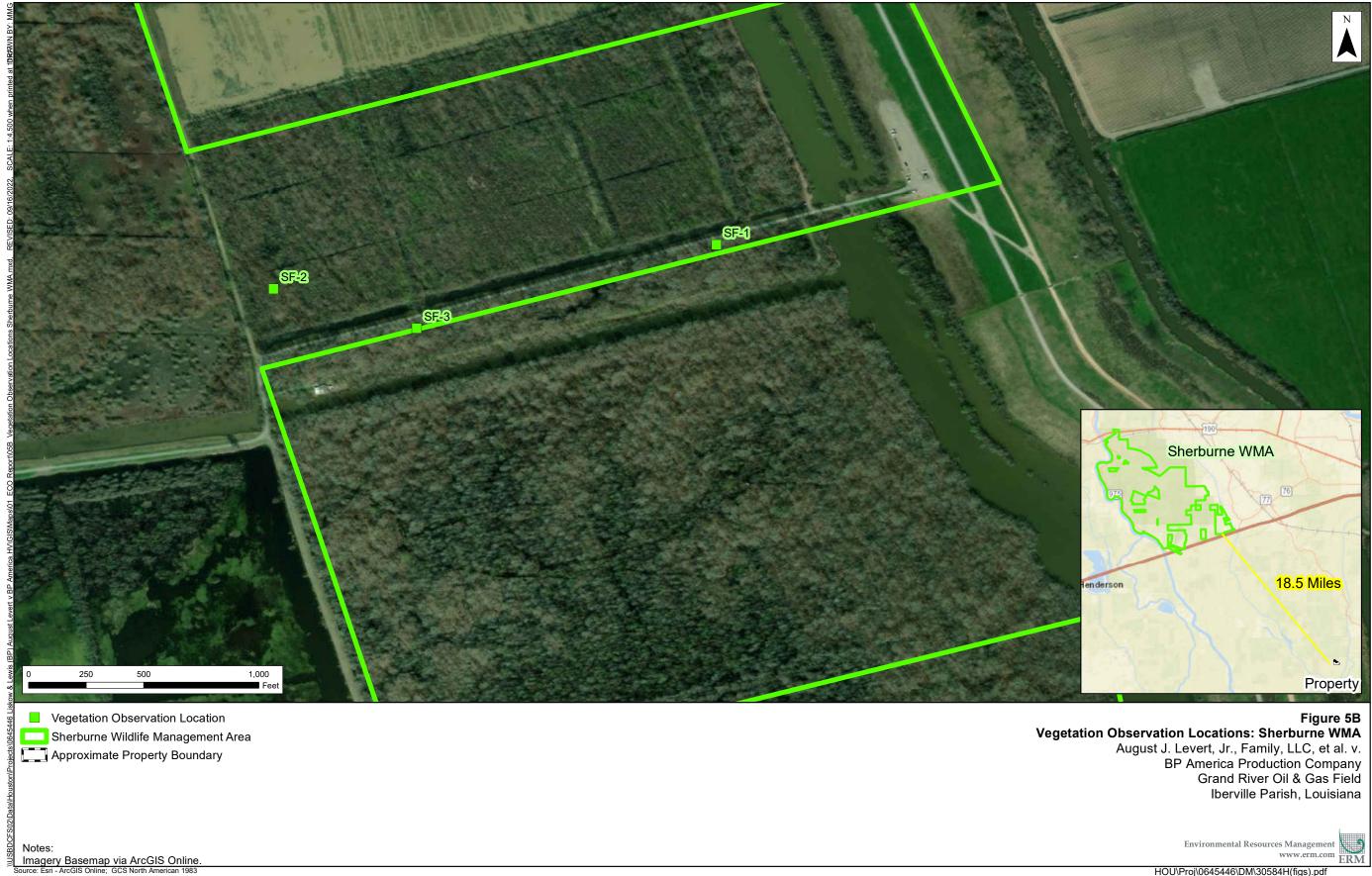

- U.S. Department of Agriculture (USDA). 2012. Wetland Indicator Status." Natural Resources Conservation Service PLANTS Database. Available: <u>https://plants.usda.gov/wetinfo.html</u>. Accessed September 2022.
- USDA. 2022. Natural Resources Conservation Service. PLANTS Database. https://plants.sc.egov.usda.gov/java . Accessed September 2022.
- U.S. Environmental Protection Agency (USEPA). 1988. Recommendations for and Documentation of Biological Values for use in Risk Assessment.
- USEPA. 1993. Wildlife Exposure Factors Handbook. Volumes I and II. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C. EPA/600/R-93/187a, b.
- USEPA. 1994. Barium Sulfate; Toxic Chemical Release Reporting; Community Right-To-Know, Final Rule. Federal Register Volume 59, No. 123, 40 CFR Part 372.
- USEPA. 1997. Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final, EPA 540-R-97-006.
- USEPA. 1998. Guidelines for Ecological Risk Assessment, EPA/630/R-95/002F.
- USEPA. 1999. Toxicity Reference Values, Screening Level Ecological Risk Assessment Protocol, Multimedia Planning and Permitting Division Office of Solid Waste, Center for Combustion Science.
- USEPA. 2005a. Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92.857-55 and Attachment 1-2 (Assessment of whether to develop ecological soil screening levels for microbes and microbial processes).
- USEPA. 2005b. Ecological Soil Screening Levels for Arsenic, Interim Final, OSWER Directive 9285.7-62. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. March 2005.
- USEPA. 2005c. Ecological Soil Screening Levels for Barium, Interim Final, OSWER Directive 9285.7-63. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. February 2005.
- USEPA. 2005d. Ecological Soil Screening Levels for Cadmium, Interim Final, OSWER Directive 9285.7-65. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. March 2005.
- USEPA. 2005e. Ecological Soil Screening Levels for Lead, Interim Final, OSWER Directive 9285.7-70. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. March 2005.
- USEPA. 2006. Ecological Soil Screening Levels for Silver, Interim Final, OSWER Directive 9285.7-77. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. September 2006.
- USEPA. 2007a. Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). Review of Background Concentrations for Metals (Attachment 4-1). OSWER Directive 92857-55.
- USEPA. 2007b. Ecological Soil Screening Levels for Selenium, Interim Final, OSWER Directive 9285.7-72. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. June 2007.

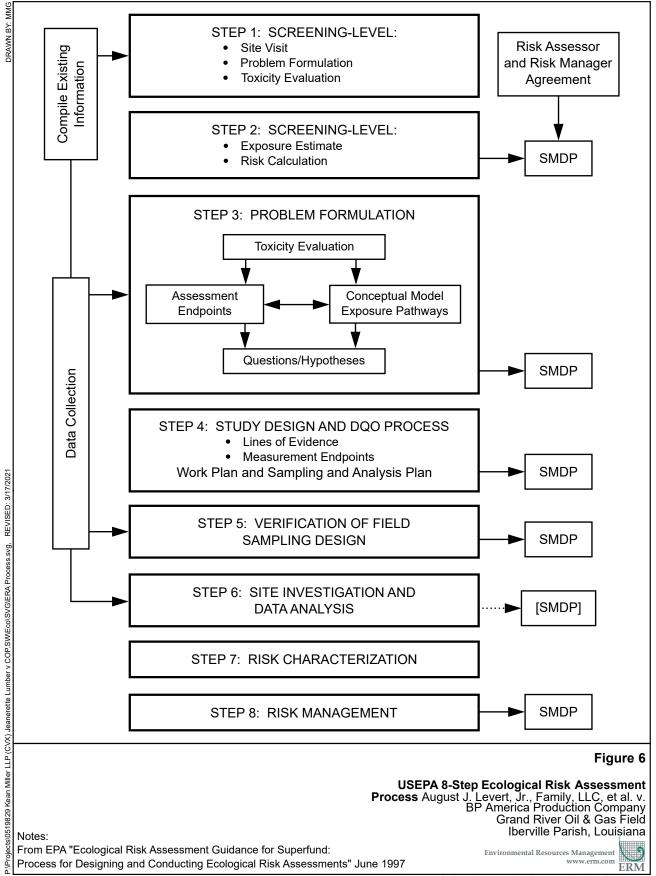

- USEPA. 2007c. Ecological Soil Screening Levels for Zinc Interim Final OSWER Directive 9285.7-73. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. June 2007.
- USEPA. 2008. Ecological Soil Screening Levels for Chromium, Interim Final, OSWER Directive 9285.7-66. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. April 2008.
- USEPA. 2015. Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments EPA/600/R-15/176.
- USEPA. 2022a. "Exhibit 1: Ecological hubs and corridors in the contiguous U.S., based on 2001 NLCD." Ecological Connectivity. Report on the Environment: Explore ROE Indicators. Available: <u>https://cfpub.epa.gov/roe/indicator.cfm?i=80</u>. Accessed September 2022.
- USEPA. 2022b. National Ecological Framework. Available: <u>https://cfpub.epa.gov/roe/documents/NEF_brochure.pdf</u>. Accessed September 2022.
- USEPA. 2022c. ProUCL Software, Version 5.2. https://www.epa.gov/land-research/proucl-software. Accessed September 2022.
- U.S. Forest Service (USFS). 2021. Inventory Monitoring and Assessment Community of Practice Glossary. U.S. Forest Service. Available: https://www.fs.usda.gov/emc/rig/documents/data_steward_cop/IMACommunityOfPracticeGlossar y-v1-1.pdf. Accessed September 2022.
- U.S. Fish and Wildlife Service (USFWS). 1994. Accumulation of Mercury in Sediments, Prey, And Shorebirds of Lavaca Bay, Texas, Phase II Report.
- USFWS. 2013. Atchafalaya National Wildlife Refuge Bird List. Available: <u>https://www.fws.gov/sites/default/files/documents/Atchafalaya-birdlist.pdf</u>. Accessed September 2022.
- USFWS. 2022. National Wetlands Inventory Wetlands Mapper. Available: <u>https://www.fws.gov/program/national-wetlands-inventory/wetlands-mapper</u>. Accessed September 2022.
- U.S. Geological Survey (USGS). 2013. Smith, D.B., Cannon, W.F., Woodruff, L.G., Solano, Federico, Kilburn, J.E. and D.L. Fey. 2013. Geochemical and mineralogical data for soils of the conterminous United States: U.S. Geological Survey Data Series 801, 19 p. http://pubs.usgs.gov/ds/801/.
- Wilson, D.E. and S. Ruff. 1999. The Smithsonian Book of North American Mammals. Smithsonian Institution Press.
- Wheelwright, N. 1986. The diet of American robins: an analysis of U.S. biological survey records. The Auk 103: 710-725.
- Wolfe. 1982. Oryzomys palustris. Mammalian Species No. 176, pp. 1-5. The American Society of Mammologists.
- Xu, X., Bryan, A.L., Mills, G.L., and A.M. Korotasz. 2019. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA), Science of The Total Environment. 668, 261-270.

FIGURES

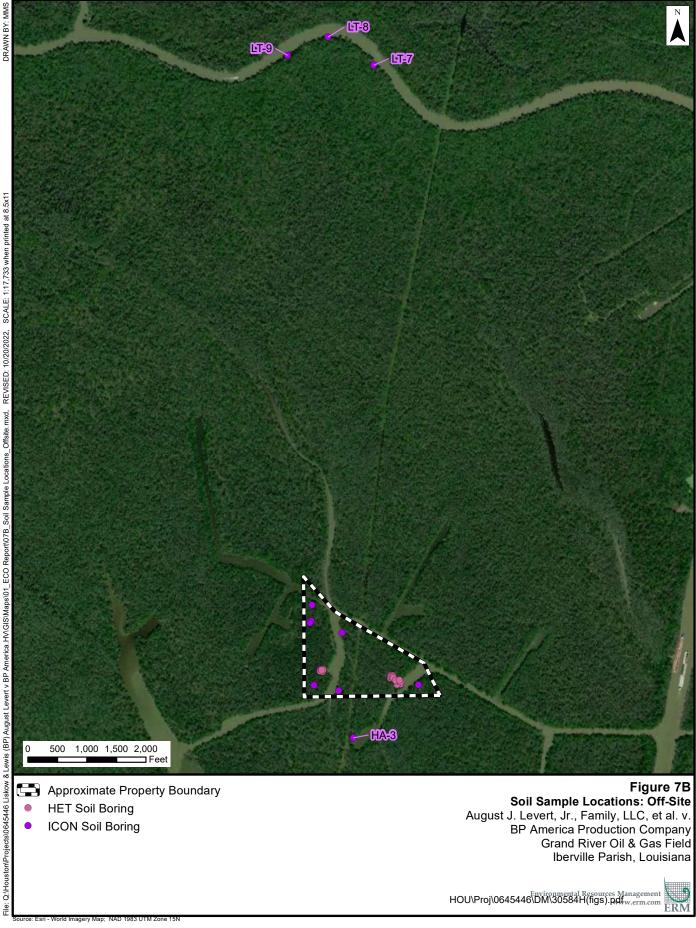
November 2022

November 2022

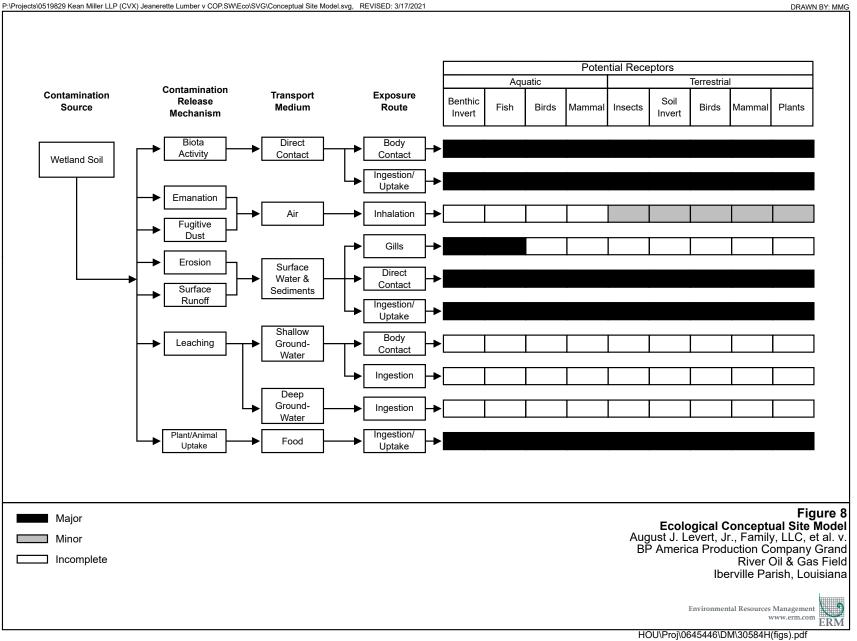




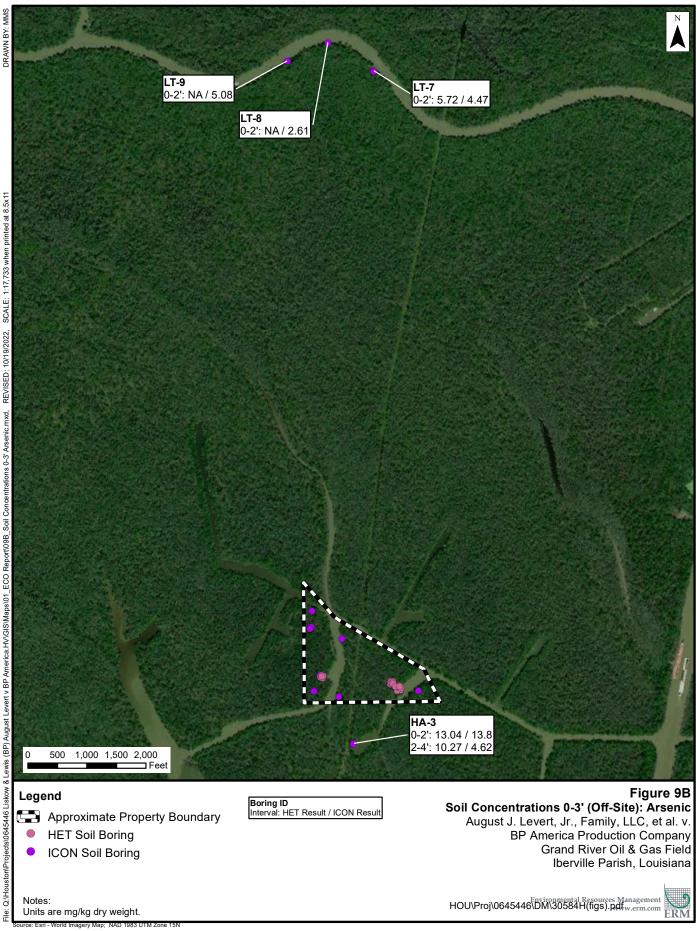
HOU\Proj\0645446\DM\30584H(figs).pdf


Notes: 2021-11-11 Aerial from USGS Earth Explorer.

Source: Esri - World Imagery Map; NAD 1983 UTM Zone 15N


Environmental Resources Management www.erm.com

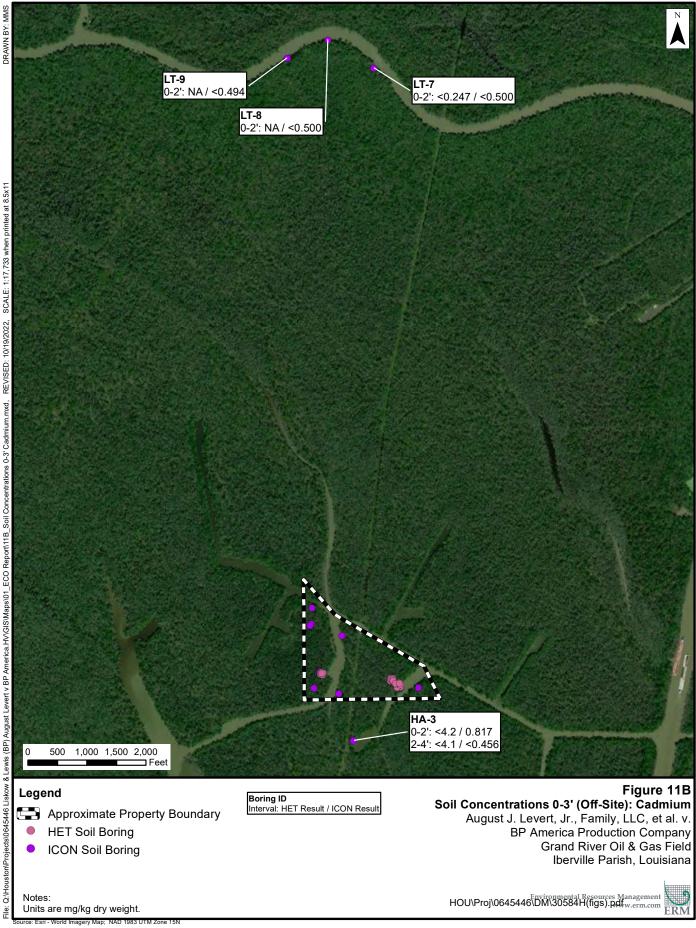
HOU\Proj\0645446\DM\30584H(figs).pdf



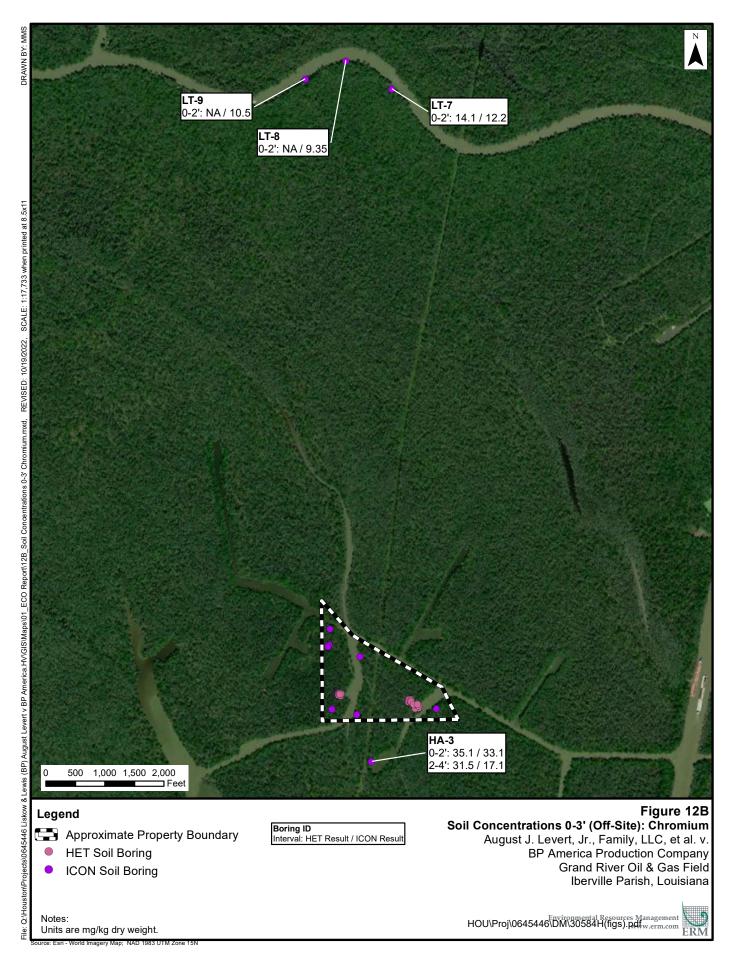


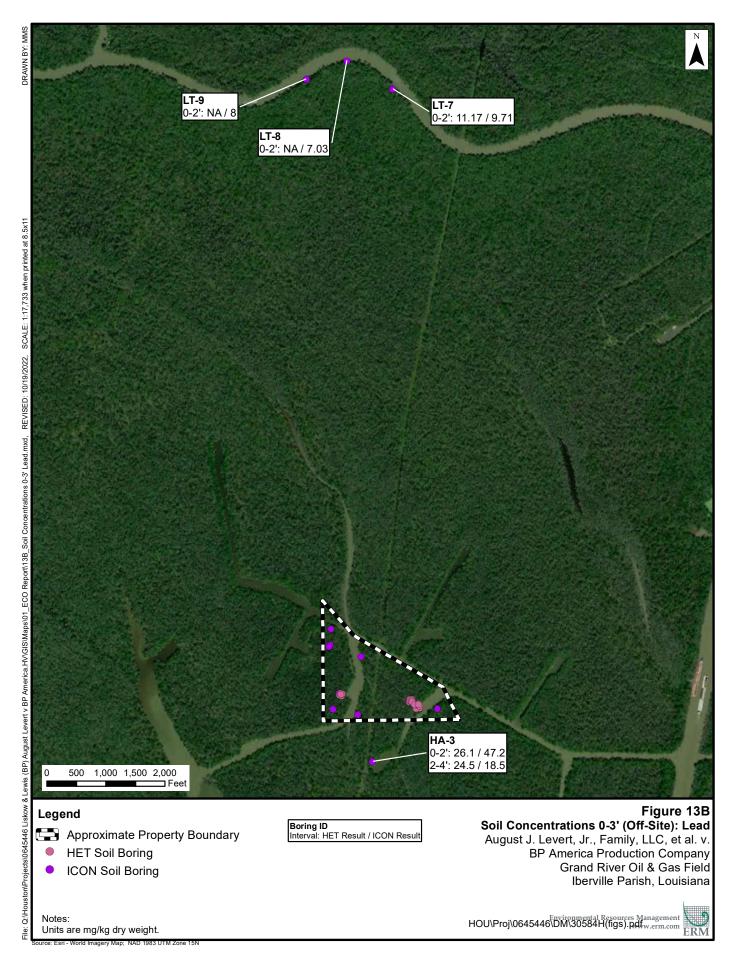
rce: Esri - ArcGIS Online

HOU\Proj\0645446\DM\30584H(figs).pdf



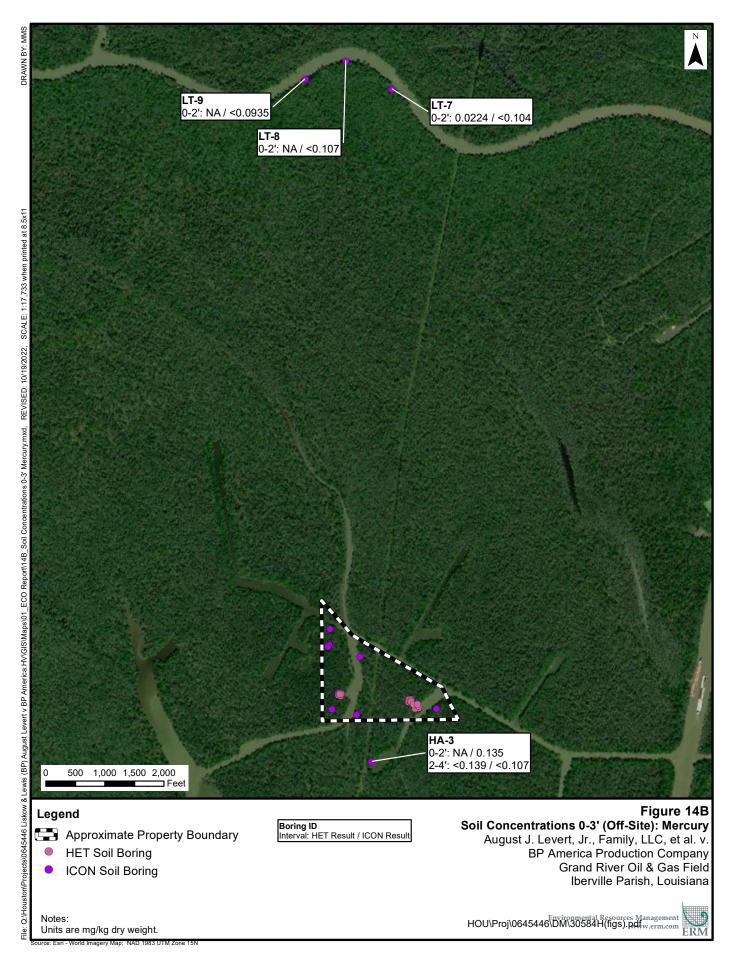
rce: Esri - ArcGIS Online


HOU\Proj\0645446\DM\30584H(figs).pdf


HOU\Proj\0645446\DM\30584H(figs).pdf

www.erm.com

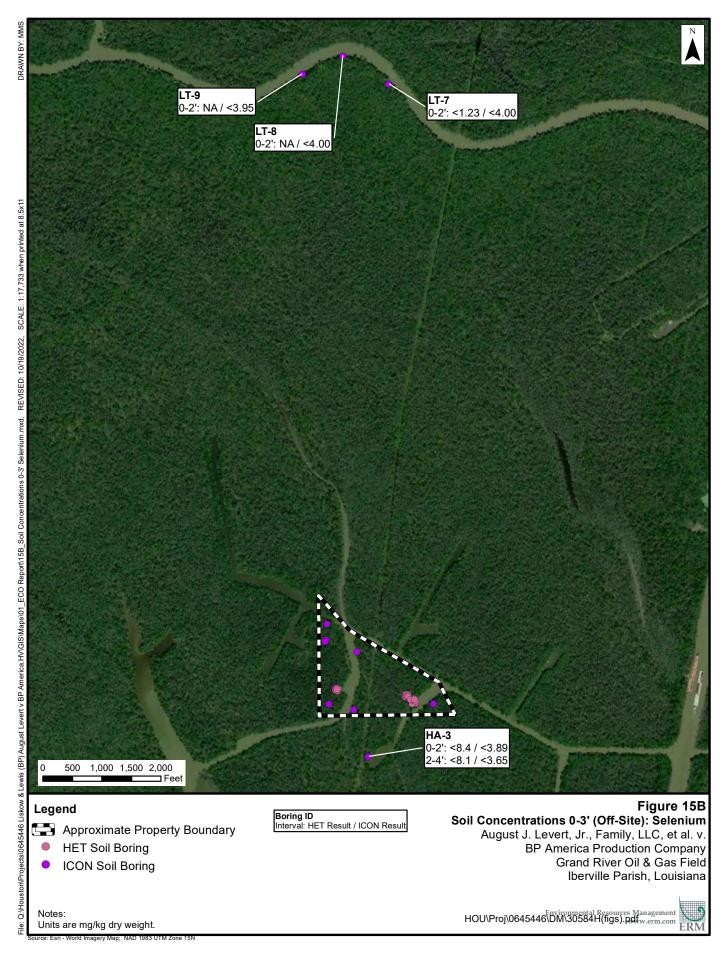
HOU\Proj\0645446\DM\30584H(figs).pdf



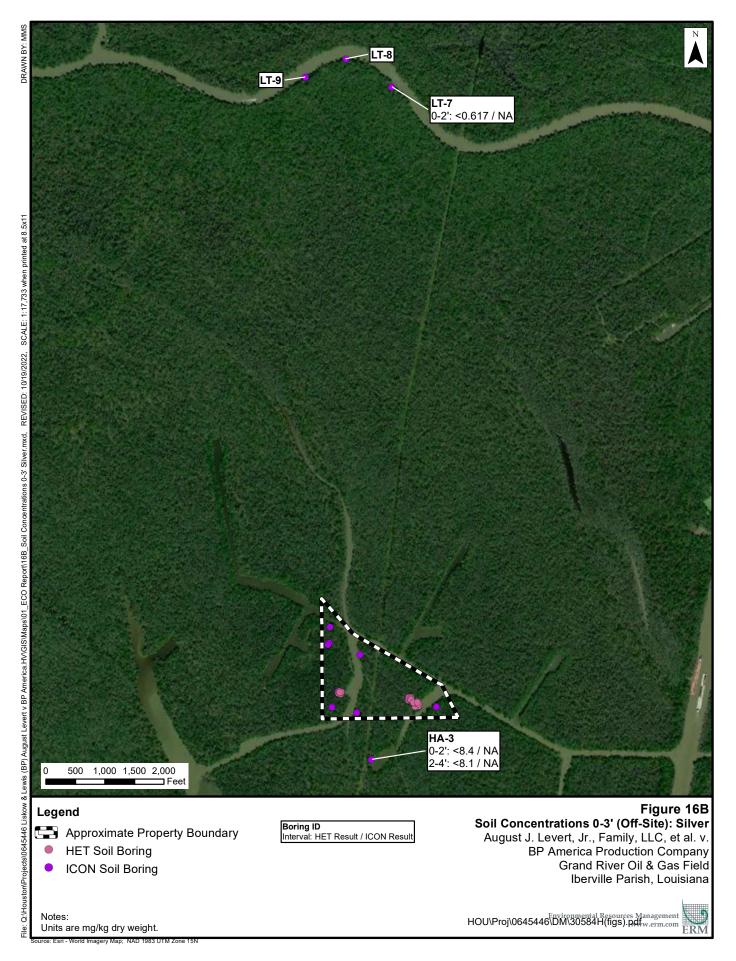
Units are mg/kg dry weight. 2021-11-11 Aerial from USGS Earth Explorer.

ce: Esri - ArcGIS Online

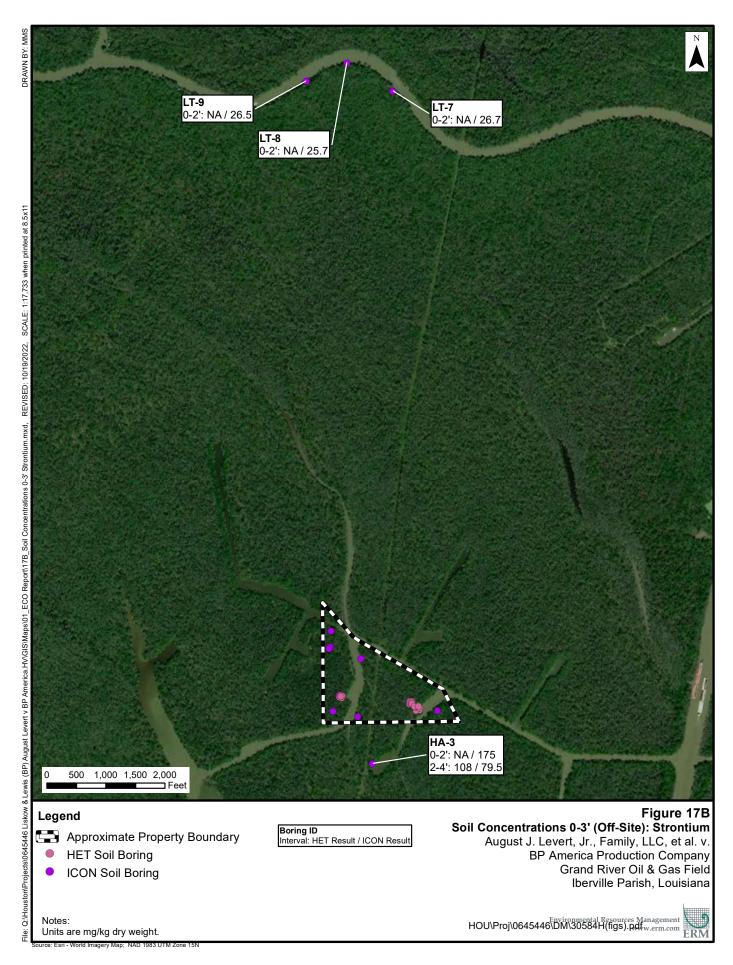
www.erm.com ERM

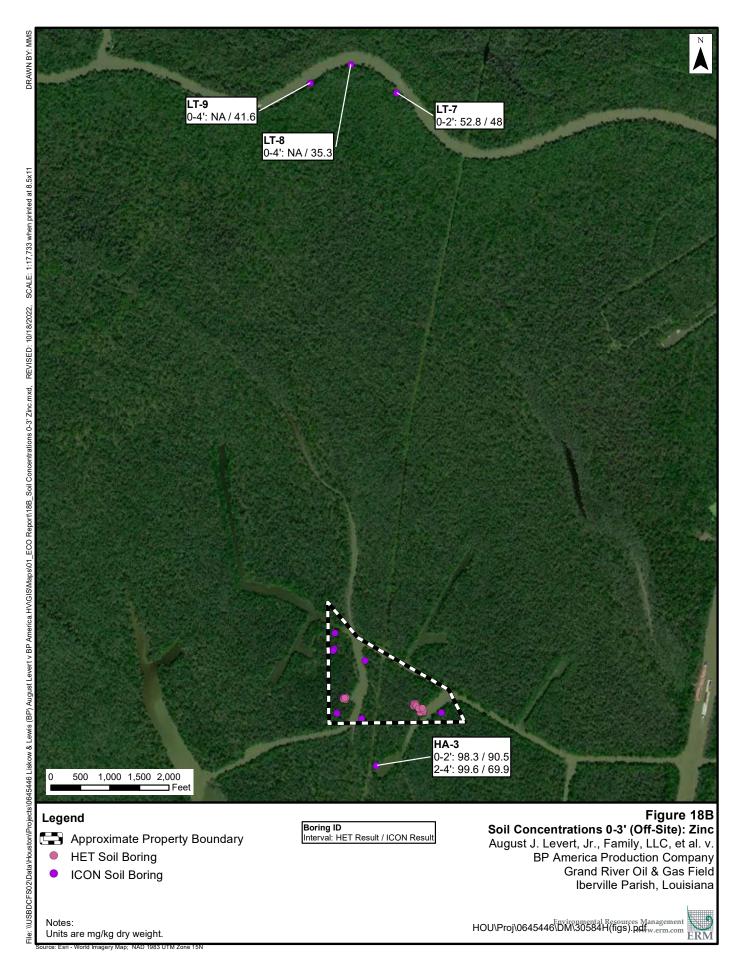

HOU\Proj\0645446\DM\30584H(figs).pdf

rce: Esri - ArcGIS Online


HOU\Proj\0645446\DM\30584H(figs).pdf

www.erm.com


HOU\Proj\0645446\DM\30584H(figs).pdf


www.erm.com

HOU\Proj\0645446\DM\30584H(figs).pdf

HOU\Proj\0645446\DM\30584H(figs).pdf

ces Management www.erm.com

HOU\Proj\0645446\DM\30584H(figs).pdf

Notes: <u>2021-11-11 Aerial from USGS Earth Explorer.</u> Source: Esri - World Imagery Map; NAD 1983 UTM Zone 15N

ces Management www.erm.com Environmental Resources Management

HOU\Proj\0645446\DM\30584H(figs).pdf

TABLES

November 2022

TABLE 1

List of Vegetation Observed at the Property August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Common Name	Scientific Name	Wetland Classification	Growth Habit	Aquatic
Alligatorweed	Alternanthera philoxeroides	OBL	Forb/herb	Yes
American buckwheat vine	Brunnichia ovata	FACW	Vine	No
American elm	Ulmus americana	FAC	Tree	No
American water willow	Justicia americana	OBL	Forb/herb	Yes
Bald cypress	Taxodium distichum	OBL	Tree	Yes
Basketgrass	Oplismenus hirtellus	FAC	Graminoid	No
Bedstraw	Galium spp.	NA	Shrub, Subshrub, Forb/herb, Vine	No
Black willow	Salix nigra	OBL	Tree	No
Blue mistflower	Conoclinium coelestinum	FAC	Forb/herb	No
Bluejacket	Tradescantia ohiensis	FAC	Forb/herb	No
Boxelder	Acer negundo	FAC	Tree	No
Bulbous bittercress	Cardamine bulbosa	OBL	Forb/herb	No
Butterweed	Packera glabella	OBL	Forb/herb	Yes
Canada germander	Teucrium canadense	FACW	Forb/herb	No
Canadian black snakeroot	Sanicula canadensis	FACU	Forb/herb	No
Carolina coralbead	Cocculus carolinus	FAC	Vine	No
Carolina geranium	Geranium carolinianum	NA	Forb/herb	No
Carrot	Family Apiaceae	NA	Forb/herb	NA
Chinese tallow	Triadica sebifera	FAC	Tree	No
Clasping Venus' looking-glass	Triodanis perfoliata	FACU	Forb/herb	No
Clover	Trifolium spp.	NA	Forb/herb	No
Common boneset	Eupatorium perfoliatum	FACW	Forb/herb	No
Common chickweed	Stellaria media	FACU	Forb/herb	No
Common persimmon	Diospyros virginiana	FAC	Tree	No
Common yellow oxalis	Oxalis stricta	UPL	Forb/herb	No
Creeping primrose-willow	Ludwigia repens	OBL	Forb/herb	No
Duckweed	Lemna spp.	NA	Forb/herb	Yes
Eastern marsh fern	Thelypteris palustris	OBL	Forb/herb	No
Eastern poison ivy	Toxicodendron radicans	FAC	Shrub, Subshrub, Forb/herb, Vine	No
Eastern swampprivet	Forestiera acuminata	OBL	Tree, Shrub	No
Elderberry	Sambucus spp.	NA	Tree	No
Elm	Ulmus spp.	NA	Tree	No
Fern	Clade Tracheophyta	NA	Forb/herb	No
Fivelobe cucumber	Cayaponia quinqueloba	FAC	Forb/herb, Vine	No
Goldenrod	Solidago spp.	NA	Forb/herb	NA
Grape	Vitis spp.	NA	Shrub, Vine	NA
Green ash	Fraxinus pennsylvanica	FACW	Tree	No
Green flatsedge	Cyperus virens	FACW	Graminoid	No
Heartleaf nettle	Urtica chamaedryoides	FACU	Forb/herb	No
Honey locust	Gleditsia triacanthos	FAC	Tree, Shrub	No
Indian strawberry	Duchesnea indica	FACU	Forb/herb	No
Japanese climbing fern	Lygodium japonicum	FAC	Forb/herb, Vine	No
Kunth's maiden fern	Thelypteris kunthii	FACW	Forb/herb	No
Lateflowering thoroughwort	Eupatorium serotinum	FAC	Forb/herb	No
Lizard's tail	Saururus cernuus	OBL	Forb/herb	No
Long's sedge	Carex longii	OBL	Graminoid	No
Long's sedge Looseflower water-willow	Justicia ovata	OBL	Forb/herb	No
Marsh seedbox	Ludwigia palustris	OBL	Forb/herb	No
Melon	Family Cucurbitaceae	NA	NA	No
Moss	Bryophyta	NA NA	NA	No
	Quercus texana	FACW	Tree, Shrub	No
Nuttall oak Oak		NA	Tree	NA
Oak Panicgrass	Quercus spp. Panicum spp.	NA NA	Graminoid	NA
Panicgrass Pecan	Carya illinoinensis	FACU	Tree	No
Pecan Peppervine		FACU	Shrub, Vine	No
Peppervine	Nekemias arborea Planera aquatica	OBL	Tree	Yes
Possumhaw (Ilex genus)	llex decidua	FACW	Tree, Shrub	No
Ravenfoot sedge	Carex crus-corvi	OBL	Graminoid	No
-		FAC	Tree	No
Red maple	Acer rubrum			
Red mulberry	Morus rubra	FACU	Tree	No
Resurrection fern	Pleopeltis polypodioides	FACU	Forb/herb, Vine	No
Roughleaf dogwood	Cornus drummondii	FAC	Tree, Shrub	No
Savannah-panicgrass	Phanopyrum gymnocarpon	OBL	Graminoid	No
Sawtooth blackberry	Rubus argutus	FAC	Subshrub	No
Sedge	Carex spp.	NA	Graminoid	NA
Shortbristle horned beaksedge	Rhynchospora corniculata	OBL	Graminoid	No

HOU\Projects\0645446\DM\30584H(tbs).xlsx

TABLE 1 List of Vegetation Observed at the Property August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Common Name	Scientific Name	Wetland Classification	Growth Habit	Aquatic
Shumard's oak	Quercus shumardii	FAC	Tree, Shrub	No
Sieva bean	Phaseolus lunatus	NA	Forb/herb, Vine	No
Slender yellow woodsorrel	Oxalis dillenii	FACU	Forb/herb	No
Southern dewberry	Rubus trivialis	FACU	Subshrub, Vine	No
Spider lily	Hymenocallis occidentalis	OBL	Forb/herb	No
Spiny sowthistle	Sonchus asper	FACU	Forb/herb	No
Stiff marsh bedstraw	Galium tinctorium	FACW	Forb/herb	No
Sugarberry	Celtis laevigata	FACW	Tree, Shrub	No
Swamp smartweed	Polygonum hydropiperoides	OBL	Forb/herb	Yes
Trumpet creeper	Campsis radicans	FAC	Vine	No
Virginia creeper	Parthenocissus quinquefolia	FACU	Vine	No
Virginia dayflower	Commelina virginica	FACW	Forb/herb	No
Water hickory	Carya aquatica	OBL	Tree	No
Water locust	Gleditsia aquatica	OBL	Tree, Shrub	No
Water oak	Quercus nigra	FAC	Tree	No
Water spangles	Salvinia minima	OBL	Forb/herb	Yes
Water tupelo	Nyssa aquatica	OBL	Tree	Yes
West Indian nightshade	Solanum ptychanthum	FACU	Forb/herb	No
White clover	Trifolium repens	FACU	Forb/herb	No
Whitenymph	Trepocarpus aethusae	FACW	Forb/herb	No
Yellow thistle	Cirsium horridulum	FAC	Forb/herb	No
Total Species Obs	erved: 87	· · ·	Total Aquatic Speci	ies: 9

NOTES:

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and aquatic status data are not always applicable to taxa identified to genus.

Species observed growing in water during ERM site investigations are marked 'Yes' in the aquatic column.

References

U.S. Department of Agriculture (USDA) Natural Resources Conservation Service. 2022. PLANTS Database. Available: https://plants.sc.egov.usda.gov/java/. Accessed August 2022.

HOU/Projects/0645446/DM/30584H(tbs).xlsx August Levert_BP Plan_009576

TABLE 2 List of Birds Observed at the Property August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Guild	Common Name	Scientific Name	Diet	Species of Greatest Conservation Need
Neotropical and Passerine Migrants (i.e., flycatchers, hummingbirds, warblers)	Acadian Flycatcher	Empidonax virescens	Insects	
Neotropical and Passerine Migrants (i.e., flycatchers, hummingbirds, warblers)	Chimney Swift	Chaetura pelagica	Insects	Yes
Neotropical and Passerine Migrants (i.e., flycatchers, hummingbirds, warblers)	Northern Parula	Setophaga americana	Insects	
Neotropical and Passerine Migrants (i.e., flycatchers, hummingbirds, warblers)	Prothonotary Warbler	Protonotaria citrea	Insects	Yes
Neotropical and Passerine Migrants (i.e., flycatchers, hummingbirds, warblers)	Red-eyed Vireo	Vireo olivaceus	Insects	
Neotropical and Passerine Migrants (i.e., flycatchers, hummingbirds, warblers)	Yellow-billed Cuckoo	Coccyzus americanus	Insects	
Neotropical and Passerine Migrants (i.e., flycatchers, hummingbirds, warblers)	Yellow-throated Vireo	Vireo flavifrons	Insects	Yes
Raptors (i.e., hawks, owls, vultures)	Barred Owl	Strix varia	Mammals	
Raptors (i.e., hawks, owls, vultures)	Red-shouldered Hawk	Buteo lineatus	Mammals	
Raptors (i.e., hawks, owls, vultures)	Turkey Vulture	Cathartes aura	Carrion	
Resident Passerines (i.e., cardinals, doves, mockingbirds)	American Crow	Corvus brachyrhynchos	Omnivore	
Resident Passerines (i.e., cardinals, doves, mockingbirds)	Carolina Chickadee	Poecile carolinensis	Insects	
Resident Passerines (i.e., cardinals, doves, mockingbirds)	Carolina Wren	Thryothorus ludovicianus	Insects	
Resident Passerines (i.e., cardinals, doves, mockingbirds)	Fish Crow	Corvus ossifragus	Omnivore	
Resident Passerines (i.e., cardinals, doves, mockingbirds)	Northern Cardinal	Cardinalis cardinalis	Seeds	
Resident Passerines (i.e., cardinals, doves, mockingbirds)	Tufted Titmouse	Baeolophus bicolor	Insects	
Resident Passerines (i.e., cardinals, doves, mockingbirds)	White-eyed Vireo	Vireo griseus	Insects	
Tree Climbers (i.e., woodpeckers)	Downy Woodpecker	Dryobates pubescens	Insects	
Tree Climbers (i.e., woodpeckers)	Pileated Woodpecker	Dryocopus pileatus	Insects	
Tree Climbers (i.e., woodpeckers)	Red-bellied Woodpecker	Melanerpes carolinus	Insects	
Wading Birds and Upland Waterbirds (i.e., rails, herons, egrets)	Little Blue Heron	Egretta caerulea	Fish	Yes
Wading Birds and Upland Waterbirds (i.e., rails, herons, egrets)	Tricolored Heron	Egretta tricolor	Fish	
Total Species Observe	ed: 22		Total SGCN:	4

NOTES:

Diet data provided by the The Cornell Lab (2022).

Louisiana Species of Greatest Conservation Need (SGCN) as per LDWF (2020).

Species listed in **bold** are identified by USFWS (2016) as swamp associates in the Atchafalaya Basin.

References

Louisiana Department of Wildlife and Fisheries (LDWF). 2020. Louisiana's Animal Species of Greatest Conservation Need (SGCN) - Rare, Threatened, and Endangered Animals - 2020. Available: https://www.wlf.louisiana.gov/assets/Conservation/Protecting_Wildlife_Diversity/Files/rare_animals_plants_natural_communities_tracking_list_2020.pdf. Accessed September 2022.

The Cornell Lab. 2022a. All About Birds. Available: https://www.allaboutbirds.org/news/. Accessed September 2022.

U.S. Fish and Wildlife Service (USFWS). 2013. Atchafalaya National Wildlife Refuge Bird List. Available: https://www.fws.gov/sites/default/files/documents/Atchafalaya-birdlist.pdf. Accessed September 2022.

TABLE 3 List of Non-Avian Fauna Observed at the Property August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Common Name	Scientific Name	Trophic Level
Mammals		
Nine-banded armadillo	Dasypus novemcinctus	Secondary
Beaver	Castor spp.	Primary
Eastern gray squirrel	Sciurus carolinensis	Primary
Unknown burrow	Unknown	Unknown
Reptiles		
American alligator	Alligator mississippiensis	Apex
Cottonmouth	Agkistrodon piscivorus	Tertiary
Diamondback water snake	Nerodia rhombifer	Tertiary
Snake	Suborder Serpentes	Tertiary
Western ratsnake	Pantherophis obsoletus	Tertiary
Anole	Anolis spp.	Secondary
Little brown skink	Scincella lateralis	Secondary
Lizard	Order Squamata	Secondary
Amphibians		
Green frog	Lithobates clamitans	Tertiary
Gulf coast toad	Incilius nebulifer	Secondary
Southern leopard frog	Lithobates sphenocephalus	Secondary
Other Frogs and Toads	Order Anura	Secondary
Terrestrial Invertebrates		
Dragonfly	Order Odonata	Secondary
Eastern pondhawk	Erythemis simplicicollis	Secondary
Great blue skimmer	Libellula vibrans	Secondary
Harvestman spider	Order Opiliones	Secondary
Six-spotted fishing spider	Dolomedes triton	Secondary
Spider	Order Araneae	Secondary
Wasp	Suborder Apocrita	Secondary
	•	Primary
Alligatorweed flea beetle	Agasicles hydrophila Family Formicidae	
	· · · · · · · · · · · · · · · · · · ·	Primary
Apple snail	Pomacea maculata	Primary
Bee	Family Apidae	Primary
Beetle	Order Coleoptera	Primary
Butterfly	Order Lepidoptera	Primary
Crane fly	Family Tipulidae	Primary
Eastern lubber grasshopper	Romalea microptera	Primary
Flea beetle	Disonycha sp.	Primary
Fourteen spotted leaf beetle	Cryptocephalus guttulatus	Primary
Grasshopper	Infraorder Acrididea	Primary
Katydid	Family Tettigoniidae	Primary
Ladybug	Coccinellidae	Primary
Mosquito	Anopheles spp.	Primary
Moth	Order Lepidoptera	Primary
Oblong-winged katydid	Amblycorypha oblongifolia	Primary
Pale-bordered field cockroach	Pseudomops septentrionalis	Primary
Short-horned grasshopper	Family Acrididae	Primary
Snail	Class Gastropoda	Primary
Spanish moth	Xanthopastis timais	Primary
Spittle Bug	Superfamily Cercopoidea	Primary
Swallowtail	Family Papilionidae	Primary
Aquatic Invertebrates		
Crawfish	Family Cambaridae	Secondary
Total Observed	46	· · · · · · · · · · · · · · · · · · ·

NOTES:

Trophic levels are defined as follows:

Apex Predator: Carnivores; top predators at the top of the food chain without natural predators. Tertiary Consumers: Carnivores and omnivores; organisms that consume primary and secondary consumers.

Secondary Consumers: Omnivores and carnivores; organisms that consume primary consumers (herbivores). Primary Consumer: Herbivores; or organisms that consume plants and plant material (nectar, seeds, nuts, etc.).

		Area:	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
		Location ID:	HA-4	HA-4	HA-4	HA-4	HA-4	HA-4	HA-4	HA-4	HA-5	HA-5	HA-5	HA-5	HA-5	HA-5	HA-5	HA-5	HA-5	HA-5	HA-6	HA-6	HA-6	HA-6
		Sample Depth:	0-2'	0-2'	2-4'	2-4'	4-6'	4-6'	6-8'	6-8'	0-2'	0-2'	2-4'	2-4'	4-6'	4-6') -Accutes	4-6') - Waypoin	6-7'	6-7')-Accutes	6-7') - Waypoin	0-2'	0-2'	2-4'	2-4'
		Sample ID:	HA-4 (0-2')	HA-4 (0-2')	HA-4 (2-4')	HA-4 (2-4')	HA-4 (4-6')	HA-4 (4-6')	HA-4 (6-8')	HA-4 (6-8')	HA-5 (0-2')	HA-5 (0-2')	HA-5 (2-4')	HA-5 (2-4')	HA-5 (4-6')	11A-3 (4-0) -	11A-3 (4-0) -	HA-5 (6-7')	00/20/40	11A-3 (0-7) -	HA-6 (0-2')	HA-6 (0-2')	HA-6 (2-4')	HA-6 (2-4')
		Sample Date:	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	08/30/19	09/25/19	09/25/19	09/25/19	09/25/19
Salinity & Other	Units	Screening Value ^a	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	HET	HET	ICON	HET	HET	ICON	HET	ICON	HET
% Moisture	%	NS	21.8	27.5	30.6	33.2	28	31.3	34.5	40.3	35.8	38.6	33.3	38.5	35.6	47.7	38	44.9	52.2	48	39.6	45.7	39.3	45.7
% Moisture for Metals Conve % Moisture for Organics Cor	e %	NS NS	21.8 21.8	27.5 27.5	30.6 30.6	33.2 33.2	28 28	31.3 31.3	34.5 34.5	40.3 40.3	35.8 35.8	38.6 38.6	33.3 33.3	38.5 38.5	35.6 35.6	47.7	38 38	44.9 44.9	52.2 52.2	48 48	39.6 39.6	45.7 45.7	39.3 39.3	45.7 45.7
Chloride	meq/L	NS	NA	0.39	NA	12.8	NA	63.2	NA	58.8	NA	24	NA	26	NA	40.4	NA	NA	67.8	NA	NA	1.98	NA	4.43
Chloride	mg/L	NS	NA	<4.00	NA	280	NA	1180	NA	1300	NA	517	NA	587	NA	849	NA	NA	1470	NA	NA	29.7	NA	73.8
SPLP Chloride Bromide (Br)	mg/L mg/Kg	NS NS	NA NA	NA NA	NA NA	NA NA	352* NA	NA NA	515* NA	NA NA	NA NA	NA NA	NA NA	NA NA	334* NA	NA NA	NA NA	699* NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromide (Sat Paste)	meq/L	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EC	mmhos/ cm	NS	0.57	0.49	3.67	4.4	6.23	7.59	6.54	6.25	2.94	3.02	2.83	3.08	3.52	4.41	NA	6.12	7.22	NA	0.49	0.58	0.77	0.89
ESP SAR	% N/A	NS NS	1.15 0.85	0.574 < 0.430	11.3 12.9	3.42	12.9 15.5	NA NA	7.54 8.55	NA NA	4.74 5.94	2.86 6.07	5.35 6.02	3.55 6.3	6.05 5.85	NA NA	NA NA	5.33 6.37	NA NA	NA NA	0.58	0.752	1.11 1.75	1.21 2.01
Calcium	meq/L	NS	4.1	4.11	5.96	14.7	10.2	18	17.9	18.9	7.81	8.3	7.28	8.67	9.8	13.8	NA	20	13.1	NA	1.94	2.21	2.68	2.77
Magnesium	meq/L	NS	0.62	<0.820	2.61	4.71	5.59	7.54	10.1	9.14	4.47	4.24	4.06	4.56	5.37	7.53	NA	11.2	14.7	NA	1.29	1.24	1.74	1.64
Sodium SPLP Sodium	meq/L mg/L	NS NS	1.3 NA	0.459 NA	26.8 NA	38.1 NA	43.7 NA	65.2 NA	32 NA	35.4 NA	14.7 NA	15.2 NA	14.3 NA	16.2 NA	16.1 NA	24.7 NA	NA NA	25.2 NA	30.3 NA	NA NA	1.43 NA	1.6 NA	2.6 NA	2.98 NA
CEC	meq/100g	NS	44.1	28.7	48.6	37.3	33.3	NA	51.3	NA	59.3	50.4	61.6	54.8	56.6	NA	NA	66	NA	NA	74.1	51.7	78.2	54.3
Alkalinity (Sat. Paste)	meq/L	NS	NA	3.8	NA	1.6	NA	1.2	NA	1.4	NA	1.8	NA	1.2	NA	1.2	NA	NA	0.8	NA	NA	1.6	NA	0.8
Sulfate Saturation %	meq/L %	NS NS	NA NA	0.676 82.9	NA NA	35.4 113	NA NA	13 80.6	NA NA	2.39 116	NA NA	2.79 127	NA NA	3.34 114	NA NA	3.17 NA	NA 122	NA NA	3.68 NA	NA 125	NA NA	1.76 118	NA NA	2.97 129
pH (Saturated Paste)	s.u.	NS	NA	7.88	NA	7.33	NA	7.3	NA	7.46	NA	7.62	NA	7.42	NA	NA	7.53	NA	NA	7.22	NA	7.01	NA	6.93
SPLP	mc/l	NS	NA	<0.10	NA	NIA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
SPLP Arsenic SPLP Barium	mg/L mg/L	NS	NA	<0.10 NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
SPLP Chromium	mg/L	NS	NA	<0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Lead	mg/L	NS NS	NA NA	<0.10	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SPLP Strontium SPLP Zinc	mg/L mg/L	NS	NA	<0.10 <0.10	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (Dry Weight)																								
Arsenic Barium	mg/kg-dry	12 2424	12.1 384	16.55 299	8.67 236	8.4 149.4	10.2 210	<7.3 205	6.49 243	9.72 206	6.44 207	11.89 244	9.13 394	<7.5 115.9	3.99 397	<9.56 220	4.16 244	8.22 267	<10.25 264	4.15 235	7.37 257	<8.7 215	7.69 336	<9 262
True Total Barium	mg/kg-dry mg/kg-dry	2424 NS	754	299	408	430	285	203	431	195	337	354	425	189	892	611	425	402	370	344	365	489	486	311
Cadmium	mg/kg-dry	0.8	0.77	<3.4	0.575	<3.4	0.544	<3.6	0.794	<4.2	0.528	<4.1	0.85	<3.7	0.519	<4.8	0.394	<0.472	<5.23	<0.385	<0.479	<4.4	<0.498	<4.6
Chromium	mg/kg-dry	84	12.7	14.6	13.2	17.7	11.8	18.3	19.2	25.5	19.7	34	33.9	26.8	20.1	31	19.7	18.1	24.3	21.9	23.7	28	26.1	28
Lead Mercury	mg/kg-dry mg/kg-dry	44 0.18	13.9 <0.108	16.7 <0.106	13.7 <0.107	15.6 <0.12	12.4 <0.104	13.2 <0.112	17.5 <0.108	21.3 <0.124	18.2 <0.106	25.7 <0.121	26.4 <0.156	20.7	18.9 <0.101	21.2	18.5 0.0639	14.1 <0.107	16.5 <0.1674	16.13 0.0606	23.9 <0.106	27.8 <0.147	20.8 <0.0998	22.3 <0.127
Selenium	mg/kg-dry	1	<3.71	<6.9	<3.90	<6.7	<3.75	<7.3	<3.83	<8.2	<3.71	<8.1	<5.89	<7.5	<3.84	<9.56	<1.61	<3.77	<10.3	<1.92	<3.83	<8.7	<3.98	<9
Silver	mg/kg-dry	4.2	NA	<6.9	NA	<6.7	NA 52.3	<7.3 64.6	NA	<8.2	NA	<8.1	NA	<7.5	NA	<9.56 75.3	<0.806	NA 68.2	<10.25	<0.962 NA	NA	<8.7	NA	<9
Strontium Zinc	mg/kg-dry mg/kg-dry	203 140	372 153	448 198.6	90.4 65.4	78	54.6	80.8	54.5 78.9	59.6 94.1	60.2 82.2	78.3 121	93.1 138.4	58.5 107	64.5 78.4	99.4	NA 77.1	66.5	71.3 78	69	54.9 101	NA 117.5	59.1 98.6	NA 114.4
Hydrocarbons (Dry Weight																								
Oil & Grease TPH-GRO (C6-C10)	% mg/kg-dry	NS NS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TPH-0RO (C10-C10)	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-ORO (>C28)	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C6-C8 Aliphatics C8-C10 Aliphatics	mg/kg-dry mg/kg-dry	NS NS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C10-C12 Aliphatics	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C12-C16 Aliphatics	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C16-C35 Aliphatics C8-C10 Aromatics	mg/kg-dry mg/kg-dry	NS NS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C10-C12 Aromatics	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C12-C16 Aromatics	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C16-C21 Aromatics C21-C35 Aromatics	mg/kg-dry mg/kg-dry	NS NS	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PAH (Dry Weight)																								
2-Methylnaphthalene	mg/kg-dry	NS NS	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthene Acenaphthylene	mg/kg-dry mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
Anthracene	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg-dry mg/kg-dry	NS NS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene Dibenz(a,h)anthracene	mg/kg-dry mg/kg-dry	NS NS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg-dry mg/kg-dry	NS NS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Phenanthrene	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calculated Sums (Dry Weig Sum TPH Mixture	ght) mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum TPH Fraction	mg/kg-dry	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum Total PAH	mg/kg-dry	1.61	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum LMW PAH Sum HMW PAH	mg/kg-dry mg/kg-dry	29 1.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	mg/kg=ury	1.1	11/7	1 1/7		1 11/1	147	11/1	11/1		11/5	11/1				11/1	144		11/1	11/1			11/1	1973

HOU\Projects\0645446\DM\30584H(tbs).xlsx

		On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
		HA-6	HA-6	LT-1	LT-1	LT-1	LT-1	LT-1	LT-2	LT-2	LT-2	LT-3	LT-3	LT-4	LT-4	LT-4	LT-4	LT-4	LT-4	LT-4	LT-5	LT-5	LT-5	LT-5	LT-5
		4-6' HA-6 (4-6')	4-6' HA-6 (4-6')	0-4' LT-1 (0-4')	0-4' LT-1 (0-4')	6-8' LT-1 (6-8')	12-14' LT-1 (12-14')	12-14' LT-1 (12-14')	0-4' LT-2 (0-4')	4-8' LT-2 (4-8')	12-16' LT-2 (12-16')	0-4' LT-3 (0-4')	4-8' LT-3 (4-8')	8-10' LT-4 (8-10')	12-14' LT-4 (12-14')	12-14' LT-4 (12-14')	16-18' LT-4 (16-18')	16-18' LT-4 (16-18')	20-22' LT-4 (20-22')	20-22' LT-4 (20-22')	0-2' LT-5 (0-2')	0-2' LT-5 (0-2')	4-6' LT-5 (4-6')	4-6' LT-5 (4-6')	8-10' LT-5 (8-10')
	-	09/25/19	09/25/19	09/25/19	09/25/19	09/25/19	09/25/19	09/25/19	09/26/19	09/26/19	09/26/19	09/26/19	09/26/19	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22
Salinity & Other	Units	ICON	HET	ICON	HET	ICON	ICON	HET	ICON	ICON	ICON	ICON	ICON	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	ICON
% Moisture % Moisture for Metals Conve	%	42 42	59.2 59.2	33.1 33.1	38.2 38.2	38.1 38.1	21.5 21.5	21.3 21.3	33.1 33.1	42.9 42.9	31.1 31.1	31.6 31.6	38.3 38.3	42.2 42.2	32.4 32.4	28.9 28.9	28.1 28.1	26.8 26.8	47.8 47.8	41.5 41.5	30 30	28.3 28.3	38.4 38.4	37.4 37.4	32.7 32.7
% Moisture for Organics Conve	n %	42	59.2	33.1	38.2	38.1	21.5	21.3	33.1	42.9	31.1	31.6	38.3	42.2	32.4	28.9	28.1	26.8	47.8	41.5	30	28.3	38.4	37.4	32.7
Chloride Chloride	meq/L	NA NA	5.5 124	NA NA	NA NA	NA NA	NA NA	197 1830	NA NA	NA NA	NA NA	NA NA	NA NA	NA 83.8	1.64 27.8	NA 33.6	1.46 22.8	NA 34.4	1.81 48.1	NA 49.7	3.66 93.4	NA 146	3.72 84.9	NA 153	NA 88.7
SPLP Chloride	mg/L mg/L	NA	NA	NA	NA	632*	NA	92.9	NA	152*	NA	NA	37.9*	NA	NA	NA	NA	NA	NA	21.6*	NA	NA	NA	NA	NA
Bromide (Br) Bromide (Sat Paste)	mg/Kg meg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EC	mmhos/ cm	1.16	1.03	2.08	NA	6.58	17.2	19	1.25	2.62	6.01	0.61	0.67	0.72	0.502	0.81	0.503	0.67	0.635	0.77	0.76	0.96	0.729	1.02	0.71
ESP SAR	% N/A	1.62 2.41	NA NA	5.29 7.87	NA NA	7.82	NA NA	NA NA	6.28 8.51	7.38	NA NA	6.11 6.05	6.81 6.94	1.02	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.55 2.46	2.24 1.96	NA NA	1.72 1.57	1.26 1.19
Calcium	meq/L	3.85	3.5	3.46	NA	13.3	NA	57.5	1.33	3.27	NA	0.68	0.61	2.79	2.94	NA	2.53	NA	2.93	NA	2.40	2.82	2.41	3.43	2.28
Magnesium Sodium	meg/L	2.24 4.21	2.01	1.99 13	NA NA	7.02	NA NA	27.4 97.6	0.87 8.93	1.81	NA NA	0.43	0.4 4.92	1.4 1.66	1.12 1.23	NA NA	1.03 1.62	NA NA	1.28 2.34	NA NA	1.28 3.36	1.71 2.96	1.28 2.93	1.94 2.57	1.34 1.61
SPLP Sodium	meq/L mg/L	NA	NA	NA	NA	NA	NA	56.7	NA	NA	NA	4.52 NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CEC Alkalinity (Sat. Paste)	meq/100g meq/L	73.4 NA	NA 1.2	70.5 NA	NA NA	84.5 NA	NA NA	NA 1.6	109 NA	135 NA	NA NA	86.1 NA	72.7 NA	68.3 NA	NA 1.8	NA NA	NA 2.5	NA NA	NA 2.9	NA NA	63 1.8	71.6 NA	NA 2	81.2 NA	51.3 NA
Alkalinity (Sat. Paste) Sulfate	meq/L meq/L	NA NA	2.72	NA NA	NA NA	NA NA	NA NA	1.6 4.43	NA	NA NA	NA	NA	NA	NA	1	NA	0.574	NA	0.996	NA	1.8	NA	0.919	NA	NA
Saturation % pH (Saturated Paste)	% s.u.	NA NA	140 7.45	NA NA	NA NA	NA NA	NA NA	33.5 7.17	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	68.5 7.95	NA NA	81.2 8.08	NA NA	163 7.98	NA NA	152 7.75	NA NA	155 7.91	NA NA	NA NA
SPLP																							-		
SPLP Arsenic SPLP Barium	mg/L mg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SPLP Chromium	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Lead SPLP Strontium	mg/L mg/L	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SPLP Zinc	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (Dry Weight) Arsenic	mg/kg-dry	6.42	<12	10.4	<8.1	5.05	NA	NA	8.9	5.77	NA	7.15	8.59	2.18	4.3	4.06	NA	NA	NA	NA	6.23	4.38	7	5.67	4.36
Barium	mg/kg-dry	460	748	247	243	353	NA	NA	249	277	NA	245	573	192	238	265	NA	NA	NA	NA	199	166	195	200	447
True Total Barium Cadmium	mg/kg-dry mg/kg-dry	614 0.482	348 <6.1	394 0.628	340 <4	408 <0.480	NA NA	NA NA	360 <0.489	365 0.697	NA NA	361 <0.465	1240 <0.490	375 <0.496	<500 <0.296	409 <0.498	NA NA	NA NA	NA NA	NA NA	<500 0.49	411 <0.497	<500 0.456	341 <0.498	691 <0.478
Chromium	mg/kg-dry	20.1	35.3	21.6	27.3	21.6	NA	NA	22.7	17.2	NA	35.5	21.9	14	13.45	11.2	NA	NA	NA	NA	22.1	16	19.2	16.4	12.5
Lead Mercury	mg/kg-dry mg/kg-dry	20.4	29.7 <0.164	19.2 <0.103	20.7	17.1 <0.109	NA NA	NA NA	19.9 <0.103	17.4	NA	18.8 <0.101	18.7 <0.106	12.1 <0.0998	11.02 0.0507	9.42 <0.0946	NA NA	NA NA	NA NA	NA NA	18.1 0.0467	14.2 <0.104	17.7 0.056	15.3 <0.0962	11.6 <0.0947
Selenium	mg/kg-dry	<3.78	<12	<3.92	<8.1	<3.84	NA	NA	<3.91	<3.93	NA	<3.72	<3.92	<3.97	<1.48	<3.98	NA	NA	NA	NA	<1.43	<3.97	<1.62	<3.99	<3.83
Silver Strontium	mg/kg-dry mg/kg-dry	NA 61.3	<12 NA	NA 93.8	<8.1 NA	NA 82	NA NA	NA NA	NA 94	NA 94.5	NA NA	NA 76.9	NA 97	NA 39.2	<0.74 NA	NA 35.9	NA NA	NA NA	NA NA	NA NA	<0.714 NA	NA 32.4	<0.812 NA	NA 41.9	NA 44.3
Zinc	mg/kg-dry	86	148.3	88	107.6	76	NA	NA	90.7	68.2	NA	85	77.1	48	50.4	45	NA	NA	NA	NA	83.4	58.7	71.8	65	50.5
Hydrocarbons (Dry Weight Oil & Grease	t) %	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-GRO (C6-C10)	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-DRO (C10-C28) TPH-ORO (>C28)	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C6-C8 Aliphatics	mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C8-C10 Aliphatics C10-C12 Aliphatics	mg/kg-dry mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C12-C16 Aliphatics C16-C35 Aliphatics	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C8-C10 Aromatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C10-C12 Aromatics C12-C16 Aromatics	mg/kg-dry mg/kg-dry	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C16-C21 Aromatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C21-C35 Aromatics PAH (Dry Weight)	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene Acenaphthylene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg-dry	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene Chrysene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenz(a,h)anthracene	mg/kg-dry	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
Fluoranthene Fluorene	mg/kg-dry mg/kg-dry	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA
Naphthalene Phenanthrene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Pyrene Calculated Sums (Dry Wei	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum TPH Mixture	gnt) mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum TPH Fraction Sum Total PAH	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sum LMW PAH	mg/kg-dry mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum HMW PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

August Levert_BP Plan_009580

HOU\Projects\0645446\DM\30584H(tbs).xlsx

		On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
		LT-5	LT-5	LT-5	LT-5	LT-6	LT-6	LT-6	LT-6	LT-6	LT-6	LT-6	LT-6	SB-06R	SB-06R	SB-06	SB-6	SB-06	SB-6	SB-07R	SB-07R	SB-07	SB-7	SB-07	SB-08
		16-18' LT-5 (16-18')	16-18' LT-5 (16-18')	22-24' LT-5 (22-24')	22-24' LT-5 (22-24')	0-2' LT-6 (0-2')	0-2' LT-6 (0-2')	4-6' LT-6 (4-6')	4-6' LT-6 (4-6')	6-8' LT-6 (6-8')	16-18' LT-6 (16-18')	24-26' LT-6 (24-26')	24-26' LT-6 (24-26')	0-2' SB-06R (0-2')	0-2' SB-06R (0-2')	2-4' SB-06 (2-4')	2-4' SB-6 (2-4')	4-6' SB-06 (4-6')	4-6' SB-6 (4-6')	0-2' SB-07R (0-2')	0-2' SB-07R (0-2')	2-4' SB-07 (2-4')	2-4' SB-7 (2-4')	4-6' SB-07 (4-6')	0-2' SB-08 (0-2')
		06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	09/27/22	09/27/22	06/21/22	06/21/22	06/21/22	06/21/22	09/27/22	09/27/22	06/21/22	06/21/22	06/21/22	06/21/22
Salinity & Other	Units	HET	ICON	HET	ICON	HET	ICON	HET	ICON	ICON	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	HET	HET
% Moisture % Moisture for Metals Conve	%	25.2 25.2	20.6 20.6	36.9 36.9	31.7 31.7	32.6 32.6	25.6 25.6	33.1 33.1	28.8 28.8	33.4 33.4	51.7 51.7	30.6 30.6	33.2 33.2	29.8 29.8	24.6 24.6	31.5 31.5	26.2 26.2	39.7 39.7	34.1 34.1	33.7 33.7	29.9 29.9	39.4 39.4	34.9 34.9	47.5 47.5	30.9 30.9
% Moisture for Organics Cor	n %	25.2	20.6	36.9	31.7	32.6	25.6	33.1	28.8	33.4	51.7	30.6	33.2	29.8	24.6	31.5	26.2	39.7	34.1	33.7	29.9	39.4	34.9	47.5	30.9
Chloride Chloride	meq/L mq/L	4.37 39.2	NA 39.8	3.23 67.4	NA 77.7	0.536	NA 30.8	1.61 57.4	NA 78.7	NA 95.5	NA 364	6.91 157	NA 259	NA NA	NA NA	3.09 79	NA NA	4.53 106	NA NA	NA	NA NA	2.65 31.9	NA NA	2.27 27.5	0.797
SPLP Chloride	mg/L	NA	NA	NA	28.0*	NA	NA	NA	NA	NA	NA	NA	59.3*	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromide (Br) Bromide (Sat Paste)	mg/Kg meq/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<2.00 <0.050	NA NA	<2.00 <0.050	NA NA	NA NA	NA NA	3.61 <0.050	NA NA	<2.00 <0.050	<2.00 <0.050
EC	mmhos/ cm	0.727	0.64	0.781	1.06	1.46	2.33	2.59	3.32	1.24	3.77	1.08	0.95	NA	NA	1.41	1.45	1.68	1.38	NA	NA	0.643	0.72	0.844	0.479
SAR	% N/A	NA NA	NA NA	NA NA	NA NA	0.4 0.443	0.49	NA NA	1.34 0.87	1.5 1.28	NA NA	NA NA	NA NA	NA NA	NA NA	1.4 1.72	1.57 1.34	1.6 2.3	2.16 1.66	NA NA	NA NA	0.698 2.02	1.44 1.67	0.544 2.18	0.463
Calcium	meq/L	2.92 1.54	NA NA	2.94 1.58	NA NA	9.92 4.72	15.2 6.52	17.4 11.1	18.6 12.1	4.99 2.7	NA NA	3.8 1.8	NA NA	NA NA	NA NA	6.56 4.01	6.86 4.05	7.72 4.29	6.14 3.18	NA NA	NA NA	1.89 1.17	2.59 1.45	3.5 1.85	2.02
Magnesium Sodium	meq/L meq/L	1.54	NA	2.61	NA	1.2	1.27	3.54	3.43	2.7	NA	3.46	NA	NA	NA	3.95	3.14	5.63	3.59	NA	NA	2.5	2.38	3.57	1.14
SPLP Sodium	mg/L meg/100g	NA NA	NA NA	NA NA	NA NA	NA 63	NA 70.8	NA NA	NA 77.6	NA 73	NA NA	NA NA	NA NA	NA NA	NA NA	NA 66.5	NA 79	NA 63.9	NA 70.4	NA	NA NA	NA 62.2	NA 65.2	NA 67.8	NA 61.7
Alkalinity (Sat. Paste)	meq/L	1.2	NA	3.3	NA	0.1	NA	1	NA	NA	NA	2.4	NA	NA	NA	0.8	NA	1.7	NA	NA	NA	0.4	NA	4.1	2.8
Sulfate Saturation %	meq/L	0.737 35.3	NA NA	0.756	NA NA	16.7 140	NA NA	31.8 155	NA NA	NA NA	NA NA	0.368	NA NA	NA NA	NA NA	11.3 119	NA NA	12.1 123	NA NA	NA	NA NA	2.67 101	NA NA	1.21 138	1.11 110
pH (Saturated Paste)	70 S.U.	7.62	NA	8.06	NA	5.23	NA	7.19	NA	NA	NA	8.18	NA	NA	NA	6.69	NA	7.13	NA	NA	NA	6.66	NA	7.37	7.33
SPLP SPLP Arsenic	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Barium	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Chromium SPLP Lead	mg/L mg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SPLP Strontium SPLP Zinc	mg/L mg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals (Dry Weight)	ilig/∟												11/5	IN/A											
Arsenic Barium	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	5.74 205	5.58 213	5.1 170	4.91 181	4.96 161	NA NA	NA NA	NA NA	2.36 167	<3.92 211	5.17 225	4.71 692	4.25 287	3.69 700	3.6 189	4.35 231	5.56 205	4.13 295	4.53 290	5.95 227
True Total Barium	mg/kg-dry	NA	NA	NA	NA	<500	356	<500	418	430	NA	NA	NA	394	336	772	3770	566	5430	432	321	631	1840	527	4750/415 ^b /253 ^c
Cadmium Chromium	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	0.447	<0.499 17.6	0.402 21.2	<0.485 19.7	<0.499 18.9	NA NA	NA NA	NA NA	1.7 27	NA NA	<0.292 19.9	NA NA	<0.332 27	NA NA	1.63 27.5	NA NA	<0.33 22.8	NA NA	0.663 27	0.783 22.1
Lead	mg/kg-dry	NA	NA	NA	NA	17.2	16.6	17.5	16.5	15.4	NA	NA	NA	17.4	NA	16.2	NA	18.1	NA	15.05	NA	19.3	NA	20.4	21.3
Mercury Selenium	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	0.0625	<0.103 <3.99	0.064 <1.49	<0.105 <3.88	<0.106 <3.99	NA NA	NA NA	NA NA	0.0702	NA NA	0.0527	NA NA	1.74 <1.66	NA NA	0.0617	NA NA	0.0972 <1.65	NA NA	0.0726 <1.9	0.058 <1.45
Silver	mg/kg-dry	NA	NA	NA	NA	<0.742	NA	<0.747	NA	NA	NA	NA	NA	< 0.356	NA	<0.73	NA	<0.829	NA	<0.377	NA	<0.825	NA	<0.952	<0.724
Strontium Zinc	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA 79.7	38.3 73.2	NA 80.1	43.8 74.4	40 76.8	NA NA	NA NA	NA NA	NA 79.9	NA NA	NA 76.4	NA NA	NA 72.8	NA NA	NA 73	NA NA	NA 83.3	NA NA	NA 85	NA 98.3
Hydrocarbons (Dry Weight		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.10	NA	<0.10	NA	NA	NA	<0.10	NA	<0.10	<0.10
Oil & Grease TPH-GRO (C6-C10)	% mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.10 NA	NA	<0.10 NA	NA	NA	NA	<0.10 NA	NA	×0.10 NA	<0.10 NA
TPH-DRO (C10-C28) TPH-ORO (>C28)	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
C6-C8 Aliphatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.06	NA	<10.96	NA	NA	NA	<5.07	NA	<6.51	<4.02
C8-C10 Aliphatics C10-C12 Aliphatics	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<8.13 <2.92	NA NA	<21.9 <3.32	NA NA	NA	NA NA	<10.12 <3.3	NA NA	<13.01 <3.81	<8.06 <2.89
C12-C16 Aliphatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.92	NA	<3.32	NA	NA	NA	<3.3	NA	<3.81	<2.89
C16-C35 Aliphatics C8-C10 Aromatics	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<5.84 <5.42	NA NA	<6.63 <14.61	NA NA	NA NA	NA NA	<6.6 <6.75	NA NA	<7.62 <8.69	<5.79 <5.37
C10-C12 Aromatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.46	NA	<1.66	NA	NA	NA	<1.65	NA	<1.9	<1.45
C12-C16 Aromatics C16-C21 Aromatics	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<2.92 <2.92	NA NA	<3.32 <3.32	NA NA	NA NA	NA NA	<3.3 <3.3	NA NA	<3.81 <3.81	<2.89 <2.89
C21-C35 Aromatics PAH (Dry Weight)	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.92	NA	<3.32	NA	NA	NA	<3.3	NA	<3.81	<2.89
2-Methylnaphthalene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene Acenaphthylene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene Chrysene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenz(a,h)anthracene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene Fluorene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene Phenanthrene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Pyrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calculated Sums (Dry Weig Sum TPH Mixture	ght) ma/ka-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum TPH Fraction	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA	NA	NA	ND	NA	ND	ND
Sum Total PAH Sum LMW PAH	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sum HMW PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

HOUNProjects/0645446/DM/30584H(tbs).xlsx August Levert_BP Plan_009581

		On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
		SB-8	SB-08	SB-8	SB-13	SB-13	SB-13	SB-13	SB-13	SB-13	SB-14	SB-15	SB-16												
		0-2' SB-8 (0-2')	2-4' SB-08 (2-4')	2-4' SB-8 (2-4')	0-2' SB-13 (0-2')	0-2' SB-13 (0-2')	2-4' SB-13 (2-4')	2-4' SB-13 (2-4')	4-6' SB-13 (4-6')	6-8' SB-13 (6-8')	0-2' SB-14 (0-2')	0-2' SB-14 (0-2')	2-4' SB-14 (2-4')	2-4' SB-14 (2-4')	4-6' SB-14 (4-6')	6-8' SB-14 (6-8')	6-8' SB-14 (6-8')	0-2' SB-15 (0-2')	0-2' SB-15 (0-2')	2-4' SB-15 (2-4')	2-4' SB-15 (2-4')	4-6' SB-15 (4-6')	6-8' SB-15 (6-8')	6-8' SB-15 (6-8')	0-2' SB-16 (0-2')
		06/21/22	06/21/22	06/21/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22
Salinity & Other	Units	ICON	HET	ICON	HET	ICON	HET	ICON	HET	HET	HET	ICON	HET	ICON	HET	HET	ICON	HET	ICON	HET	ICON	HET	HET	ICON	HET
% Moisture	%	33.2 33.2	34 34	33.9 33.9	39.5 39.5	42.5 42.5	39.7 39.7	38 38	41.3 41.3	44	40.1 40.1	39.2	38.8 38.8	36.7 36.7	42.4 42.4	44.2 44.2	53.3 53.3	41.4 41.4	34.3 34.3	39.2 39.2	34.1	41.2 41.2	43.4 43.4	41.6 41.6	43.6 43.6
% Moisture for Metals Conv % Moisture for Organics Co		33.2	34	33.9	39.5	42.5	39.7	38	41.3	44	40.1	39.2 39.2	38.8	36.7	42.4	44.2	53.3	41.4	34.3	39.2	34.1 34.1	41.2	43.4	41.6	43.6
Chloride	meq/L	NA	1.13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloride SPLP Chloride	mg/L ma/L	NA NA	13.5 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromide (Br)	mg/Kg	NA	<2.00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromide (Sat Paste)	meq/L mmhos/ cm	NA 0.63	<0.050 0.455	NA 0.31	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA						
ESP	%	0.73	<0.1	1.01	NA																				
SAR Calcium	N/A meg/L	1.06 3.01	1.51 1.81	1.16	NA	NA NA																			
Magnesium	meq/L	1.57	0.947	0.6	NA																				
Sodium	meq/L	1.61 NA	1.77 NA	1.08 NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA														
SPLP Sodium CEC	mg/L meq/100g	74.5	64.3	70.1	NA	NA NA	NA	NA	NA	NA	NA														
Alkalinity (Sat. Paste)	meq/L	NA	2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate Saturation %	meq/L %	NA NA	0.926	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
pH (Saturated Paste)	s.u.	NA	7.54	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP SPLP Arsenic	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Barium	mg/L	NA	NA	NA NA	NA	NA NA	NA																		
SPLP Chromium SPLP Lead	mg/L mg/L	NA NA	NA NA	NA	NA NA	NA	NA NA																		
SPLP Strontium	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Zinc Metals (Dry Weight)	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	mg/kg-dry	3.96	6.2	4.22	6.76	6.65	7.11	5.14	9.45	8.16	6.13	3.38	5.93	5.17	5.07	3.66	4.46	5.14	5.65	5.8	4.99	5.9	7.49	6.07	7.7
Barium True Total Barium	mg/kg-dry mg/kg-dry	1350 42200	212 <500	245 1390	1101 9640	408 3990	522 2840	197 1390	267 810	416 796	292 <500	247 4050	278	929 6640	250 518	249 <500	530 3360	287 539	258 762	235 <500	297 1470	294 537	231 3920	217 618	234 589
Cadmium	mg/kg-dry	NA	0.465	NA	0.774	NA	0.367	NA	0.589	0.809	0.62	NA	0.479	NA	0.46	<0.358	NA	0.742	NA	0.429	NA	0.432	0.449	NA	0.663
Chromium Lead	mg/kg-dry mg/kg-dry	NA NA	22.1	NA NA	30.9 42.8	NA NA	19.2 17.7	NA NA	19.6 17.2	18.6 18.6	22.7 22.5	NA NA	20.9	NA NA	19 18.2	18 17.65	NA NA	21.2 21.3	NA NA	21 17.8	NA NA	20.2 16.04	17.39 18.7	NA NA	19.7 20.7
Mercury	mg/kg-dry	NA	0.0312	NA	0.0737	NA	0.06	NA	0.0625	0.0609	0.22	NA	1.474	NA	0.063	0.057	NA	0.0609	NA	0.07	NA	0.0633	0.0758	NA	0.0787
Selenium Silver	mg/kg-dry mg/kg-dry	NA	<1.52 <0.758	NA	<1.65 <0.826	NA	<1.66 <0.829	NA NA	<1.7 <0.852	<1.79 <0.893	<1.67 <0.835	NA NA	<1.63 <0.817	NA NA	<1.74 <0.868	<1.79 <0.896	NA NA	<1.71 <0.853	NA NA	<1.64 <0.822	NA	<1.7 <0.85	<1.77 <0.883	NA NA	<1.77 <0.887
Strontium	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc Hydrocarbons (Dry Weigh	mg/kg-dry	NA	82.3	NA	119.5	NA	80	NA	81.3	78.9	93.2	NA	82.4	NA	72.2	65.2	NA	102	NA	81.4	NA	77	65.2	NA	85.8
Oil & Grease	%	NA	<0.10	NA	<0.10	NA	<0.10	NA	<0.10	<0.10	<0.10	NA	<0.10	NA	<0.10	<0.10	NA	<0.10	NA	<0.10	NA	<0.10	<0.10	NA	<0.10
TPH-GRO (C6-C10) TPH-DRO (C10-C28)	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA	NA NA																				
TPH-ORO (>C28)	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C6-C8 Aliphatics C8-C10 Aliphatics	mg/kg-dry mg/kg-dry	NA NA	<4.56 <9.12	NA	<4.99 <10	NA NA	<4.64 <9.29	NA NA	<5.5 <10.99	<7.21 <14.45	<4.54 <9.08	NA NA	<4.75 <9.49	NA NA	<5.12 <10.23	<7.22 <14.44	NA NA	<4.69 <9.39	NA NA	<4.74 <9.49	NA NA	<5.03 <10.09	<6.54 <13.09	NA NA	<6.29 <12.61
C10-C12 Aliphatics	mg/kg-dry	NA	<3.03	NA	<3.31	NA	<3.32	NA	<3.41	<3.57	<3.34	NA	<3.27	NA	<3.47	<3.58	NA	<3.41	NA	<3.29	NA	<3.4	<3.53	NA	<3.55
C12-C16 Aliphatics C16-C35 Aliphatics	mg/kg-dry mg/kg-dry	NA NA	<3.03 <6.06	NA	<3.31 <6.61	NA NA	<3.32 <6.63	NA NA	<3.41 <6.81	<3.57	<3.34 <6.68	NA NA	<3.27 <6.54	NA NA	<3.47 <6.94	<3.58 <7.17	NA NA	<3.41 <6.83	NA NA	<3.29 <6.58	NA	<3.4 <6.8	<3.53 <7.07	NA NA	<3.55 <7.09
C8-C10 Aromatics	mg/kg-dry	NA	<6.09	NA	<6.66	NA	<6.19	NA	<7.33	<9.63	<6.06	NA	<6.34	NA	<6.82	<9.64	NA	<6.26	NA	<6.33	NA	<6.72	<8.73	NA	<8.4
C10-C12 Aromatics C12-C16 Aromatics	mg/kg-dry mg/kg-dry	NA NA	<1.52 <3.03	NA NA	<1.65 <3.31	NA NA	<1.66 <3.32	NA NA	<1.7 <3.41	<1.79 3.96	<1.67 <3.34	NA NA	<1.63 <3.27	NA NA	<1.74 <3.47	<1.79 4.37	NA NA	<1.71 <3.41	NA NA	<1.64 <3.29	NA NA	<1.7 <3.4	<1.77 7.93	NA NA	<1.77 <3.55
C16-C21 Aromatics	mg/kg-dry	NA	<3.03	NA	<3.31	NA	<3.32	NA	<3.41	<3.57	<3.34	NA	<3.27	NA	<3.47	<3.58	NA	<3.41	NA	<3.29	NA	<3.4	<3.53	NA	<3.55
C21-C35 Aromatics PAH (Dry Weight)	mg/kg-dry	NA	<3.03	NA	<3.31	NA	<3.32	NA	<3.41	<3.57	<3.34	NA	<3.27	NA	<3.47	4.34	NA	<3.41	NA	<3.29	NA	<3.4	<3.53	NA	<3.55
2-Methylnaphthalene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene Acenaphthylene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Anthracene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA	NA NA																				
Benzo(b)fluoranthene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene Chrysene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenz(a,h)anthracene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Fluorene Indeno(1,2,3-cd)pyrene	mg/kg-dry mg/kg-dry	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA						
Naphthalene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene Pyrene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Calculated Sums (Dry We	eight)																								
Sum TPH Mixture Sum TPH Fraction	mg/kg-dry mg/kg-dry	NA NA	NA ND	NA NA	NA ND	NA NA	NA ND	NA NA	NA ND	NA 4	NA ND	NA NA	NA ND	NA NA	NA ND	NA 9	NA NA	NA ND	NA NA	NA ND	NA NA	NA ND	NA 8	NA NA	NA ND
Sum Total PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum LMW PAH Sum HMW PAH	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	ing/itg-ury																				1973				

HOUNProjects/0645446/DM/30584H(tbs).xlsx August Levert_BP Plan_009582

		On-Site																						
		SB-16	SB-16	SB-16	SB-16	SB-16	SB-16	SB-21	SB-21	SB-22	SB-22	SB-23	SB-23	SB-24	SB-24	SB-25	SB-25	SB-25	SB-25	SB-26	SB-26	SB-26	SB-26	SB-27
		0-2' SB-16 (0-2')	2-4' SB-16 (2-4')	2-4' SB-16 (2-4')	4-6' SB-16 (4-6')	6-8' SB-16 (6-8')	6-8' SB-16 (6-8')	0-2' SB-21 (0-2')	0-2' SB-21 (0-2')	0-2' SB-22 (0-2')	0-2' SB-22 (0-2')	0-2' SB-23 (0-2')	0-2' SB-23 (0-2')	0-2' SB-24 (0-2')	0-2' SB-24 (0-2')	0-2' SB-25 (0-2')	0-2' SB-25 (0-2')	2-4' SB-25 (2-4')	2-4' SB-25 (2-4')	0-2' SB-26 (0-2')	0-2' SB-26 (0-2')	2-4' SB-26 (2-4')	2-4' SB-26 (2-4')	0-2' SB-27 (0-2')
	1	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	06/23/22	09/27/22	09/27/22	09/27/22	09/27/22	09/27/22	09/27/22	09/27/22	09/27/22	09/27/22
Salinity & Other	Units	ICON	HET	ICON	HET	HET	ICON	HET																
% Moisture	%	39.8	41.9	37	42.4	44.1	46.5	41.1	31.7	39.7	35.6	36.2	34.2	38.9	34.9	27.5	24.6	33	32.8	30.1	28.9	37.1	36.1	35.8
% Moisture for Metals Conv % Moisture for Organics Co	ve % on %	39.8 39.8	41.9 41.9	37 37	42.4 42.4	44.1 44.1	46.5 46.5	41.1	31.7 31.7	39.7 39.7	35.6 35.6	36.2 36.2	34.2 34.2	38.9 38.9	34.9 34.9	27.5 27.5	24.6 24.6	33 33	32.8 32.8	30.1 30.1	28.9 28.9	37.1 37.1	36.1 36.1	35.8 35.8
Chloride	meq/L	NA																						
Chloride SPLP Chloride	mg/L mg/L	NA NA																						
Bromide (Br)	mg/Kg	NA																						
Bromide (Sat Paste)	meq/L mmhos/ cm	NA NA																						
ESP	%	NA																						
SAR Calcium	N/A meg/L	NA NA																						
Magnesium	meq/L	NA																						
Sodium	meq/L	NA																						
SPLP Sodium CEC	mg/L meg/100g	NA NA																						
Alkalinity (Sat. Paste)	meq/L	NA																						
Sulfate Saturation %	meq/L %	NA NA																						
pH (Saturated Paste)	s.u.	NA																						
SPLP SPLP Arsenic	mg/L	NA																						
SPLP Barium	mg/L	NA																						
SPLP Chromium SPLP Lead	mg/L mg/L	NA NA																						
SPLP Strontium	mg/L	NA																						
SPLP Zinc Metals (Drv Weight)	mg/L	NA																						
Arsenic	mg/kg-dry	7.06	5.87	4.76	3.94	3.9	4.23	NA	5.58	NA	6.92	NA	4.3	NA	3.21	NA								
Barium	mg/kg-dry	1010	260	350	234	263	438	NA	1370	NA	546	NA	202	NA	179	139	239	161	271	187	232	170	236	171 448
True Total Barium Cadmium	mg/kg-dry mg/kg-dry	4960 NA	570 0.45	723 NA	<500 <0.347	<500 0.487	1170 NA	NA NA	6910 NA	NA NA	3150 NA	NA NA	492 NA	NA NA	537 NA	404 NA	370 NA	408 NA	398 NA	410 NA	481 NA	426 NA	395 NA	NA NA
Chromium	mg/kg-dry	NA	21	NA	19	17.46	NA																	
Lead Mercury	mg/kg-dry mg/kg-dry	NA NA	17 0.059	NA NA	16.96 0.0606	15 0.0583	NA NA																	
Selenium	mg/kg-dry	NA	<1.72	NA	<1.74	<1.79	NA																	
Silver Strontium	mg/kg-dry mg/kg-dry	NA NA	<0.861 NA	NA NA	<0.868 NA	<0.894 NA	NA NA																	
Zinc	mg/kg-dry	NA	80.6	NA	73	52.2	NA																	
Hydrocarbons (Dry Weigh Oil & Grease	nt) %	NA	<0.10	NA	<0.10	0.1	NA	<0.10	NA	<0.10	NA	<0.10	NA	<0.10	NA									
TPH-GRO (C6-C10)	mg/kg-dry	NA																						
TPH-DRO (C10-C28) TPH-ORO (>C28)	mg/kg-dry mg/kg-dry	NA NA																						
C6-C8 Aliphatics	mg/kg-dry	NA	<6.01	NA	<6.18	<6.35	NA	<5.96	NA	<5.94	NA	<4.69	NA	<5.09	NA									
C8-C10 Aliphatics C10-C12 Aliphatics	mg/kg-dry mg/kg-dry	NA NA	<12.01 <3.44	NA NA	<12.38 <3.47	<12.72 <3.58	NA NA	<11.94 <3.4	NA NA	<11.87 <3.32	NA NA	<9.37 <3.13	NA NA	<10.16 <3.27	NA NA									
C12-C16 Aliphatics	mg/kg-dry	NA	<3.44	NA	<3.47	<3.58	NA	6.25	NA	<3.32	NA	<3.13	NA	<3.27	NA									
C16-C35 Aliphatics C8-C10 Aromatics	mg/kg-dry mg/kg-dry	NA NA	<6.88 <8	NA NA	<6.94 <8.25	<7.16 <8.48	NA NA	103.1 <7.95	NA NA	8.89 <7.91	NA NA	21.2 <6.24	NA NA	9.62 <6.78	NA NA									
C10-C12 Aromatics	mg/kg-dry	NA	<1.72	NA	<1.74	<1.79	NA	<1.7	NA	<1.66	NA	<1.57	NA	<1.64	NA									
C12-C16 Aromatics C16-C21 Aromatics	mg/kg-dry mg/kg-dry	NA NA	<3.44 <3.44	NA NA	<3.47 <3.47	8.4 5.21	NA NA	7.86	NA NA	<3.32 <3.32	NA NA	<3.13 <3.13	NA NA	<3.27 <3.27	NA NA									
C21-C35 Aromatics	mg/kg-dry	NA	<3.44	NA	<3.47	<3.58	NA	<3.4	NA	<3.32	NA	<3.13	NA	<3.27	NA									
PAH (Dry Weight) 2-Methylnaphthalene	mg/kg-dry	NA																						
Acenaphthene	mg/kg-dry	NA																						
Acenaphthylene Anthracene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA	NA NA																			
Benzo(a)anthracene	mg/kg-dry	NA																						
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg-dry mg/kg-dry	NA NA																						
Benzo(k)fluoranthene	mg/kg-dry	NA																						
Chrysene Dibopz(a b)apthracopo	mg/kg-dry	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA								
Dibenz(a,h)anthracene Fluoranthene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA										
Fluorene	mg/kg-dry	NA																						
Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg-dry mg/kg-dry	NA NA																						
Phenanthrene	mg/kg-dry	NA																						
Pyrene Calculated Sums (Dry We	mg/kg-dry	NA																						
Sum TPH Mixture	mg/kg-dry	NA																						
Sum TPH Fraction Sum Total PAH	mg/kg-dry mg/kg-dry	NA NA	ND NA	NA NA	ND NA	14 NA	NA NA	128 NA	NA NA	9 NA	NA NA	21 NA	NA NA	10 NA	NA NA									
Sum LMW PAH	mg/kg-dry	NA																						
Sum HMW PAH	mg/kg-dry	NA																						

HOUNProjects/0645446/DM/30584H(tbs).xlsx August Levert_BP Plan_009583

	Area:	LAA2-SRA	LAA2-SRA	LAA2-SRA	LAA2-SRA	LAA2-SRA	LAA2-SRA	LAA2-SRA	LAA2-SRA	LAA2-SRA	LAA2-SRA	LAA3-WP SRA	LAA3-WP SRA	LAA3-WP SRA	LAA3-WP SRA	LAA3-WP SRA	LAA3-WP SRA	LAA3-WP SRA	LAA3-WP SRA	LAA3-WP SRA	LAA3-WP SRA	LAA3-WP SRA
	Area:	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
	Location ID: Sample Depth:	HA-1	HA-1 0-2'	HA-1 2-4'	HA-1 2-4'	HA-01R 2-4'	SB-17	SB-17	SB-18	SB-19 0-2'	SB-20 0-2'	HA-2 0-2'	HA-2 0-2'	HA-2 2-4'	HA-2 2-4'	SB-09 0-2'	SB-09 2-4'	SB-9 2-4'	SB-09 4-6'	SB-09 6-8'	SB-10 0-2'	SB-10 0-2'
	Sample Depth:	0-2' 08/29/19	08/29/19	08/29/19	08/29/19	06/23/22	0-2' 06/23/22	0-2' 06/23/22	0-2' 06/23/22	06/23/22	06/23/22	08/29/19	08/29/19	08/29/19	08/29/19	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22
		00/20/10	00/20/10	00/20/10	00/20/10	00/20/22	00/20/22	00/20/22	00/20/22	00/20/22	00/20/22	00/20/10	00/20/10	00/20/10	00/20/10	00/22/22	UU/LL/LL	00/22/22	00/22/22	00/22/22	00/22/22	00/22/22
Salinity & Other	Units	ICON	HET	ICON	HET	HET	HET	ICON	HET	HET	HET	ICON	HET	ICON	HET	HET	HET	ICON	HET	HET	HET	ICON
% Moisture	%	45.7	51.8	37.7	48.2	57.4	60.2	NA	63.3	57.6	59.9	42.6	57.4	48.4	50.9	63.6	44.1	39.6	63.4	51.7	65.7	59.8
Chloride	meq/L	NA	5.88	NA	15	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	2.5	NA	3.01 33.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloride SPLP Chloride	mg/L mg/L	NA NA	45.1 NA	NA NA	121 NA	NA NA	NA	NA	NA	NA	NA	NA NA	12 NA	NA NA	33.1 NA	NA	NA	NA	NA	NA	NA	NA
Bromide (Br)	mg/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromide (Sat Paste)	meq/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EC ESP	mmhos/ cm %	1.31 3.66	1.5 2.39	1.55 8.85	2.72 6.09	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.94	0.877 0.897	1.46 8.11	2.42 3.27	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SAR	N/A	5.4	4.96	13.0	14.8	9.32	NA	NA	NA	NA	NA	3.01	2.95	10.8	10	NA	NA	NA	NA	NA	NA	NA
Calcium	meq/L	2.59	3.69	1.03	2.13	1.62	NA	NA	NA	NA	NA	3.15	2.04	1.44	4.38	NA	NA	NA	NA	NA	NA	NA
Magnesium Sodium	meq/L meq/L	1.32 7.54	1.69 8.13	0.52	0.991	0.672 9.98	NA NA	NA NA	NA NA	NA NA	NA NA	1.3 4.49	1.07 3.68	0.72	1.53 17.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SPLP Sodium	mg/L	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CEC	meq/100g	56.5	48.3	55.3	48.7	NA	NA	NA	NA	NA	NA	35.7	54.3	65.5	44.8	NA	NA	NA	NA	NA	NA	NA
Alkalinity (Sat. Paste)	meg/L	NA NA	1.2 7.15	NA NA	2 7.92	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.4 4.51	NA NA	3.8 14.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Sulfate Saturation %	meq/L %	NA	90.6	NA	116	129	NA	NA	NA	NA	NA NA	NA	4.51	NA	14.7	NA	NA	NA NA	NA	NA	NA	NA NA
pH (Saturated Paste)	s.u.	NA	6.74	NA	7.48	NA	NA	NA	NA	NA	NA	NA	6.69	NA	7.91	NA	NA	NA	NA	NA	NA	NA
SPLP	med	NIA	NIA	NA	NIA	NIA	NA	NIA	NIA	NA	NA	NA	-0.40	NIA	NA	NA	NIA	NIA	NIA	NIA	NA	NA
SPLP Arsenic SPLP Barium	mg/L mg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.10 2.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SPLP Chromium	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Lead	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Strontium SPLP Zinc	mg/L mg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.10 <0.10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals (Dry Weight)	iiig/E	11/4			11/3			107		101	101	110	<0.10		11/2		INA			11/2	110	
Arsenic	mg/kg-dry	5.9	11.62	8.61	<8.9	NA	NA	NA	NA	NA	NA	23.4	<11.74	7.57	<10.2	<5.49	9.79	12.7	<5.46	<4.14	<5.83	6.35
Barium True Total Barium	mg/kg-dry mg/kg-dry	228 539	216 785	345 573	357 1170	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3630 265000	12019 25700	1030 3900	1141 1920	560 2130	581 84300	3570 160000	182.2 1490	234 1600	155.7 5750	3370 21600
Cadmium	mg/kg-dry	0.658	<5.2	0.633	<4.4	NA	NA	NA	NA	NA	NA	7.52	<5.9	0.741	<5.1	0.857	2.56	NA	<0.546	<0.414	0.76	NA
Chromium	mg/kg-dry	17.9	38.2	21	25.5	NA	NA	NA	NA	NA	NA	435	89.2	19.8	31.2	20.22	191	NA	18.88	13.83	31.5	NA
Lead	mg/kg-dry	21.5 <0.107	28.4	17.2	21 <0.137	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	707 2.08	115.3 <0.162	20.5	28.3 <0.151	21.32 0.0371	220 0.0742	NA NA	14.4 0.1637	14.99 0.0631	29.4 0.0603	NA NA
Mercury Selenium	mg/kg-dry mg/kg-dry	<3.87	<0.100	<0.0996	<0.137	NA	NA	NA	NA	NA	NA	<3.69	<0.162	<0.0984	<0.151	<2.75	<1.79	NA	<2.73	<2.07	<2.92	NA
Silver	mg/kg-dry	NA	<10.4	NA	<8.9	NA	NA	NA	NA	NA	NA	NA	<11.7	NA	<10.2	<1.374	1.483	NA	<1.366	<1.035	<1.458	NA
Strontium	mg/kg-dry	251 80.3	498 130.9	262	230 90.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	336 1350	401 232.9	263 67.5	348 105.7	NA 108.5	NA 440	NA NA	NA 52.7	NA 56.5	NA 114	NA NA
Zinc Hydrocarbons (Dry Weight	t)	60.3	130.9	71	90.2	INA	INA	NA	INA	INA	INA	1350	232.9	C.10	105.7	106.5	440	INA	52.7	00.0	114	INA
Oil & Grease	%	9.36	8.4	0.16	NA	NA	11.2	2.2	2.05	1.97	2.92	12.4	1.2	2.13	0.2	<0.10	0.43	NA	0.45	<0.10	<0.10	NA
TPH-GRO (C6-C10)	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-DRO (C10-C28) TPH-ORO (>C28)	mg/kg-dry mg/kg-dry	25783 30203	NA NA	165 223	NA NA	NA NA	NA NA	13668 13291	NA NA	NA NA	NA NA	24216 28920	NA NA	3488 4516	NA NA	NA NA	NA NA	2003 1046	NA NA	NA NA	NA NA	353 391
C6-C8 Aliphatics	mg/kg-dry	NA	<51.9	NA	<48.3	NA	25.08	NA	28.9	9.06	13.2	NA	<58.7	NA	<50.9	<9.75	<5.97	NA	<8.96	<5.9	<10.87	NA
C8-C10 Aliphatics	mg/kg-dry	NA	<51.9	NA	<48.3	NA	74.9	NA	120.2	33	36.4	NA	<58.7	NA	<50.9	<19.53	<11.95	NA	<17.9	<11.8	<21.75	NA
C10-C12 Aliphatics C12-C16 Aliphatics	mg/kg-dry mg/kg-dry	NA NA	<51.9 112.9	NA NA	<48.3 <48.3	NA NA	<50.3 123.4	NA NA	<54.5 202.2	<47.2 333	<49.9 352	NA NA	<58.7 <58.7	NA NA	<50.9 <50.9	<5.49 <5.49	50.3 302	NA NA	<5.46 <5.46	<4.14 4.95	<5.83 11.98	NA NA
C16-C35 Aliphatics	mg/kg-dry	NA	932	NA	<48.3	NA	1714	NA	1692	3019	4539	NA	<58.7	NA	<50.9	14.86	1038	NA	<10.93	29.4	189.8	NA
C8-C10 Aromatics	mg/kg-dry	NA	<51.9	NA	<48.3	NA	25.9	NA	41.7	29.7	14.76	NA	<58.7	NA	<50.9	<13.02	8.53	NA	<11.94	<7.87	<14.52	NA
C10-C12 Aromatics C12-C16 Aromatics	mg/kg-dry mg/kg-dry	NA NA	<51.9 124	NA NA	<48.3 <48.3	NA NA	27.9 332	NA NA	19.9 191.3	9.17 51.4	45 516	NA NA	<58.7 <58.7	NA NA	<50.9 <50.9	<2.75 <5.49	41.9 227	NA NA	<2.73 14.13	<2.07 5.45	<2.92 15.31	NA NA
C16-C21 Aromatics	mg/kg-dry	NA	330	NA	<48.3	NA	204.8	NA	64.6	54.7	419	NA	77	NA	<50.9	6.68	153.5	NA	9.78	<4.14	35.6	NA
C21-C35 Aromatics	mg/kg-dry	NA	1815	NA	<48.3	NA	50.8	NA	29.2	6.23	53.9	NA	244	NA	<50.9	<5.49	46	NA	<5.46	<4.14	9.13	NA
PAH (Dry Weight) 2-Methylnaphthalene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0282	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0202	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0444	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene Benzo(a)anthracene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.04	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0282	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0282	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene Chrysene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0282 0.0441	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenz(a,h)anthracene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0441	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0511	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.132	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0282 <0.0282	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Phenanthrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0372	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0733	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calculated Sums (Dry Wei Sum TPH Mixture	ght) mg/kg-dry	55986	NA	388	NA	NA	NA	26959	NA	NA	NA	53136	NA	8004	NA	NA	NA	3049	NA	NA	NA	744
Sum TPH Fraction	mg/kg-dry	NA	3314	NA	ND	NA	2579	20959 NA	2390	3545	5989	NA	321	NA NA	ND	22	1867	NA	24	40	262	NA
Sum Total PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum LMW PAH Sum HMW PAH	mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.25 0.22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	mg/kg-dry	NA	NA	NA	NA	NA	INA	NA	NA	NA	0.22	NA	NA	INA	NA	NA	NA	NA	NA	NA	INA	AVI

HOU\Projects\0645446\DM30584H(tbs).xlsx August Levert_BP Plan_009584

Me Bor		Area:	LAA3-WP SRA	LAA3-EP SRA																			
																							On-Site
								-	-	-	-	-	SB-11	-	-		-		-				SB-02
Image Image <th< th=""><th></th><th>· · ·</th><th></th><th></th><th>-</th><th>-</th><th></th><th>-</th><th>-</th><th></th><th></th><th>-</th><th></th><th></th><th>-</th><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th>-</th><th>2-4'</th></th<>		· · ·			-	-		-	-			-			-			-	-			-	2-4'
No. No. <th></th> <th>Sample Date:</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>07/28/22</th> <th>07/28/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/22/22</th> <th>06/21/22</th> <th>06/21/22</th> <th>06/21/22</th> <th>06/21/22</th> <th>06/21/22</th> <th>06/21/22</th>		Sample Date:	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	06/22/22	07/28/22	07/28/22	06/22/22	06/22/22	06/22/22	06/22/22	06/21/22	06/21/22	06/21/22	06/21/22	06/21/22	06/21/22
Char Char Char Char C	Salinity & Other	Units	HET	ICON	HET	ICON	HET	HET	ICON	HET	ICON	HET	HET	HET	ICON	HET	ICON	HET	ICON	HET	ICON	HET	HET
Open Open No. No. </td <td>% Moisture</td> <td>%</td> <td>50.5</td> <td>44</td> <td>65.5</td> <td>51.5</td> <td>67.1</td> <td>57.7</td> <td>61.9</td> <td>50.6</td> <td>44.1</td> <td>44.8</td> <td>46.1</td> <td>57.8</td> <td>65.8</td> <td>40.7</td> <td>22.8</td> <td>38.8</td> <td>41.2</td> <td>52.2</td> <td>44.2</td> <td>47</td> <td>40</td>	% Moisture	%	50.5	44	65.5	51.5	67.1	57.7	61.9	50.6	44.1	44.8	46.1	57.8	65.8	40.7	22.8	38.8	41.2	52.2	44.2	47	40
BAD Date Date <thd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.06</td></thd<>																							1.06
Dam Anno Dam Annono Dam Anno Dam Anno																							18.8
Dependent Ten No. No. No. No. No																							NA <2.00
Dip As Ro Ro Ro Ro Ro </td <td></td> <td><0.050</td>																							<0.050
DAL MB B3	EC	mmhos/ cm																					0.462
Char State	ESP																						0.67
Import Product Product <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.37 2.08</td></t<>																							1.37 2.08
mar Mar <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>0.934</td>																		-					0.934
Sect Mail Mail <th< td=""><td></td><td></td><td></td><td>NA</td><td></td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td></td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td></td><td>1.41</td><td>1.4</td><td>3.36</td><td>3.71</td><td>2.08</td><td>1.68</td></th<>				NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA		1.41	1.4	3.36	3.71	2.08	1.68
Data (a) Bit Bi																							NA
Inter open open <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>64.3 2.5</td></t<>																							64.3 2.5
Data of the set of th																							0.691
By Form ON UN UN UN UN	Saturation %		NA	122	NA	138	NA	98.4	120														
Spil-Perty Spil-Pe		s.u.	NA	6.82	NA	7.42	NA	7.32	7.41														
Pick Parls Opt MA MA MA <		ma/l	NA	<0.0277	NA																		
Spir-Longent mit Ni																							NA
Pick Pick Pick Pick Pick Pick Pick P			NA	0.485	NA	NA	NA	NA	NA	0.148	NA												
Pick of the main of																							NA
Beek (Py Wight) U																							NA
Image Image <th< td=""><td></td><td>mg/L</td><td>INA</td><td>INA</td><td>INA</td><td>NA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>INA</td><td>NA</td><td>NA</td></th<>		mg/L	INA	INA	INA	NA	INA	NA	NA														
The Lendard mbig dr. data Name Base Hand Hand Hand Base Jack Base		mg/kg-dry	17	4.22	6.99	5.92	<6.08	5.86	8.47	33.8	28.1	4.93	5.36	4.88	5.34	39.3	61.3	5.95	3.85	6.5	6.57	7	5.48
Content mini dry dr2 NA 0.881 NA 0.887 NA 0.897 NA 0.973 NA NA NA NA NA NA																							2967
Important mbits or, mbits or, construct mbits or, mbits or,																							17900 <0.333
Inst. Inst. NA UA UA UA UA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.333</td></th<>								-															<0.333
Selection right of bit of the selection origin of the selectio																							30.5
Sheri rgbg/gy L2 NA C4149 NA C4129 C4169 NA C4349 C4149 NA C4349 NA <	Mercury																						0.1575
Smorth mb NA NA NA NA N														-									<1.67
no. no. <td></td> <td><0.833 NA</td>																							<0.833 NA
Of A Grasse 5. 3.64 NA O.A 0.27 0.21 <																							86.2
PT+ERG (Cs C10) mgk-gy NA NA NA <td>Hydrocarbons (Dry Weigh</td> <td>nt)</td> <td></td>	Hydrocarbons (Dry Weigh	nt)																					
PTH-RD (C10-C28 mg/sg-dy NA BA B40 NA NA NA NA NA NA B51 NA NA NA NA NA NA NA B54 NA B57 NA NA NA NA N		78																					<0.10
PPI-EOC-CC2 mg/sg-dy NA BS/1 NA S20 NA BS/2 NA NA NA S24 NA S26 NA S24 NA S24 NA S24 NA S25 NA S24 S24 S24 S24 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA NA</td></th<>																							NA NA
Ge-Ge-Appendix mg/kg-yri 7.8 N.M -1.08 -1.08 N.M -1.08 N.M <																							NA
C10-C2 Alphabeta mg/kg/y e8.04 NA 6.40 NA 6.40 NA 6.40 NA			7.8	NA		NA	<11.98		NA	48.2				36	NA		NA	NA	NA		NA	NA	NA
C12-C63 Alphales mg/kg-dy 83.6 NA 6.49 NA 12.24 9.2 NA 61.6 NA 6.2 6.7 6.6 NA 936 NA NA NA NA 12.24 92.5 NA 61.6 NA 6.2.37 6.7 6.7 6.8 NA 936 NA NA </td <td></td> <td>NA</td>																							NA
C16-C3A Alphates mplo-ghv 758 NA 21.99 NA 816 NA 67.23 7.42 62.81 NA 72.8 NA NA NA NA NA C10-C12 Anomales mply-ghv 4.202 NA <1.201			-										-										NA NA
CB-C10 Aromatics mg/kg-dry C42.2 NA c+4.23 NA c+1.04 NA NA NA NA S1.9 NA S2.9 NA													-	ů									NA
C12-C16 Aromatics mg/kg-dy 78.4 NA 12.12 NA 12.13 NA 164 NA <23.62 <23.71 6.0.2 NA 157.8 NA NA <th< td=""><td>C8-C10 Aromatics</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td></th<>	C8-C10 Aromatics																						NA
C1C-C21 Aromatics mg/kg-dy 78.4 NA 78.4 NA 78.4 NA																							NA
C21-C33 Anomatics mg/kg.dy <40.4 NA C43.7 NA C4.74 NA																							NA NA
PAH (Dry Weight) Implicit																							NA
Accenaphthine mg/kg-dry NA NA <td></td>																							
Accenaphilylene mg/kg-dy NA																							NA NA
Antmixene mg/kg-dy NA NA </td <td></td> <td>NA</td>																							NA
Benzo(a)anthracene mg/kg-dry NA																							NA
Benzo(b)fluoranthene mg/kg-dry NA		mg/kg-dry																					NA
Benzok/fluoranthene mg/kg-dry NA																							NA NA
Chrysene mg/kg-dry NA NA </td <td></td> <td>NA NA</td>																							NA NA
Dibbra(a,h)anthracene mg/kg-dry NA																							NA
Fluorene mg/kg-dry NA NA </td <td>Dibenz(a,h)anthracene</td> <td>mg/kg-dry</td> <td></td> <td>NA</td>	Dibenz(a,h)anthracene	mg/kg-dry																					NA
Indeno(1,2,3-cd)pyrene mg/kg-dry NA																							NA
Naphthalene mg/kg-dry NA NA <td></td> <td>NA NA</td>																							NA NA
Phenanthrene mg/kg-dry NA NA <td></td> <td>NA</td>																							NA
Calculated Sums (Dry Weight) Image: Constraint of the system		mg/kg-dry	NA																				
Sum TPH Mixture mg/kg-dry NA 17142 NA 614 NA 614 NA NA 693 NA 22236 NA NA NA NA NA NA 335 NA 8238 NA NA NA NA NA NA			NA																				
			NA	171/2	ΝA	614	NA	NA	693	ΝA	22236	NΔ	ΝA	NA	335	NA	8238	ΝA	ΝA	ΝA	ΝA	NA	NA
Sum IPH Fraction mg/kg-dry 1104 NA 40 NA 55 153 NA 1526 NA ND ND 297 NA 1530 NA N	Sum TPH Fraction	mg/kg-dry	1104	NA	40	NA	55	153	NA NA	1526	NA	ND	ND	297	NA	1530	0230 NA	NA	NA	NA	NA	NA	NA
Sum Total PAH mg/kg-dry NA	Sum Total PAH		NA																				
Sum LMW PAH mg/kg-dry NA																							NA
Sum HMW PAH mg/kg-dry NA	SUM HMW PAH	mg/kg-dry	NA																				

	Area:	LAA3-EP SRA	LAA3-EP SRA		LAA3-EP SRA	LAA3-EP SRA	LAA3-EP SRA	LAA3-EP SRA	LAA3-EP SRA	LAA3-EP SRA	LAA3-EP SRA		LAA3-EP SRA	LAA3-EP SRA	LAA3-EP SRA	LAA3-EP SRA	LAA3-EP SRA
	Area:	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
	Location ID:	SB-03	SB-3	SB-03	SB-3	SB-04	SB-4	SB-04	SB-4	SB-04	SB-05R	SB-05R	SB-05	SB-5	SB-05	SB-5	SB-05R
	Sample Depth:	0-2'	0-2'	2-4'	2-4'	0-2'	0-2'	2-4'	2-4'	4-6'	0-2'	0-2'	2-4'	2-4'	4-6'	4-6'	6-8'
	Sample Date:	06/21/22	06/21/22	06/21/22	06/21/22	06/21/22	06/21/22	06/21/22	06/21/22	06/21/22	09/27/22	09/27/22	06/21/22	06/21/22	06/21/22	06/21/22	09/27/22
Salinity & Other	Units	HET	ICON	HET	ICON	HET	ICON	HET	ICON	HET	HET	ICON	HET	ICON	HET	ICON	HET
% Moisture	%	35.4	33.7	41.2	36.9	28.7	23.5	30.4	28.3	46.4	28.5	27.4	35	33.4	39.7	34.4	45.1
Chloride	meq/L	1.07	NA	2.19	NA	1.24	NA	2.71	NA	5.82	NA	NA	0.771	NA	1.43	NA	NA
Chloride	mg/L	20	NA	45	NA	11.3	NA	44	NA	67.9	NA	NA	13.6	NA	21.3	NA	NA
SPLP Chloride Bromide (Br)	mg/L mg/Kg	NA 3.01	NA NA	NA 3.23	NA NA	NA 3.86	NA NA	NA 3.36	NA NA	NA <2.00	NA NA	NA NA	NA <2.00	NA NA	NA <2.00	NA NA	NA NA
Bromide (Sat Paste)	meg/L	<0.050	NA	<0.050	NA	< 0.050	NA	< 0.050	NA	<0.050	NA	NA	<0.050	NA	<0.050	NA	NA
EC	mmhos/ cm	0.74	0.78	0.747	0.59	0.768	0.64	0.72	0.73	1.12	NA	NA	0.431	0.34	0.63	0.32	NA
ESP	%	0.577	1.11	1.18	2.56	0.554	1.38	1.52	2.37	1.53	NA	NA	0.645	0.9	0.661	1.52	NA
SAR	N/A	1.17	1.22	2.61	2.45	1.16	1.07 2.87	3.3	2.71	3.5	NA	NA	1.22	1.02	1.96	1.14	NA
Calcium Magnesium	meq/L meq/L	4.01 1.59	3.7 1.62	2.71	1.6 0.81	4.26	2.87	2.15 0.899	1.99	3.67	NA NA	NA NA	1.96 0.982	1.41 0.73	2.52	1.1 0.59	NA NA
Sodium	meq/L	1.96	1.99	3.61	2.69	1.95	1.52	4.07	3.33	5.68	NA	NA	1.48	1.05	2.67	1.05	NA
SPLP Sodium	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CEC	meq/100g	40.2	25.8	64.3	60.5	23.1	7.91	59.6	29	70.9	NA	NA	53.9	63.1	63.5	66.6	NA
Alkalinity (Sat. Paste)	meq/L	4.8	NA	3.8	NA NA	4 0.492	NA NA	2.9 0.764	NA NA	3.7	NA NA	NA	2.6 0.436	NA NA	3	NA NA	NA
Sulfate Saturation %	meq/L %	0.365 98.4	NA NA	1.19 128	NA NA	0.492 67.7	NA NA	0.764	NA NA	1.02 119	NA NA	NA NA	0.436 98.8	NA NA	1.31 121	NA NA	NA NA
pH (Saturated Paste)	78 S.U.	7.62	NA	7.62	NA	7.81	NA	7.99	NA	7.7	NA	NA	7.28	NA	7.56	NA	NA
SPLP Arsenic	mg/L	NA	NA	NA	NA	<0.0277	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Barium	mg/L	5.06	NA	NA	NA	3.63	NA	7.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Chromium	mg/L	0.0522	NA	NA	NA	0.118	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Lead	mg/L	0.0202	NA	NA NA	NA NA	0.086	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SPLP Strontium SPLP Zinc	mg/L mg/L	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (Dry Weight)	iiig/∟	INA.	11/5	11/3	11/3	11/3	11/3	11/3		11/3	11/2	11/3	11/3	110	11/3		11/3
Arsenic	mg/kg-dry	11.56	12	3.44	3.22	16.5	13.3	8.12	9	<3.73	2.13	6.88	5.03	4.73	3.53	3.41	NA
Barium	mg/kg-dry	684	4510	2126	1110	387	4230	3549	3610	875	389	328	2815	4460	2206	2580	991
True Total Barium	mg/kg-dry	207000	412000	8300	12100	301000	439000	43900	434000	5370	219	467	90100	116000	6060	16900	NA
Cadmium Chromium	mg/kg-dry mg/kg-dry	0.794 800	0.654 481	<0.34 29.1	<0.495 17.7	0.641 579	0.611 220	0.507 30.7	0.496 67.4	0.381	1.78 29	<0.997 26.1	<0.308 186	NA NA	<0.332 33.5	NA NA	NA NA
Lead	mg/kg-dry	288	302	20.6	14.8	293	266	30.6	146	18.8	18.5	20.6	92.8	NA	22.2	NA	NA
Mercury	mg/kg-dry	0.1127	1.12	0.993	<0.106	0.0718	1.24	1.62	0.548	0.1246	0.074	NA	0.0682	NA	0.0556	NA	NA
Selenium	mg/kg-dry	<1.55	NA	<1.7	NA	<1.4	NA	<7.18	NA	<1.87	< 0.699	<7.98	<1.54	NA	<1.66	NA	NA
Silver	mg/kg-dry	1.077 NA	NA 219	<0.85 NA	NA 53.8	1.71 NA	NA 200	<0.718 NA	NA 112	<0.933 NA	<0.35 NA	NA 42.9	<0.769 NA	NA NA	<0.829 NA	NA NA	NA NA
Strontium Zinc	mg/kg-dry mg/kg-dry	231	219	76.2	61.1	230	186	79.9	112	70.5	80.7	91.8	88.2	NA	78.3	NA	NA
Hydrocarbons (Dry Weigh		201	201	10.2	0	200	100	10.0		10.0	0011	0110	00.2		10.0		
Oil & Grease	%	0.25	NA	<0.10	NA	<0.10	NA	0.1	NA	<0.10	NA	NA	<0.10	NA	<0.10	NA	NA
TPH-GRO (C6-C10)	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-DRO (C10-C28) TPH-ORO (>C28)	mg/kg-dry mg/kg-dry	NA NA	2157 345	NA NA	16.5 21.9	NA NA	1008 158	NA NA	1883 326	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C6-C8 Aliphatics	mg/kg-dry	12.52	NA NA	<5.07	NA	9.5	NA	<3.97	NA	<6.7	NA	NA	<4.37	NA	<4.56	NA	NA
C8-C10 Aliphatics	mg/kg-dry	34.5	NA	10.39	NA	24	NA	<7.93	NA	<13.4	NA	NA	<8.74	NA	<9.12	NA	NA
C10-C12 Aliphatics	mg/kg-dry	<3.1	NA	<3.4	NA	80	NA	<2.87	NA	<3.73	NA	NA	<3.08	NA	<3.32	NA	NA
C12-C16 Aliphatics	mg/kg-dry	35.9 107.7	NA	<3.4	NA NA	506	NA NA	5.24 9.94	NA NA	<3.73 <7.46	NA NA	NA NA	14.52	NA	<3.32 <6.63	NA NA	NA NA
C16-C35 Aliphatics C8-C10 Aromatics	mg/kg-dry mg/kg-dry	9.6	NA NA	<6.8	NA NA	620 6.8	NA NA	9.94 <5.29	NA NA	<7.46	NA	NA	35.8 <5.83	NA NA	<6.03	NA NA	NA NA
C10-C12 Aromatics	mg/kg-dry	6.25	NA	<1.7	NA	107	NA	<1.44	NA	<1.87	NA	NA	<1.54	NA	<1.66	NA	NA
C12-C16 Aromatics	mg/kg-dry	31.9	NA	<3.4	NA	292	NA	<2.87	NA	<3.73	NA	NA	9.58	NA	<3.32	NA	NA
C16-C21 Aromatics	mg/kg-dry	4.58	NA	<3.4	NA	39.6	NA	<2.87	NA	<3.73	NA	NA	<3.08	NA	<3.32	NA	NA
C21-C35 Aromatics PAH (Dry Weight)	mg/kg-dry	<3.1	NA	<3.4	NA	<28.1	NA	<2.87	NA	<3.73	NA	NA	<3.08	NA	<3.32	NA	NA
2-Methylnaphthalene	mg/kg-dry	NA	NA	NA	NA	5.62	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg-dry	NA	NA	NA	NA	0.65	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	mg/kg-dry	NA	NA	NA	NA	< 0.0302	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	mg/kg-dry	NA	NA	NA	NA	0.261	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene Benzo(a)pyrene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	<0.0302 <0.0302	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	mg/kg-dry	NA	NA	NA	NA	<0.0302	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg-dry	NA	NA	NA	NA	< 0.0302	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	mg/kg-dry	NA	NA	NA	NA	< 0.0302	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	mg/kg-dry	NA	NA	NA	NA	<0.0302	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene Fluorene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	0.0564 0.532	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	mg/kg-dry	NA	NA	NA	NA	<0.0302	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	mg/kg-dry	NA	NA	NA	NA	0.853	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg-dry	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene Coloulated Suma (Dry Wa	mg/kg-dry	NA	NA	NA	NA	0.175	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calculated Sums (Dry We	ight) mg/kg-dry	NA	2502	NA	38	NA	1166	NA	2209	NA	NA	NA	NA	NA	NA	NA	NA
Sum TPH Mivture	IIIU/KU-UIV					1685	NA	15	2209 NA	ND	NA	NA	60	NA	ND	NA	NA
Sum TPH Mixture Sum TPH Fraction		243	NA	30	NA	1000	INA .	10	INA .		INA I	INA .	00		ND ND	INA .	
Sum TPH Mixture Sum TPH Fraction Sum Total PAH	mg/kg-dry mg/kg-dry	243 NA	NA NA	36 NA	NA NA	9.15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum TPH Fraction	mg/kg-dry																

HOU\Projects\0645446\DM30584H(tbs).xlsx August Levert_BP Plan_009586

TABLE 4C Soil Analytical Data - Off-Site August J. Levert, Jr., Family, LLC, et al. v. BP American Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

	Area:	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site
	Location ID:	HA-3	HA-3	HA-3	HA-3	HA-3	HA-3	HA-3	HA-3	LT-7	LT-7	LT-7	LT-7	LT-7	LT-7	LT-7	LT-7	LT-7	LT-7	LT-7	LT-7	LT-7	LT-8	LT-8	LT-8
	Sample Depth:	0-2'	0-2'	2-4'	2-4'	4-6'	4-6'	6-8'	6-8'	0-2'	0-2'	4-6'	4-6'	8-10'	16-18'	16-18'	20-22'	20-22'	24-26'	24-26'	36-38'	36-38'	0-2'	4-6'	8-10'
	Sample Date:	08/29/19	08/29/19	08/29/19	08/29/19	08/29/19	08/29/19	08/29/19	08/29/19	06/27/22	06/27/22	06/27/22	06/27/22	06/27/22	06/27/22	06/27/22	06/27/22	06/27/22	06/27/22	06/27/22	06/27/22	06/27/22	06/28/22	06/28/22	06/28/22
Salinity & Other	Units	ICON	HET	ICON	HET	ICON	HET	ICON	HET	HET	ICON	HET	ICON	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	ICON	ICON	HET
% Moisture	%	37.2	40.2	38.3	44.5	37.3	45.1	37.9	40.9	18.9	17.4	23.5	24.2	25.6	43.4	40.7	54.1	41.5	38.8	35.4	38.7	39	25.7	24.9	24.3
Chloride Chloride	meq/L mq/L	NA NA	2.76 25.1	NA NA	14.7 218	NA NA	26.1 398	NA NA	38.3 721	0.548 8.81	NA 17.5	0.386	NA 7.83	NA 8.98	1.26 22.3	NA 40.3	2.38 25	NA 43.2	1.34 22.8	NA 35.6	3.41 38.9	NA 36.3	NA 10.1	NA 7	1.15 11
SPLP Chloride	mg/L	NA	NA	NA	NA	NA	NA	321*	40.2	NA	4.84*	NA	2.47*	NA	NA	NA	NA	NA	NA	13.9*	NA	16.1*	2.79*	1.84*	NA
Bromide (Br)	mg/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromide (Sat Paste)	meq/L	NA 0.56	NA 0.696	NA 1.66	NA 1.96	NA 2.83	NA 3.07	NA 3.62	NA 4.45	NA 0.47	NA 0.52	NA 0.268	NA 0.24	NA 0.47	NA 0.701	NA 0.62	NA 0.963	NA 0.58	NA 0.705	NA 0.6	NA 1.07	NA 0.82	NA 0.4	NA 0.48	NA 0.49
ESP	mmhos/ cm %	1.89	1.91	7.67	4.27	13.8	3.07 NA	3.62	4.45 NA	0.47	1.24	0.266 NA	1.28	1.3	NA NA	0.62 NA	0.963 NA	0.56 NA	0.705 NA	NA	NA	0.82 NA	1.46	1.55	0.49 NA
SAR	N/A	2.65	4.39	8.27	10.1	15.1	NA	12.9	NA	0.679	0.52	NA	0.44	0.5	NA	NA	NA	NA	NA	NA	NA	NA	0.47	0.6	NA
Calcium	meq/L	1.59	1.62	2.34	2.68	2.46	3.01	4.48	8.02	2.63	2.81	1.41	1.21	2.15	2.93	NA	4.01	NA	3.06	NA	3.97	NA	1.96	2.26	1.91
Magnesium Sodium	meq/L meq/L	0.75	<0.820 3.95	1.15	1.1 13.9	1.28 20.6	1.36 22.5	2.54 24.2	3.45 34.6	1.39 0.963	1.18 0.74	0.544 0.609	0.52	0.97	1.23	NA NA	1.63 2.26	NA NA	1.16 1.55	NA NA	1.99 2.12	NA NA	0.8	0.92 0.76	0.781
SPLP Sodium	mg/L	NA	NA	NA	NA	NA	NA	NA	197	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CEC	meq/100g	64.2	55.2	56.7	54.3	50.3	NA	52.8	NA	23.1	29.4	NA	20.7	27.8	NA	NA	NA	NA	NA	NA	NA	NA	18.8	16.2	NA
Alkalinity (Sat. Paste) Sulfate	meq/L meq/L	NA NA	1.4 1.59	NA NA	1.8	NA NA	1.6 0.844	NA NA	1.8 3.21	2.5 0.616	NA NA	1.8	NA NA	NA NA	3.4	NA NA	3	NA NA	4	NA NA	4.6 1.36	NA NA	NA NA	NA NA	2.2 0.867
Saturation %	//////////////////////////////////////	NA	116	NA	126	NA	144	NA	120	62.7	NA	58	NA	NA	113	NA	93.2	NA	98.1	NA	95.7	NA	NA	NA	58.4
pH (Saturated Paste)	s.u.	NA	7.28	NA	7.05	NA	7.32	NA	7.08	7.58	NA	7.74	NA	NA	7.9	NA	7.81	NA	8.03	NA	8	NA	NA	NA	7.91
SPLP SPL P. Arconic	ma/l	NA	-0.10	NIA	NIA	NIA	NA	NIA	NIA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Arsenic SPLP Barium	mg/L mg/L	NA NA	<0.10 <1.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Chromium	mg/L	NA	<0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Lead	mg/L	NA	<0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA
SPLP Strontium SPLP Zinc	mg/L mg/L	NA NA	<0.10 <0.10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
Metals (Dry Weight)	g/ =	101	40.110	101							101	101	101	101											
Arsenic	mg/kg-dry	13.8	13.04	4.62	10.27	4.4	<9.1	8.77	14	5.72	4.47	6.6	4.79	4.06	NA	NA	NA	NA	NA	NA	NA	NA	2.61	3.96	5.73
Barium True Total Barium	mg/kg-dry mg/kg-dry	4250 16700	463 7510	951 2260	519 771	314 490	319 566	535 821	340 341	149 2910	144 234	136 <500	141 220	160 270	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	119 208	133 203	144 <500
Cadmium	mg/kg-dry	0.817	<4.2	<0.456	<4.1	0.501	<4.6	0.546	<4.2	<0.247	<0.500	<0.261	<0.494	<0.486	NA	NA	NA	NA	NA	NA	NA	NA	< 0.500	<0.496	0.267
Chromium	mg/kg-dry	33.1	35.1	17.1	31.5	18.5	25.1	17.6	23.4	14.1	12.2	11.19	9.62	12.5	NA	NA	NA	NA	NA	NA	NA	NA	9.35	9.68	11.85
Lead	mg/kg-dry	47.2 0.135	26.1 NA	18.5	24.5 <0.139	17.9 <0.105	18.9 <0.135	15.8 <0.101	17.8	11.17 0.0224	9.71 <0.104	8.22 0.0281	7.58	10.3 <0.106	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	7.02	6.76 <0.0928	9.31 0.038
Mercury Selenium	mg/kg-dry mg/kg-dry	<3.89	<8.4	<3.65	<0.139	<3.64	< 9.1	<3.70	<8.3	<1.23	<4.00	<1.31	<3.95	<3.89	NA	NA	NA	NA	NA	NA	NA	NA	<4.00	<3.97	<1.32
Silver	mg/kg-dry	NA	<8.4	NA	<8.1	NA	<9.1	NA	<8.3	<0.617	NA	<0.654	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.661
Strontium	mg/kg-dry	175	NA	79.5	108	61	62.1	56.5	62.4	NA	26.7	NA	28.7	36	NA	NA	NA	NA	NA	NA	NA	NA	25.7	26	NA
Zinc Hydrocarbons (Dry Weig	mg/kg-dry ht)	90.5	98.3	69.9	99.6	72.6	88.3	64.8	77.2	52.8	48	40.9	35.4	50.2	NA	NA	NA	NA	NA	NA	NA	NA	35.3	34.6	46.1
Oil & Grease	%	0.11	NA	0.6	NA	0.09	NA	0.07	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-GRO (C6-C10)	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-DRO (C10-C28) TPH-ORO (>C28)	mg/kg-dry mg/kg-dry	<u>161</u> 317	NA NA	177 246	NA NA	<79.7 97.9	NA NA	233 177	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C6-C8 Aliphatics	mg/kg-dry	NA	<41.8	NA	NA	NA	NA	NA	<42.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C8-C10 Aliphatics	mg/kg-dry	NA	<41.8	NA	NA	NA	NA	NA	<42.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C10-C12 Aliphatics C12-C16 Aliphatics	mg/kg-dry mg/kg-dry	NA NA	<41.8 <41.8	NA NA	NA NA	NA NA	NA NA	NA NA	<42.3 <42.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C16-C35 Aliphatics	mg/kg-dry	NA	<41.8	NA	NA	NA	NA	NA	<42.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C8-C10 Aromatics	mg/kg-dry	NA	<41.8	NA	NA	NA	NA	NA	<42.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C10-C12 Aromatics C12-C16 Aromatics	mg/kg-dry mg/kg-dry	NA NA	<41.8 <41.8	NA NA	NA NA	NA NA	NA NA	NA NA	<42.3 <42.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C16-C21 Aromatics	mg/kg-dry	NA	<41.8	NA	NA	NA	NA	NA	<42.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C21-C35 Aromatics	mg/kg-dry	NA	<41.8	NA	NA	NA	NA	NA	<42.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene Benzo(a)anthracene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene Dibenz(a,h)anthracene	mg/kg-dry mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Phenanthrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calculated Sums (Dry Wo Sum TPH Mixture	eight) mg/kg-dry	478	NA	423	NA	98	NA	410	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum TPH Fraction	mg/kg-dry	NA	NA	423 NA	NA	96 NA	NA	A NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum Total PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum LMW PAH Sum HMW PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SUM HIVIVY PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

HOUNProjects/0645446/DM/30584H(tbs).xlsx August Levert_BP Plan_009587

TABLE 4C Soil Analytical Data - Off-Site August J. Levert, Jr., Family, LLC, et al. v. BP American Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

	Area:	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site
	Location ID:	LT-8	LT-8	LT-8	LT-8	LT-8	LT-8	LT-8	LT-8	LT-8	LT-9	LT-9	LT-9	LT-9	LT-9	LT-9	LT-9	LT-9	LT-9
	Sample Depth:	8-10'	16-18'	16-18'	20-22'	20-22'	24-26'	24-26'	36-38'	36-38'	0-2'	4-6'	4-6'	8-10'	8-10'	12-14'	12-14'	20-22'	20-22'
	Sample Date:	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22	06/28/22
Salinity & Other	Units	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON	ICON	HET	ICON	HET	ICON	HET	ICON	HET	ICON
% Moisture	%	27.4	24.2	26.1	27.6	22.7	28.5	29.6	32.3	28.7	25.9	27.1	26.6	27.5	25.4	25.8	26.4	35.8	28.3
Chloride Chloride	meq/L mg/L	NA 17.4	1.32 17.8	NA 25.3	1.04 16.5	NA 14.6	0.944	NA 17.7	2.02 31.5	NA 43.2	NA 10.2	0.312 4.75	NA 8.15	1.78 19.1	NA 25.6	1.72 23.8	NA 31.8	1.15 20.9	NA 18.9
SPLP Chloride	mg/L	NA	NA	NA	NA	NA	NA	11.9*	NA	12.6*	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromide (Br)	mg/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromide (Sat Paste)	meq/L	NA 0.42	NA 0.488	NA 0.5	NA 0.422	NA 0.34	NA 0.662	NA 0.44	NA 0.695	NA 0.56	NA 0.39	NA 0.496	NA 0.41	NA 0.574	NA 0.49	NA 0.525	NA 0.48	NA 0.659	NA 0.43
ESP	mmhos/ cm %	1.5	0.488 NA	0.5 NA	0.422 NA	0.34 NA	0.662 NA	0.44 NA	0.695 NA	0.56 NA	1.2	0.496 NA	1.41	0.574 NA	1.25	0.525 NA	0.48 NA	0.659 NA	0.43 NA
SAR	N/A	0.81	NA	NA	NA	NA	NA	NA	NA	NA	0.54	NA	0.62	NA	0.7	NA	NA	NA	NA
Calcium	meq/L	1.53	1.88	NA	1.49	NA	2.68	NA	2.81	NA	1.93	2.45	1.87	2.19	1.78	2.04	NA	2.56	NA
Magnesium	meq/L	0.66	0.815	NA NA	0.647	NA NA	1.29 1.31	NA NA	1.28	NA NA	0.84 0.63	1.06 0.94	0.79	0.972	0.77 0.79	0.839	NA NA	1.26	NA NA
Sodium SPLP Sodium	meq/L mg/L	0.85 NA	0.923 NA	NA	0.94 NA	NA	1.31 NA	NA	1.28 NA	NA	0.63 NA	0.94 NA	0.72 NA	NA	0.79 NA	0.923 NA	NA	NA	NA
CEC	meq/100g	21.3	NA	NA	NA	NA	NA	NA	NA	NA	24.5	NA	25.5	NA	24.3	NA	NA	NA	NA
Alkalinity (Sat. Paste)	meq/L	NA	2	NA	2	NA	3.4	NA	2.9	NA	NA	2.5	NA	2.2	NA	2	NA	3.4	NA
Sulfate Saturation %	meq/L %	NA NA	0.81 49.7	NA NA	0.492 50.2	NA NA	1.42 78	NA NA	0.783 80.2	NA NA	NA NA	1.19 70.6	NA NA	0.691 47.1	NA NA	0.687 52.7	NA NA	0.97 90.9	NA NA
pH (Saturated Paste)	% S.U.	NA	7.91	NA	7.88	NA	7.91	NA	7.94	NA	NA	7.84	NA	7.81	NA	7.67	NA	7.89	NA
SPLP																			
SPLP Arsenic	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Barium SPLP Chromium	mg/L mg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SPLP Chromium SPLP Lead	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Strontium	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Zinc	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (Dry Weight) Arsenic	ma/ka-qry	4.16	NA	NA	NA	NA	NA	NA	NA	NA	5.08	5.43	3.89	5.37	5.61	NA	NA	NA	NA
Barium	mg/kg-dry	147	NA	NA	NA	NA	NA	NA	NA	NA	137	166	156	130.2	149	NA	NA	NA	NA
True Total Barium	mg/kg-dry	261	NA	NA	NA	NA	NA	NA	NA	NA	196	<500	245	<500	180	NA	NA	NA	NA
Cadmium	mg/kg-dry	<0.491	NA	NA	NA	NA	NA	NA	NA	NA	< 0.494	0.337	<0.489	<0.276	<0.497	NA	NA	NA	NA
Chromium Lead	mg/kg-dry	10.9 8.18	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	10.5 8	13.9 11.06	11.5 9.44	11.2 8.62	10.4 9.01	NA NA	NA NA	NA NA	NA NA
Mercury	mg/kg-dry mg/kg-dry	<0.104	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0935	0.068	<0.105	0.0432	<0.0949	NA	NA	NA	NA
Selenium	mg/kg-dry	<3.93	NA	NA	NA	NA	NA	NA	NA	NA	<3.95	<1.37	<3.91	<1.38	<3.98	NA	NA	NA	NA
Silver	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.686	NA	< 0.69	NA	NA	NA	NA	NA
Strontium Zinc	mg/kg-dry mg/kg-dry	31.4 41.9	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	26.5 41.6	NA 55.3	32.5 46	NA 43.9	35.1 44.1	NA NA	NA NA	NA NA	NA NA
Hydrocarbons (Dry Weight		41.0	107	101	101	101	101	107	101	101	41.0	00.0	40	40.0		107	101	107	
Oil & Grease	%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-GRO (C6-C10)	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-DRO (C10-C28) TPH-ORO (>C28)	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C6-C8 Aliphatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C8-C10 Aliphatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C10-C12 Aliphatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C12-C16 Aliphatics C16-C35 Aliphatics	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C8-C10 Aromatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C10-C12 Aromatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C12-C16 Aromatics C16-C21 Aromatics	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
C16-C21 Aromatics C21-C35 Aromatics	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAH (Dry Weight)																			
2-Methylnaphthalene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene Acenaphthylene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene Indeno(1,2,3-cd)pyrene	mg/kg-dry mg/kg-dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calculated Sums (Dry Weig Sum TPH Mixture	ght) ma/ka-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum TPH Fraction	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum Total PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum LMW PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sum HMW PAH	mg/kg-dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

HOUNProjects/0645446/DM/30584H(tbs).xlsx August Levert_BP Plan_009588

NOTES:

Moisture reported for the sample was used for dry weight conversions.

For HET sample where % moisture was not analyzed, moisture data from the split sample was used for dry weight conversions.

ICON metals were reported in dry weight. HET metals and ICON and HET hydrocarbons (TPH, PAH) were reported in wet weight and converted to dry weight.

< - Not detected at or above the reporting limit shown.

NA - Not analyzed, NS - No Standard

LAA - Limited Admission Area

SRA - Soil Remediation Area

EP - Eastern Pit

WP - Western Pit

^a Screening value shown for wetland soil is the higher of Louisiana soil background and lowest of the USEPA Eco-SSLs for bird, mammal, invertebrate, and plant, and the NOAA SQuiRT freshwater threshold effect concentration (TEC)

and probable effect concentration (PEC). The screening value for barium is the higher of Louisiana soil background and calculated soil screening value. ^b HET performed confirmatory analyses utilizing SGS North America that prepared (i.e., dried and crushed) sample retains obtained from Waypoint Analytical.

^c HET performed confirmatory analyses utilizing SGS North America as received (i.e., wet weight) sample retains obtained from Waypoint Analytical.

Gray cell indicates that sample location and/or sample depth is not evaluated.

Sum Totals for TPH Mixture, TPH Fractions, PAH, LMW PAH, and HMW PAH are calculated based on individual results.

Sum TPH Mixture is the sum of TPH-G, TPH-D, and TPH-O.

Sum TPH Fraction is the sum total of aliphatic and aromatic TPH fractions.

Sum Total PAH is the sum total of 16 PAH.

Sum LMW PAH is the sum total of 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene.

Sum HMW PAH is the sum total of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene.

Value highlighted yellow and bolded indicates exceedance of ecological screening value.

Barium speciation by X-Ray Diffraction and Energy Dispersive X-Ray Spectroscopy

	Sample: Date: Sampler:	SB-03 (0-2') 6/21/2022 HET	SB-04 (0-2') 6/21/2022 HET	SB-11 (2-4') 6/22/2022 HET	SB-12 (2-4') 6/22/2022 HET
Mineral Phases Identified by XF	RD				
Quartz		19.5	13.3	17.8	18.3
K-Feldspars		0.5	0.3	1.4	0.3
Plagioclase		0.6	1.2	1.0	1.4
Calcite		3.0	3.6	2.6	3.0
Pyrite		ND	ND	ND	ND
Fe Dolomite		ND	ND	ND	ND
Barium Sulfide		ND	ND	ND	ND
Barite		64.1	73.4	44.9	66.0
Witherite		ND	ND	ND	ND
Barium Chloride		ND	ND	ND	ND
Baria		ND	ND	ND	ND
Barium Peroxide		ND	ND	ND	ND
Total Clay		12.3	8.2	32.3	11.1
Total		100	100	100	100
Weight Percent Elemental Com	position by ED	X Normalized to	100%		
Carbon		2.17	2.27	3.90	2.67
Oxygen		32.64	31.41	35.68	32.53
Sodium		0.26	0.16	0.27	0.20
Magnesium		0.35	0.21	0.72	0.31
Aluminum		2.47	1.66	5.19	2.56
Silicon		8.66	7.09	13.25	8.77
Phosphorous		ND	ND	ND	ND
Sulfur		9.07	10.03	6.46	9.14
Chlorine		0.04	0.02	0.03	0.01
Potassium		0.63	0.48	1.31	0.62
Calcium		1.87	1.67	1.68	1.46
Chromium		ND	ND	ND	ND
Manganese		ND	ND	ND	ND
Iron		3.01	2.05	3.41	2.20
Zinc		ND	ND	0.42	0.41
Strontium		ND	ND	ND	ND
Barium		38.84	42.96	27.68	39.14
Titanium		ND	ND	ND	ND
Total		100	100	100	100

Notes:

ND - Non-detect

SB-03 and SB-04 are located in Limited Admission Area 3 - Eastern Pit Soil Remediation Area.

SB-11, and SB-12 are located in Limited Admission Area 3 - Western Pit Soil Remediation Area.

TABLE 5 Barium Speciation August J. Levert, Jr., Family, LLC, et al. v. BP American Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Barium speciation by X-Ray Diffraction

Sample: Date:	HA-2 (0-2') 8/29/2019
Sampler:	HET
Bulk Mineralogy Whole Sample (Wt %)	
Quartz	24.2
K-Feldspars	1.5
Plagioclase	2.5
Calcite	ND
Pyrite	ND
Fe Dolomite	ND
Barite	6.9
Total Clay	64.9
Total	100
Clay Mineralogy (Wt %)	
Illite	18.2
Kaolinite	14.0
Chlorite	
Smectite	32.8
Mix-Layered Illite & Mica	
% Illite layers in mixed layer I/S clay	
Relative % Clay	
Illite	28.0
Kaolinite	21.6
Chlorite	
Smectite	50.5
Mix-Layered Illite & Mica	
Total	100

Notes:

ND - Non-detect

HA-2 is located in Limited Admission Area 3 - Western Pit Soil Remediation Area.

TABLE 6 Toxicity Reference Values (TRVs) for BERA August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

	TRV								
Constituent		Avian nal, American Robin, Spotted , Mallard, Snowy Egret)	Mammal (Swamp Rabbit, Marsh Rice Rat, Americ Mink)						
	mg/kg/day Source		mg/kg/day	Source					
Cadmium	1.47	USEPA (2005a)	0.77	USEPA (2005a)					
Cadmium (CdS)	79 ^{a,b}	Cooksy (2012); Pfaff (2021)	79 ^b	Cooksy (2012); Pfaff (2021)					
Mercury	3.25 ^c	USEPA (1999; Table E-8)	1.01 ^d	USEPA (1999; Table E-7)					
Zinc	66.1	USEPA (2007c)	75.4	USEPA (2007c)					
Zinc (ZnS)	894 ^{e,f}	· · · · ·		USEPA (1988)					

^aMammal TRV for cadmium sulfate used as surrogate for avian TRV for cadmium sulfate.

^bCadmium sulfide; Acute (1 day) LD50 for rat of 7080 mg/day; uncertainty factor of 10 for interspecies variability, 3 for acute to chronic endpoint, and 3 for LOAEL to NOAEL.

^cMercuric chloride; Acute (5 day) LOAEL (mortality) for quail of 325 mg/kg/d; uncertainty factor of 10 applied to estimate from an acute to chronic endpoint (produces a very conservative TRV estimate.)

^dMercuric chloride; Chronic (6 month) NOAEL (reproduction) for mink of 1.01 mg/kg/day.

^eMammal TRV for zinc sulfate used as surrogate for avian TRV for zinc sulfate.

^fZinc sulfide; Acute (1 day) LD50 for rat of >50,000 mg/kg; uncertainty factor of 10 for interspecies variability, 3 for acute to chronic endpoint, and 3 for LOAEL to NOAEL.

TABLE 7 Soil/Sediment Bioavailability Factors for BERA August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

COPEC	Soil/Sediment Bioavailability Factor	Citation				
Cadmium	0.036	Prokop et al. (2003); Shaheen et al. (2016); Feijtel (1986)				
Mercury	0.00031	Xu et al. (2019); Chibunda et al. (2009); Chalmers et al. (2013)				
Zinc	0.01 - 0.1	USEPA (2005); Feijtel (1986)				

TABLE 8 Bioconcentration Factors (BCFs) for Food Items for BERA August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

COPEC	Soil- Plant BCF	Soil- Plant BCF Citation		Citation	Soil-Mammal BCF	Citation
Cadmium	0.5860	Bechtel-Jacobs (1998a; Table 6) 7.708		Sample et al. (1998a; Table 11)	0.3330	Sample et al. (1998b; Table 7)
Mercury	0.2700	Fernández-Martínez (2015); Rodriguez (2007); Hamilton (2008)	1.693	Sample et al. (1998a; Table 11)	0.0534	Sample et al. (1998b; Table 7)
Zinc	0.3660 Bechtel-Jacobs (1998a; Table 6)		3.201	Sample et al. (1998a; Table 11)	0.7717	Sample et al. (1998b; Table 7)

TABLE 8 Bioconcentration Factors (BCFs) for Food Items for BERA August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

COPEC	Soil/Sediment - Benthic Invertebrate BCF	thic Citation		Citation	
Cadmium	0.614	Bechtel Jacobs (1998b; Table 2)	0.42	Chen and Chen (1999; Table 2)	
Mercury	0.48	Razavi (2013); USFWS (1994); Ridal et al. (2010); ERM (2019)	1.1	LDEQ LEAU database (2019); ERM (2019)	
Zinc	2.33	Bechtel Jacobs (1998b; Table 2)	0.138	Chen and Chen (1999; Table 2)	

TABLE 9 Species Factors for HQ Calculations for BERA August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Parameter	Description	Units	Northern Cardinal	Source	American Robin	Source	Spotted Sandpiper	Source	
BW	Body weight of receptor	Kg	0.045	The Cornell Lab (2022b) ^a	0.0773	USEPA (1993; Page 2-197); [source: Clench & Leberman (1978)]; Sample & Suter (1994; Page 21; Table 4.9); [source: Dunning 1984])	0.0425	USEPA (1993; Page 2-152) [Source: Maxson & Oring (1980)] ^b	
Food IR	Ingestion rate of food	Kg/Kg BW/d	0.19	Nagy (2001)	0.132 Nagy (2001		0.196	Nagy (2001), Seaman (2005), Elner (2005)	
Soil / Sediment Ingestion	Ingestion Proportion of soil or sediment	Fraction of Total Diet	0.093	Beyer et al. (1994) ^b	0.02	Sample and Suter (1994; Page 22; Table 4.9); [Source: Beyer et al. (1994)]	0.17	Beyer et al. (1994) ^d	
Fd (plants)	Fraction of diet consisting of plants		0.71	The Cornell Lab (2022b) ^a	0.41	USEPA (1993; Page 2-198); [Source: Wheelwright (1986)]	0		
Fd (inverts)	Fraction of diet consisting of soil invertebrates		0.29	The Cornell Lab (2022b) ^a	0.59	USEPA (1993; Page 2-198); [Source: Wheelwright (1986)]	0		
Fd (mammals)	Fraction of diet consisting of mammals		0		0		0		
Fd (benthic inverts)	Fraction of diet consisting of benthic invertebrates		0		0		1	USEPA (1993; Page 2-152); [Source: Maxson & Oring (1980)]	
Fd (fish)	Fraction of diet consisting of fish		0		0		0		

NOTES:

^aNorthern Cardinal body weight: average of body weight range for adults (42-48 g).

^bSurrogate value based on wild turkey.

^cSpotted Sandpiper body weight: mean body weight of adult male (37.9 g) and female (47.1 g).

 $^{\rm d}\mbox{Stilt}$ sandpiper is used as a surrogate for spotted sandpiper.

TABLE 9 Species Factors for HQ Calculations for BERA August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Parameter	Description	Units	Mallard	Source	Snowy Egret	Source
BW	Body weight of receptor	Kg	1.134	USEPA (1993; Page 2-43); [Source: Nelson & Martin (1953)] ^a	0.371	Parsons et al. (2000)
Food IR	Ingestion rate of food	Kg/Kg BW/d	0.05	Nagy (2001)	0.116	Nagy (2001)
Soil / Sediment Ingestion	Ingestion Proportion of soil or sediment	Fraction of Total Diet	0.033	Beyer et al. (1994)	0.005	Sample and Suter (1994 ; Section 4.13; Page 27) ^c
Fd (plants)	Fraction of diet consisting of plants		0.5	USEPA (1993; Pages 2-44 and 2-45); [Source: Dillon (1959); Swanson et al. (1985)] ^b	0	
Fd (inverts)	Fraction of diet consisting of soil invertebrates		0		0	
Fd (mammals)	Fraction of diet consisting of mammals		0		0	
Fd (benthic inverts)	Fraction of diet consisting of benthic invertebrates		0.5	USEPA (1993; Pages 2-44 and 2-45); [Source: Dillon (1959); Swanson et al. (1985)] ^d	0.1	Smith (1997) ^d
Fd (fish)	Fraction of diet consisting of fish		0		0.9	Smith (1997) ^d

NOTES:

^aMallard body weight: Mean body weight of adult male (1,225 g) and adult female (1,043 g).

^bMallard diet: Dillon

^cSurrogate value based on great blue heron.

^dSnowy egret diet (based on % biomass stomach contents): fish (91.4%), crayfish (6-7%); frogs (1%); invertebrates (1%; [insects, grass shrimp]).

TABLE 9 Species Factors for HQ Calculations for BERA August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Parameter	Description	Units	Swamp Rabbit	Source	Marsh Rice Rat	Source	American Mink	Source
BW	Body weight of receptor	Kg	2.118	Bond et al. (2006) ^a	0.0625	Wolfe, J. (1982) ^d	1	Sample and Suter (1994; Page 18; Table 4.6); [Source: Newell et al. (1987)]
Food IR	Ingestion rate of food	Kg/Kg BW/d	0.13	Sample and Suter (1994; Section 4.5, Page 16) ^b	1994; Section 4.5, 0.112 Nagy		0.137	Sample and Suter (1994; Page 18; Table 4.6); [Source: Bleavins and Aulerich (1981)]
Soil / Sediment Ingestion	Ingestion Proportion of soil or sediment	Fraction of Total Diet	0.063	Sample and Suter (1994; Section 4.5, Page 17) ^b	4; Section 4.5, 0.094 Beyer et al. (1994)		0.005	Sample and Suter (1994; Page 18; Table 4.6)
Fd (plants)	Fraction of diet consisting of plants		1	USEPA (1993; Page 2-356); [Source: Spencer & Chapman (1986)] ^c	0.5	Wolfe, J. (1982)	0	
Fd (inverts)	Fraction of diet consisting of soil invertebrates		0		0		0	
Fd (mammals)	Fraction of diet consisting of mammals		0		0		0.22	Dolan (1986)
Fd (benthic inverts)	Fraction of diet consisting of benthic invertebrates		0		0.5	Wolfe, J. (1982)	0.64	Dolan (1986)
Fd (fish)	Fraction of diet consisting of fish		0		0		0.14	Dolan (1986)

NOTES:

^aSwamp rabbit body weight: arithmetric mean of adult males and females.

^bSwamp rabbit diet (based on Eastern cottontail) is converted to dry weight assuming 45% moisture in food.

 $^{\rm c}{\rm Swamp}$ rabbit soil ingestion rate is based on black-tailed jackrabbit.

^dMarsh rice rat: average of body weight range for adults (45g-80g).

^eMarsh rice rat: Raccoon is used as a surrogate for marsh rice rat.

TABLE 10 Exposure Modifying Factors (EMFs) for Receptors for BERA August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Parameter	Description	Northern Cardinal	American Robin	Spotted Sandpiper	Mallard Duck	Snowy Egret	Swamp Rabbit	Marsh Rice Rat	American Mink	Citations
Home Range	Home Range of receptor (acres)	34 ^a	0.61 ^b	8°	405 ^d	490 ^e	7.9 ^f	0.66 ⁹	216 ^h	The Cornell Lab (2022b); USEPA (1993) [Source: Pitts (1984); Howell (1942); Maxson and Oring, L. et al. (1980); Gilmer. et al. (1975); Custer & Osborn (1978)]; Gould, A. (1974); Wolfe, J. (1982); Halbrook (2018)
Spatial Factor	Fraction of home range that may be contaminated	0.0015	0.082	0.0063	0.00012	0.00010	0.0063	0.076	0.00023	Spatial Factor = potentially affected area ÷ receptor home range, with an upperbound value of 1 (100%) Calculated based on estimated size of potentially affected area (assumed 0.05 acre)
Time (Temporal) Factor	Fraction of time spent in presumed contaminated area	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	Based on the amount of time the animal spends in the affected area

NOTES:

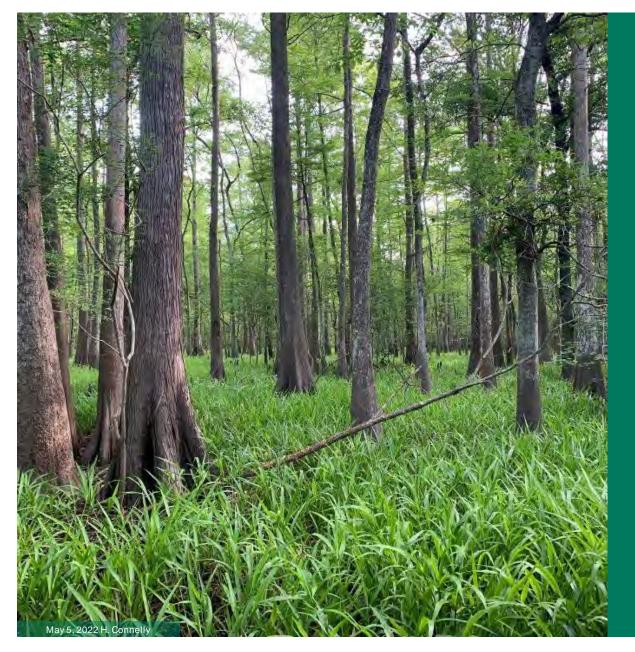
^aThe Cornell Lab (2022b); Average of minimum breeding home ranges.

^bUSEPA (1993) [Source: Pitts (1984); Howell (1942)]; Average of mean territory sizes.

^cUSEPA (1993) [Source: Maxson and Oring, L. et al. (1980)]

^dUSEPA (1993) [Source: Gilmer. et al. (1975)]; Average of male and female home ranges.

^eUSEPA (1993) [Source: Custer & Osborn (1978)].


^fGould, A. (1974); Average of adult male (10.6 acres) and female (5.14 acres) home ranges.

⁹Wolfe, J. (1982); Average of adult male (0.81 acres) and female (0.51 acres) home ranges.

^hHalbrook (2018); Based on maximum home range of males and females.

ATTACHMENTA PHOTOGRAPHS

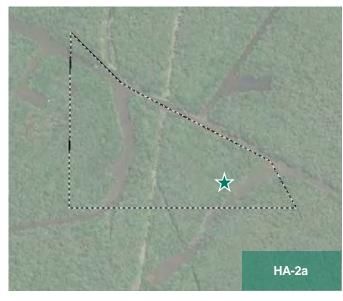
November 2022

Attachment A-1

Photographs of Natural Communities at the Property

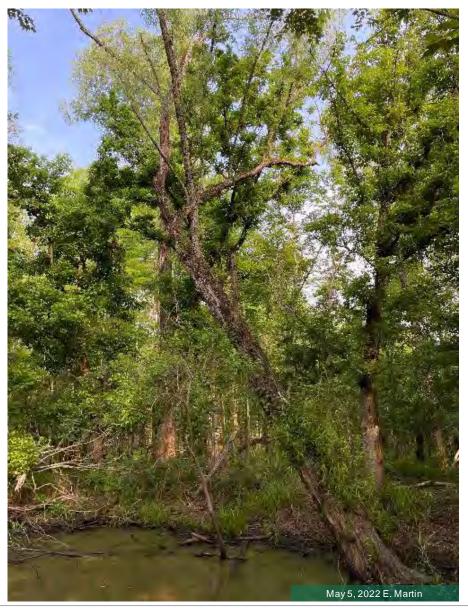
August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Cypress Swamp

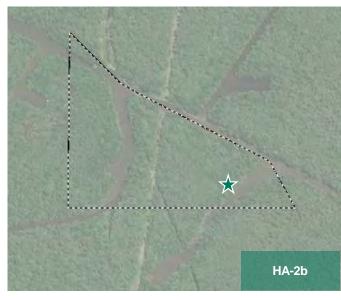


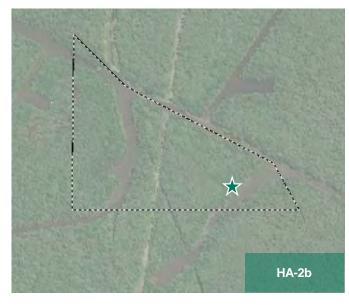
www.erm.com Page 13 of 36

Cypress Swamp

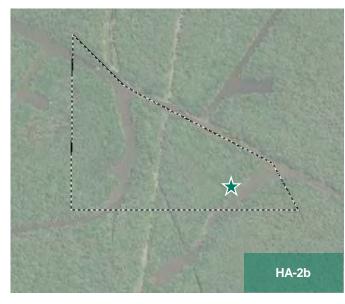


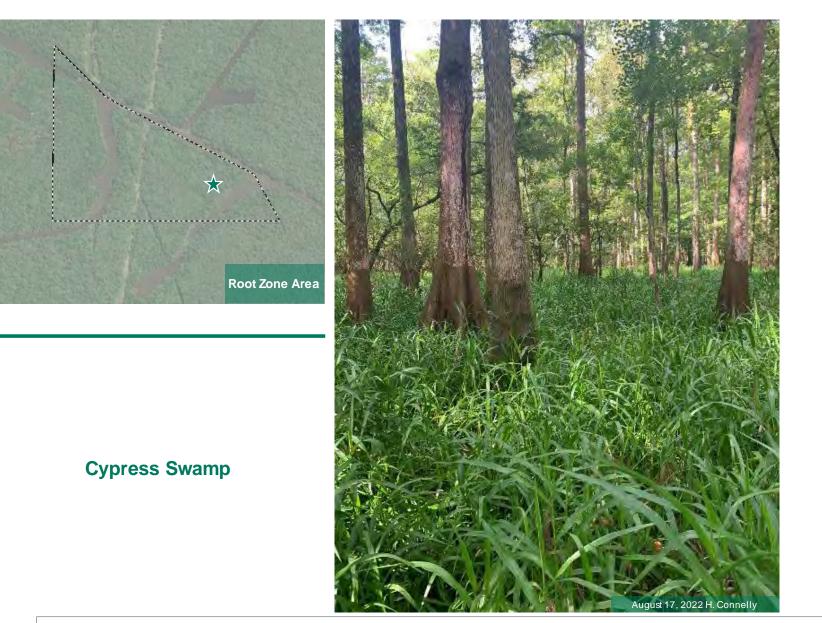
Cypress Swamp

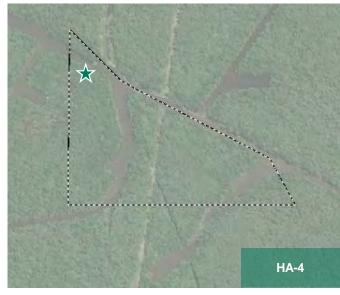


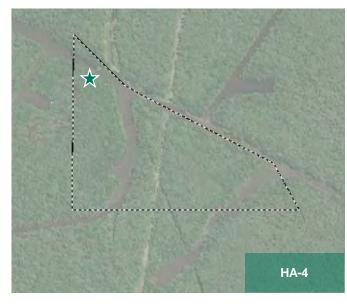


HOU\Proj\0645446\DM\30584H(AppA-1).pdf August Levert_BP Plan_009616


www.erm.com Page 16 of 36

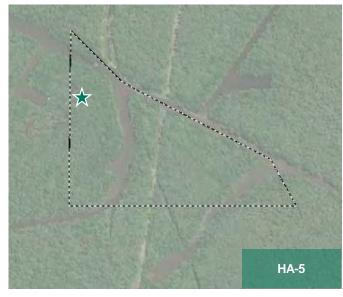






Bottomland Hardwood Forest

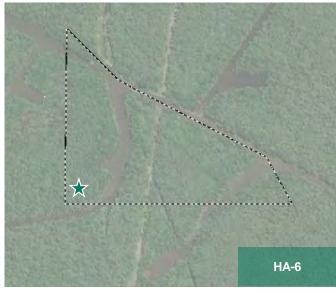
Bottomland Hardwood Forest

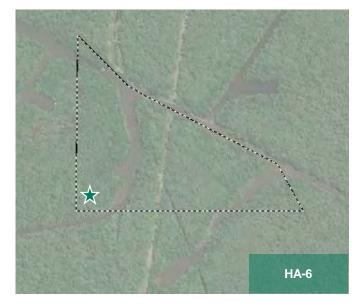

Emergent Marsh

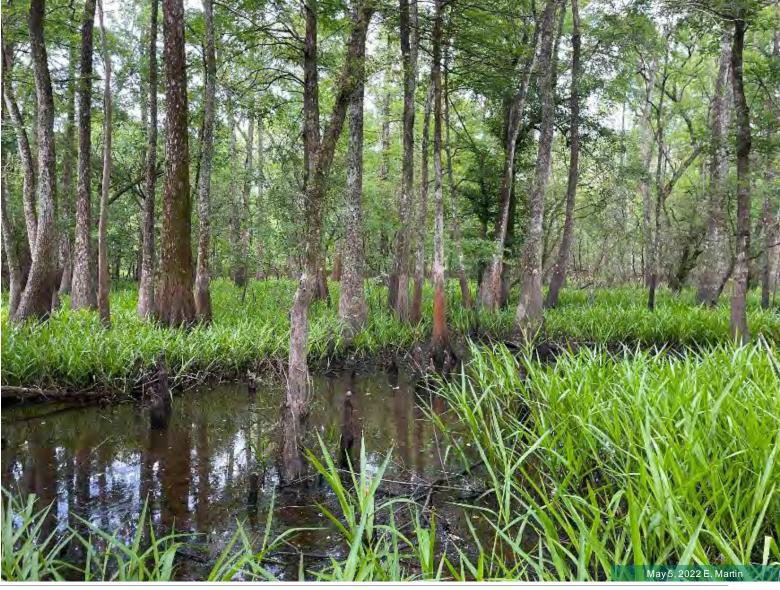
May 5, 2022 H. Connelly HOU\Proj\0645446\DM\30584H(AppA-1).pdf August Levert_BP Plan_009628

Bottomland Hardwood Forest

Bottomland Hardwood Forest







Attachment A-2

Photographs of Vegetation at the Property

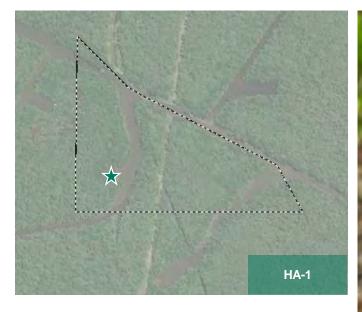
August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Sawtooth blackberry

Rubus argutus

Wetland Classification

FAC


Sedge

Carex spp.

Wetland Classification

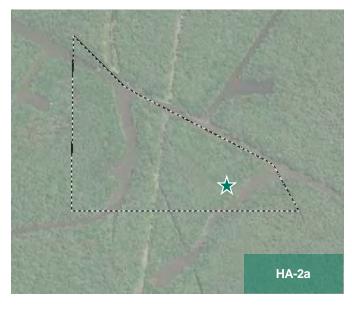
NA

Bluejacket

Tradescantia ohiensis

Wetland Classification

FAC


Bulbous bittercress

Cardamine bulbosa

Wetland Classification

OBL

Planertree

Planera aquatica

Wetland Classification

OBL

Ravenfoot sedge

Carex crus-corvi

Wetland Classification

OBL

Whitenymph

Trepocarpus aethusae

Wetland Classification

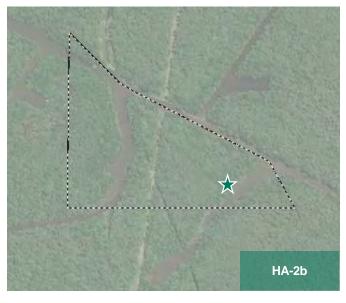
FACW

Whitenymph

Trepocarpus aethusae

Wetland Classification

FACW


Common chickweed

Stellaria media

Wetland Classification

FACU

Common yellow oxalis

Oxalis stricta

Wetland Classification

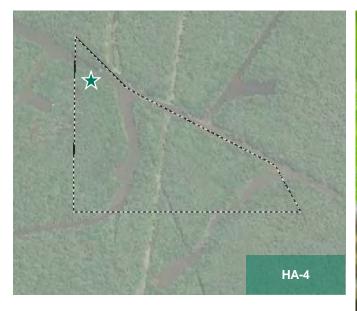
UPL

Fivelobe cucumber

Cayaponia quinqueloba

Wetland Classification

FAC


Looseflower water-willow

Justicia ovata

Wetland Classification

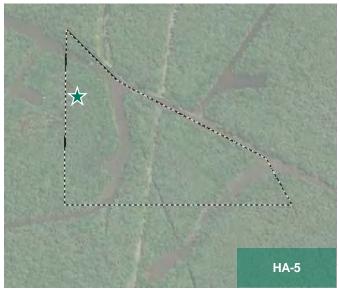
OBL

Clasping Venus' looking-glass

Triodanis perfoliata

Wetland Classification

FACU


Marsh seedbox

Ludwigia palustris

Wetland Classification

OBL

Stiff marsh bedstraw

Galium tinctorium

Wetland Classification

FACW

Attachment A-3

Photographs of Wildlife at the Property

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Prothonotary Warbler

Protonotaria citrea

Diet

Insects

Eastern lubber grasshopper

Romalea microptera

Trophic Level

Primary

Gulf coast toad

Incilius nebulifer

Trophic Level

Secondary

Oblong-winged katydid

Amblycorypha oblongifolia

Trophic Level

Primary

Six-spotted fishing spider

Dolomedes triton

Trophic Level

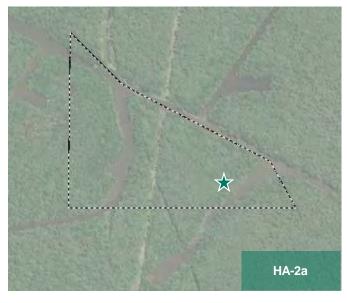
Secondary

Western ratsnake

Pantherophis obsoletus

Trophic Level

Tertiary


Toad

Family Bufonidae

Trophic Level

Secondary


Red-Bellied Woodpecker

Melanerpes carolinus

Diet

Insects

Spanish moth caterpillar

Xanthopastis timais

Trophic Level

Primary

Snail

Class Gastropoda

Trophic Level

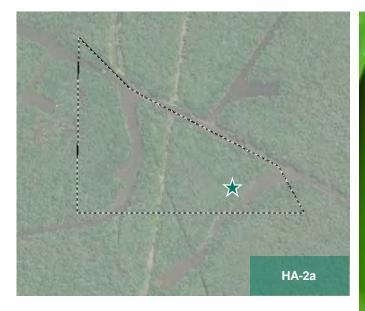
Primary

Spanish moth caterpillar

Xanthopastis timais

Trophic Level

Primary


Spider nest

Order Araneae

Trophic Level

Secondary

Grasshopper

Infraorder Acrididea

Trophic Level

Primary


White-Eyed Vireo

Vireo griseus

Diet

Insects

Great blue skimmer

Libellula vibrans

Trophic Level

Secondary

Grasshopper

Infraorder Acrididea

Trophic Level

Primary

Cottonmouth

Agkistrodon piscivorus

Trophic Level

Tertiary

Fourteen spotted leaf beetle

Cryptocephalus guttulatus

Trophic Level

Primary

Pale-bordered field cockroach

Pseudomops septentrionalis

Trophic Level

Primary

Harvestman spider

Order Opiliones

Trophic Level

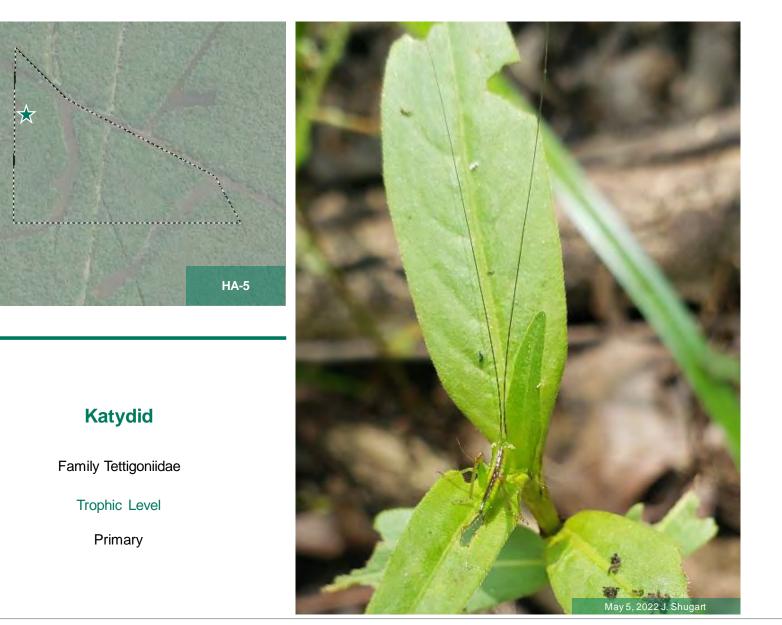
Secondary

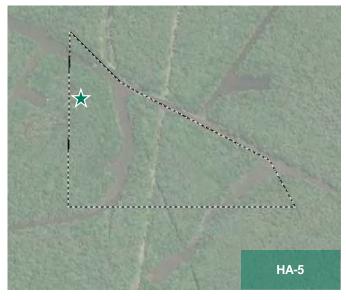
Alligatorweed flea beetle

Agasicles hygrophila

Trophic Level

Primary




Snake

Suborder Serpentes

Trophic Level

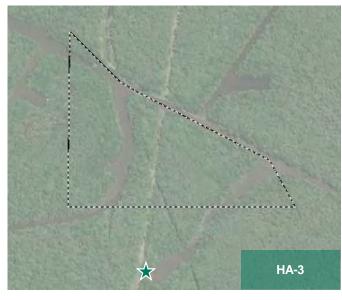
Tertiary

Harvestman spider

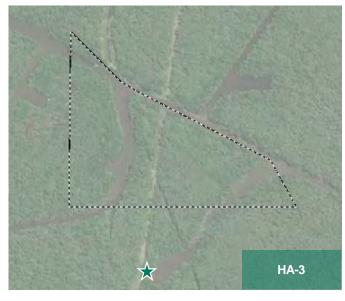
Order Opiliones

Trophic Level

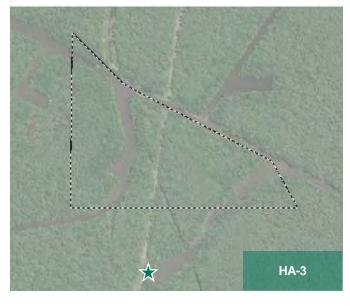
Secondary



Attachment A-4

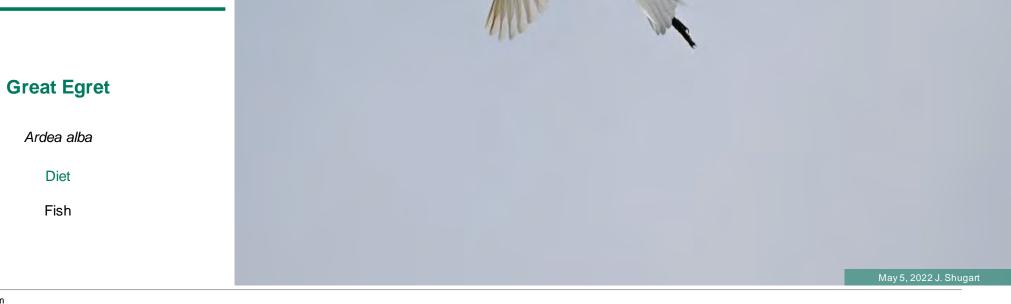

Photographs of HA-3 (Off-Site) Vegetation and Wildlife

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

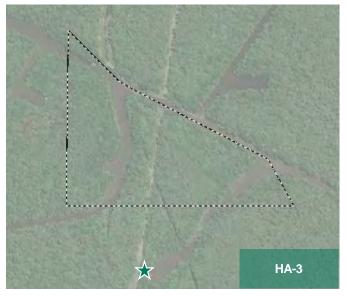

Emergent Marsh

Emergent Marsh

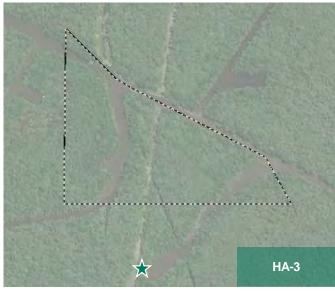
Shoreline sedge


Carex hyalinolepis

Wetland Classification


OBL

www.erm.com Page 5 of 11


Neotropic Cormorant

Phalacrocorax brasilianus

Diet

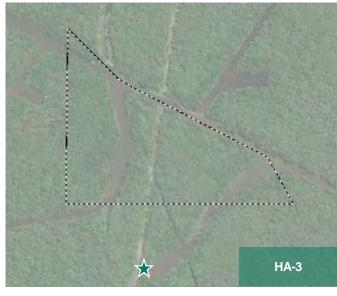
Fish

Common five-lined skink

Plestiodon fasciatus

Trophic Level

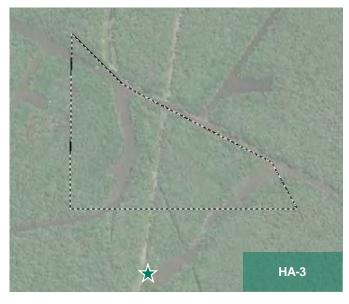
Secondary


Tussock moth caterpillar

Orgyia spp.

Trophic Level

Primary


Crawfish trap

Order Decapoda

Trophic Level

Secondary

Giant floater mussel

Pyganodon grandis

Trophic Level

Primary

Lovebug

Plecia nearctica

Trophic Level

Primary

Attachment A-5

Photographs of Sherburne Wildlife Management Area

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Southern leopard frog May 5, 2022 J. Shugart

Bottomland Hardwood Forest

Bottomland Hardwood Forest

American alligator

Alligator mississippiensis

Trophic Level

Apex

Yellow-Crowned Night Heron

Nyctanassa violacea

Diet

Aquatic Invertebrates

Common eastern firefly

Photinus pyralis

Trophic Level

Primary

Bottomland Hardwood Forest

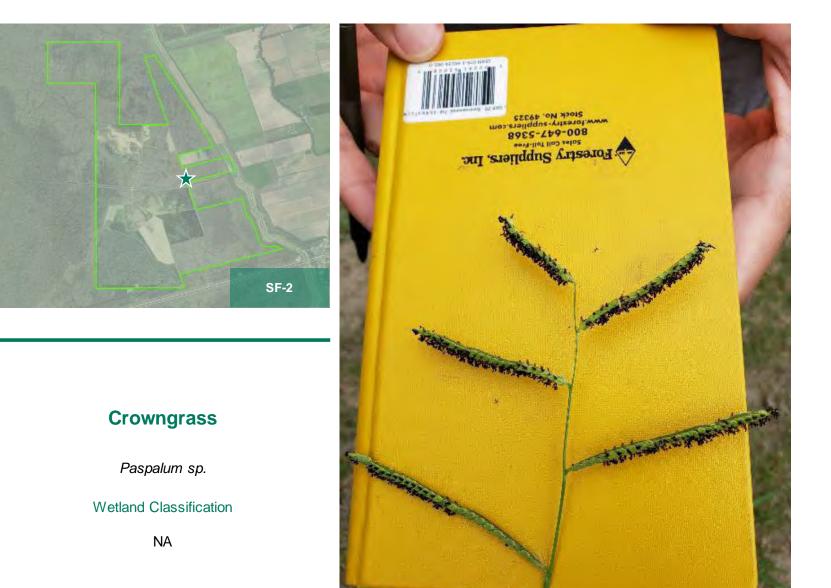
Bottomland Hardwood Forest

Eastern bluestar

Amsonia tabernaemontana

Wetland Classification

FACW


Hop sedge

Carex lupulina

Wetland Classification

OBL

May, 5, 2022 J. Shugart

Ravenfoot sedge

Carex crus-corvi

Wetland Classification

OBL

Unknown herb/forb

Unknown

Wetland Classification

Unknown

Caterpillar

Symmerista spp.

Trophic Level

Primary

Crescent butterfly

Nymphalinae

Trophic Level

Primary

Southern leopard frog

Lithobates sphenocephalus

Trophic Level

Secondary

Bottomland Hardwood Forest

Bottomland Hardwood Forest

Raccoon

Procyon lotor

Trophic Level

Secondary

ATTACHMENT B FIELD NOTES

November 2022

Location Grand River Date 5/5/22 Location Grand River Date 5/5/2215 Project/Client_Levert Project/Client_Levert 7:20 Safety meeting " Jack Miller's landing Plaquemine Domes Redd-Robinette 7:53 Vegetation survey pit perimeter 4 photos HA-2. White eyed viveo chickadee George Arreneaux Donald Watts Jake VanCoevering Northern parula cypress (bald) elm (american) Topp WERE Wallis Nayden Wallis Sonathan Neon cottonmosth grass Jody Cohugart Empy Martin P grasshopper tallow mosquitoes 7:35 Nead out to site to HA-2 red eyed vireo dewberry (southern sugarberry Alligator prothonatary worbler dragonty poisoniuy lemna apiaceae sp. stug snail sp. japenese clime P p = Jody photo photo = Nelen photo HOU\Proi\0645446\DM\30584H(AttB) age 1 of 18

Location Grand River Date 5/5/22 Project/Client Levert 46 Location Grand River Date 5/5/2-47 Project / Client ____Lever+ frog sp. box elder brunichia obovata red maple bee 5p. Castern pondhawk butterweed carrot harvestman grape spider downy woodpecker water elm spider 5p. carolina coralbead pileated woodpecker fern fern sp. cypress kneen! american persimmon grasshopper sp alligator weed (soft wet soil (#2) P. Flowering Sporge. daddy Vonglegn common Salvina deciduas holly photo HA-2 cardinal trumpet creeper photo ItA-2 8:30 Pit #1@ HA -7 Black willow Swallow tail catego Sizard tail. Diller P' Box elder Red mappe spring spider eele Vinginia dayflower coref sp. Fallow apac Sp. (carrot) Page 2 of 18 HOU\Proj\0645446\DM\30584H(AttB).pdf

Location Grand Rivert Date 5/3/22 Location Grand River Date 5/5/22 49 Project / Client Lever + Project/Client Levert Caroline coralbean caroling, He Virginia day Flower Persimon canadian black snake root tall ironweed or Peppervine jovenile cypress horned beak sedge american germander photo pit #1 poison ivy panicumusp. Swamp smartweed Lemna prothonory voorbler white eyed vireo red bellied voodpecky Cottonmouth grass Acadian flycather cardinal Date plowering boneset basket grass frog sp. American crow japenese climbong fern Eastern black nightshade dragon fly water oak butter weed white-eyed vireo resurection bern opple snall spider lily fadies earcrop wasp marsh fern virgina creeper HOU\Proj\0645446\DM\30584H(AttB).pdf Page 3 of 18

August Levert_BP Plan_009712

Location: Grand River Date 5/5/22 Location Grand River Date 5/5/2.2 51 Project / Client ____Levert Project / Client Lever + Green flatsedge blackberry sugarberry crawfish photo HA-2 pit#1 grasshopper sp. Sou then shield fem alligator weed p. 100se flower water willow water locust 3 photos George, rody, Emily looking terr Vireo White-eejed) fish crow chimney swift skink J (little brown heart leafed nettle 9:15 Back to boat condinal common chickweid Southern dewberry spring spider lels photo pit #1 14A-2 melon sp sonchus asper clover clover eastern ponchank sugarberry GIS coordinates HA-Z Pit #1 at Past side of pit 30,194945 P 91.337651 Pit #2 HA. 2 eas f side of pit P. 30.195160 91. 338058 9:20 Buck to boat aga Page 4 of 18 HOU\Proj\0645446\DM\30584H(AttB).pdf

August Levert_BP Plan_009713

Location Grand River Date 5/5/22 Project / Client Levert Location Grand River Dars 5/5/22 58 Project / Client Levert yellow throated vires tryted titmouse chickadee beaver (chewed tree) 9:29 traveling to HA-From HA-2 little blue heron along pipeline right of way. frog 3 photos HA-1 at pit sonchus asper réd bellied woodpecker 9:33 Avrive HA-1 progra pboto blackberries HA-1 cypress bu Herweed BPS on eastside of crawfish spider wort (ohio) pit ladies eardrops 30, 195519 Virginia creeper souther semberr 91.341749 cotton mouth grass Common salvinia blackberry tallow box elder red - bellied woodpecky prothonotary 1 worbler K X Page 5 of 18

August Levert_BP Plan_009714

Location Grand River Date 5/5/22 Location Grand River Date 5/5/22 55 Project / Client Lever F Project / Client ______ P. Stender yellow oxalis panicum sp. sp. oak sp. (Schumbods) blue mist flower dragonfle p. snake in Log boneset (late flowers carolina geranium chickade cherokee 144 Curex Sp. Barred owl Eastern Ivbber hickory (water) sugarberry red maple bald appless yellow throated vireo loose flower watervillon carrot sp. carex sp. #2 carex sp. #2 peppervine lizard's tongue travel to MA-O From HA-Solf Coast toad 3 photos HA-6 standing water elm horned beaksedge very wet soil 6PS: 30.194890 trumpet creeper poison ivy fred-eyed vireo 91, 342246 P. prothonal & worklar covoling wier persimmon Nower elevation, holds no evidence p. diamond back woiter 4of hydrocarbon snake 5'long Page 6 of 18

Location Grand River Date 5/5/22 Project/Cliant Levert Project / Client Lever + american crow moth red-eyed vineo cardinal ladybuch horned beaksedge ants frog grasshopper Castern pondhaude mostrito water elm moss crane bly Water en ant 2 photos@HA-6 nohydro-carbon, Icon Ibcatin justicla spider sp. red bellied wood turkey vulture (from boat near HA-1) 10:55 arrive at near HA-4 and HA-5 pecker photo iberville remediation swamp smartweed p. 6-3poffed bishop Spider 30,1987787 to HA-S 91.34233 11:07 arrive MA-S d HOU\Proj\0645446\DM\30584H(AttB).pdf Page 7 of 18

August Levert_BP Plan_009716

Location Grand River Date 3/5/22 Location Grand River Date 5/5/22 59 Project / Client Levent Project / Client _ Lever + HA-5 30.197757 water elm a photos HA-5 wet soil leaf litter rough leaf dogwood harvestman water hickory ladies eardrops bitter pecan red maple crawfish tower eastern pondhawk trumpet creeper tallow Ivdnigea rapens p. dragonblig gallivm sp. beetle sp. swamp smartweed (dainty,9 lead) Owner can elm grasshopper sp. Prothontary warbler grasshopper #2. Ned. shouldered hawk horned beak sedge water honey locust eastern ponchaw k red-eyed vireo perpervine Perausbish Swamp privet white-eyed vireo coltomouth snake photo cottonmonth snak resurrection fern photo Fros Schumdrd fern yellow - billed cuckoo HOU\Proj\0645446\DM\30584H(AttB).pdf Page 8 of 18

Location Grand River Date 5/5/22_ Project/Client Levert 60 Location Grand River Dats/5/22 61 Project / Client Levert red-bellied wood Southern deuberry blue mist fromer checked for salt spittle bug persimmon free elderberry parameters 10 Snags 10 Crystals 10 yellon 10 stunting 10 halophytes 10 salt species 00 box elderd no tallow no p: cool beetles poisonivy spail box elder 11:30 Head to HA-A red maple prothonatry wallsler 6 PS: 30,197757 91:342409 white eyed vireo cande blk snake root oak sp. sheels in soil carolind wren golidago radies cardrop soil is drier no salt indicators perpervine 1 trompet vine lizard Pmosque ito black berry eastern pondhawk Page 9 of 18 HOU\Proj\0645446\DM\30584H(AttB).pdf

Location Grand River Date 5/5/2263 Project/Client Levert Location Grand River Date 5/5/22 Project/Client_Levert tricolored heron moth wild strawberry high bush blackbury venus lookig glass? J photo HA-4 white sweet clover. photo HA-4 earoling corebean heading from HA-4 to HA-3 in Boot, white perch alligator P. 12:30 at HA-3 30.1928474 mulberry (red) mammal burrow 91, 340215 Great blue heron white eyed vireo boneset Virginia creeper roughleap dogwood water oak blue grey gnait tufted titmour prothonotary war bler pit no water easter pondhawk Sanchus asper Sugarberry red maple peppervine water oah butterveed fallon tree 12:00 Head to boat vapenere honeysuche mimosa on path HA-4 Dout 10 Page 10 of 18

64 Location _ Grand River Date 5/5/22 Location Grand River Date 5/5/22 65 Project / Client Levert Project/Client_Levert Vouch leaf dogwood Ladies eartrops Carolina covalbeau Palmetto (swarg) Box elder Sow thistle yellow thistle N. Parila Vapenese climbing fen Cottonmonth grass Sanchus asper Sugarbery Spanish more American Elm Southern deubery mosquitos virginia creeper carrot Sp. HC water elm butter weed Foughleaf dogwood black willow heart loop nettie spring spider I horned beak sedere SKINK common chickweed Canda blik Enghervot Voorgia japonica poison ivy Shumards oak '5. Shield ferm roughleaf dogwood cavex sp # 2 lovebug resurection form persimmon bigh bigh blackber catter pillar p. CAVEX SP Page 11 of 18 HOU\Proj\0645446\DM\30584H(AttB).pdf

Project/Client_Levert Location Grand River Date 5/5/22 67 Project / Client Lever + bashet grass mammal burrow copper isis broad headed skink Sugarberny Bald cypress mosquitees Schumord oak Panicum sp. Smilix bong-nox apple snall great caret Persimmon harvestman 2 photos Sp=-1 2 photos Sp=-1 eastern pondhawk peppervine Swamp privet Back at Jaunch 1:30 3:20 Sherburne WMA South Farm Unit Galtium sp. (as site) Froc water hickory Location SF-1 30,415310 91. 526872 Ladies eardrops red-bellied woodpech Acaid Flycatcher N. Parula Frothonowy Warbler Vitis sp (same as site) rabbit pellets trumpet creeper spanish moss sweet sum spicer Page 12 of 18 HOU\Proj\0645446\DM\30584H(AttB).pdf

Location Grand River Date 5/5/22 69 Project/Client Levert Location Grand River Date 5/5/22 Project / Client _____ Lever + E. bluestar S. dewberry iris sp. (likey coper carolina coralbean rough leaf dogwood oak left litter wet soil, some standy water p. bug horned beak sedge p. Carex 5p 15:53 panicom sp * maidencane peppervine persimmen p. corex sp 2 15:58 tallow neg poisonivy trumpet creeper red maple water hickory moth circolina geranium in hythrop sp. symphio tryhum sp. schumerd oak traveling to SF-2 see alligator chickadee yellow crown night heron vitis sp. Clikesite E. pondhawk cricket spotted ladies thumb 3:51 SF-2 30,414984 91,532199 black willow E. bluestar Page 13 of 18 HOU\Proj\0645446\DM\30584H(AttB).pdf

Project/Client_LEVENT Location Grand Raver Date 5/5/22-71 Project / Client ____Lever + caterpillar sugarberns peppervine Sadies eardrops butterweed Bald appears southern Deopard frog 2 photos 2 SF-2 Southern densberry chickadee 4:14 SF - 3 30,414318 91. 330441 ladies eardrops swamp & martweed bald cypress ned maple mosquito Mosquito Water hickory Sugarberry J. Aupello 2 photos SF-3 Joose Flower water willow trumpet creeper VIFis sp Carex Sp. Sufferweed tallow prothonating warbler red-winged black butterfly bird Tvanessa sp. Ps american crow cardinal Shumands oak poper basp harvestnen prothon 2 works 2 HOU\Proj\0645446\DM\30584H(AttB).pdf Page 14 of 18

August Levert_BP Plan_009723

Location Grand River Date 5/5/22 Project / Client Levert 73 Location Project / Client ants ants box elder maidencane Smilax bona-nox peppervine - E. bluestar ohickuch fizð end site p. raccon thaby on the • 2 Page 15 of 18 HOU\Proj\0645446\DM\30584H(AttB).pdf

August Levert_BP Plan_009724

August Levert Date 8/17/22117 Jude Baudoir Matt G 200 Jalli h Va a n 1200 0 Jan BON 10 1 a sau (1)his al UC SV family house way 51 to Dea (Q' 1230 near - HA 9:10 Seco HOU\Proj\0645446\DM\30584H

August Levert_BP Plan_009725

august i evert \$/17/22 Levert 8645446 9:31 photo grassheppen beyond HA-Z 9:41 HET clearine grasses around -cypuss to to root study_ water depth 3-4" 9:43 Poto Devel on trees near cypress "root zone tree " 9:51 video Matt Green root zone study 10:20 Head to HA-4 10:35 2 photos Standy water 14-42 area Page 17 of 18

3/17/22 0645446 moist soil, wet Voter is 411 deep 10:40 photo HA-4 standy water 10:45 photo HA-5 2" deep water standiz 10:49 head to HA-1 10:56 at HA-1pit 2 photos standing water at HA-1 pit 4" deep water in area 11:02 Nead back to HA-Z Hay den says there HOU\Proji0645446\DM\30584H(AttB).pdf

August Levert_BP Plan_009726

Project/Client 0645446 Date 8/17/22 120 11:15 Heading to landing 11:19 Back to tack of Niller 1 Page 18 of 18 HOU\Proj\0645446\DM\30584H(AttB).pdf August Levert_BP Plan_009727

ATTACHMENTC RECAP FORM 18

November 2022

ATTACHMENT C

RECAP FORM 18 ECOLOGICAL CHECKLIST

Section 1 - Facility Information

- 1. Name of facility: <u>Levert Property</u>
- 2. Location of facility: Section 15 of Township 10 South, Range 11E, within the Grand River Oil and Gas Field

Parish: Iberville Parish, Louisiana

- 3. Mailing address: <u>NA</u>
- 4. Type of facility and/or operations associated with AOC: Oil and gas exploration and production (E&P)
- 5. Name of AOC or AOI: Levert Property (BP former operational areas)
- 6. If available, attach a USGS topographic map of the facility and/or aerial or other photographs of the release site and surrounding areas.

Section 2 - Land Use Information

- 1. Describe land use at and in the vicinity of the AOC/AOI: <u>The Property is approximately 55 acres of wetland</u> <u>cypress tupelo swamps and bottomland hardwood forests. Permanent residential structures were not</u> <u>observed on the Property. Current and potential future land uses include oil and gas E&P operations,</u> <u>recreational (hunting, fishing), undeveloped, and silviculture.</u>
- 2. Describe land use adjacent to the facility: <u>The surrounding areas are also wetlands with similar anticipated land uses.(oil and gas E&P operations,</u> <u>recreation (hunting, fishing), undeveloped, and silviculture.</u>
- 3. Provide the following information regarding the nearest surface water body which has been impacted or has the potential to be impacted by COC migrating from the AOC/AOC:
- a) Name of the surface water body: <u>Willow Lake and unnamed canals are present within the Levert Property.</u> <u>Additionally, the Levert Property contains USFWS designated freshwater emergent wetlands and freshwater</u> <u>forested/shrub wetlands throughout.</u>
- b) Type of surface water body:
 - [] freshwater river or stream
 - [X] freshwater swamp/marsh/wetland
 - [] saltwater or brackish swamp/marsh/wetland
 - [X] lake or pond
 - [] bayou or estuary
 - [] drainage ditch
 - [X] other: canal
- c) Designated use of the segment/subsegment of the surface water body (LAC33:IX): <u>The Levert Property is</u> <u>located within the LDEQ Subsegment #120107 (Upper Grand River and Lower Flat River – From headwaters</u> to Intracoastal Waterway) and has the following designated uses: primary and secondary contact recreation, and fish and wildlife propagation.
- d) Distance from the AOC/AOI to nearest surface water body: <u>0 feet. The nearest named surface water body</u>, <u>Willow Lake</u>, intersects the Levert Property from north to south. Two canals also traverse the Levert Property.

HOU\Proj\0645446\DM\30584H(AttC).pdf

4. Do any potentially sensitive environmental areas exist adjacent to or in proximity to the site, e.g., federal and state parks, national and state monuments, wetlands, etc? [X] Yes [] No

If yes, explain: Wetlands are present within and surrounding the Levert Property.

Section 3 - Release Information

- 1. Nature of the release: <u>Investigation of potential releases associated with BP former E&P operations.</u>
- 2. Location of the release (within the facility): <u>Sampling was performed in various areas of the Levert Property</u>, including the vicinity of BP former operational areas.
- 3. Location of the release with respect to the facility property boundaries: <u>Potential releases are limited within</u> the Levert Property boundaries.
- 4. Constituents known or suspected to have been released: <u>Constituents are associated with petroleum</u> exploration & production include salts, metals, and total petroleum hydrocarbons (TPH).
- 5. Indicate which media are known or suspected to be impacted and if sampling data are available:

[X]	soil 0 - 3 feet bgs	[X] yes [] no	suspected, sampling data available
[X]	soil 0 - 15 feet bgs	[X] yes [] no	suspected, sampling data available
[X]	soil >15 feet bgs	[X] yes [] no	suspected, sampling data available
[X]	groundwater	[X] yes []no	suspected, sampling data available
[]	surface water/sediment	[] yes [] no	

6. Has migration occurred outside the facility property boundaries? [] yes [X] no If yes, describe the designated use of the offsite land impacted:

Section 4 - Criteria for Further Assessment

If the AOI meets **all** of the criteria presented below, then typically no further ecological evaluation shall be required. If the AOI **does not** meet **all** of the criteria, then a screening level ecological risk shall be conducted. The Submitter should make the initial decision regarding whether or not a screening level ecological risk assessment is warranted based on compliance of the AOI with criteria listed below. After review of the ecological checklist and other available site information, the Department will make a final determination on the need for a screening level ecological risk assessment. If site conditions at the AOI change such that one or more of the criteria are not met, then a screening level ecological risk assessment shall be conducted. Answers shall be based on current site conditions (i.e., shall not consider future remedial actions or institutional or engineering controls).

Indicate if the AOI meets the following criteria:

- (1) The area of impacted soil is approximately 5 acres or less in size (based on the AOI identified for the human health assessment) and it is not expected that the COC will migrate such that the soil AOI becomes greater than 5 acres in size. [X] yes [] no
- (2) There is no current release or demonstrable long-term threat of release (via runoff or groundwater discharge) of COC from the AOI to a surface water body. [X] yes [] no
- Recreational species, commercial species, threatened or endangered species, and/or their habitats are not currently being exposed, or expected to be exposed, to COC present at or migrating from the AOI.
 [] yes [X] no Recreational species are present and are included in the risk assessment.
- (4) There are no obvious impacts to ecological receptors or their habitats and none are expected in the future.

Page 2 of 3

 $HOU\Proj\0645446\DM\30584H(AttC).pdf$

[X] yes [] no

Is further ecological evaluation required at this AOI? [X] yes [] no

An E&P-related ecological evaluation based on the data collected from the Levert Property is being conducted as a part of this investigation.

Section 5 - Site Summary

Section 6 - Submitter Information

Date: October 3, 2022

Name of person submitting this checklist: Helen R. Connelly, Ph.D.

Affiliation: Environmental Resources Management

Signature:	PL	LI	Date: October 3, 2022
0			

Additional Preparers:

 $HOU\Proj\0645446\DM\30584H(AttC).pdf$

ATTACHMENT D FLORA AND FAUNA

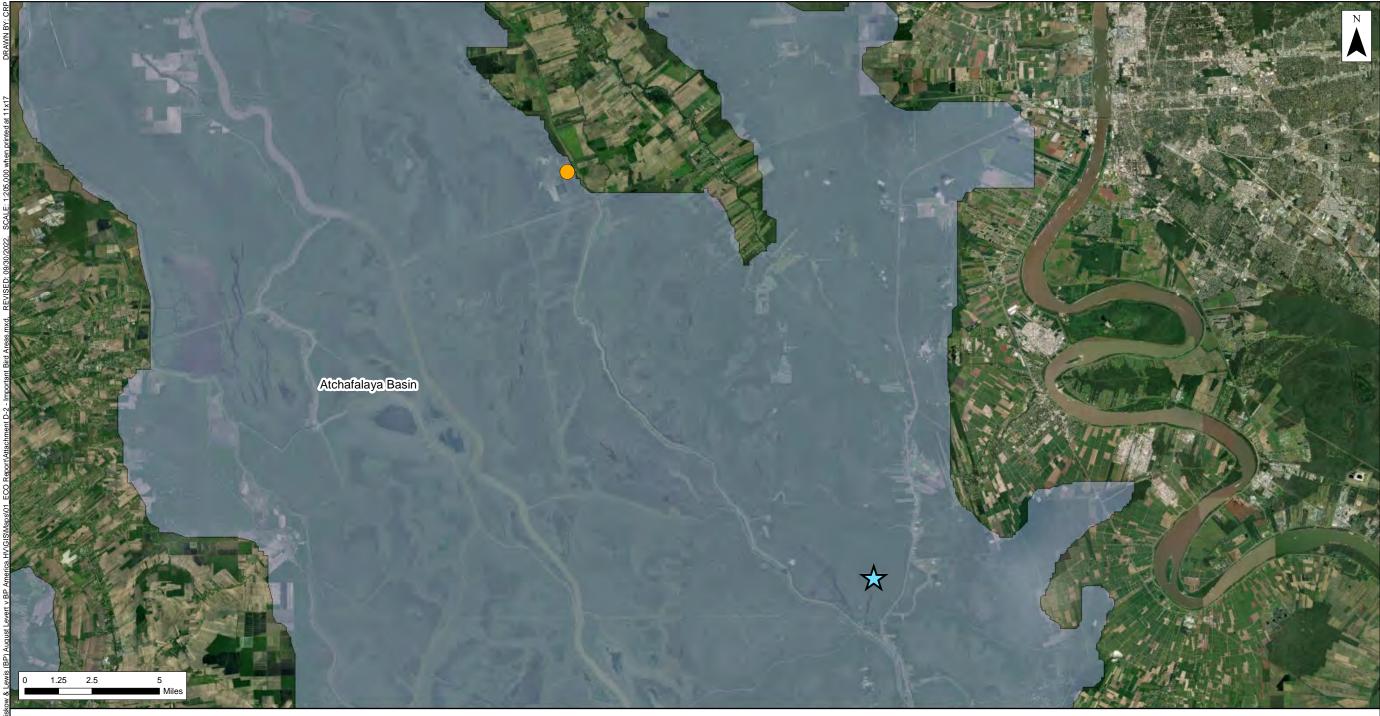
November 2022

ATTACHMENT D-1 Comparison of Plants Documented on the Property and at the Sherburne Wildlife Management Area Reference Area August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Common Name	Scientific Name	Property Checklist	Sherburne WMA Checklist
American buckwheat vine	Brunnichia ovata	\checkmark	\checkmark
Bald cypress	Taxodium distichum	\checkmark	\checkmark
Bedstraw	Galium spp.	\checkmark	\checkmark
Black willow	Salix nigra	√	\checkmark
Boxelder	Acer negundo	√	\checkmark
Butterweed	Packera glabella	 	 ✓
Carolina coralbead	Cocculus carolinus		 ✓
Carolina geranium	Geranium carolinianum	` ✓	 √
Chinese tallow	Triadica sebifera	 ✓	 ✓
Common persimmon	Diospyros virginiana	 ✓	 ✓
Eastern poison ivy	Toxicodendron radicans	 ✓	 ✓
Eastern swampprivet	Forestiera acuminata	 ✓	 ✓
			 ✓
Grape	Vitis spp.		
Looseflower water-willow	Justicia ovata	<i>√</i>	√
Oak	Quercus spp.	√	√
Panicgrass	Panicum spp.	√	<i>√</i>
Peppervine	Nekemias arborea	√	√
Ravenfoot sedge	Carex crus-corvi	√	√
Red maple	Acer rubrum	\checkmark	√
Roughleaf dogwood	Cornus drummondii	\checkmark	\checkmark
Sedge	Carex spp.	\checkmark	\checkmark
Shortbristle horned beaksedge	Rhynchospora corniculata	\checkmark	\checkmark
Shumard's oak	Quercus shumardii	\checkmark	\checkmark
Southern dewberry	Rubus trivialis	\checkmark	\checkmark
Sugarberry	Celtis laevigata	\checkmark	\checkmark
Swamp smartweed	Polygonum hydropiperoides	\checkmark	\checkmark
Trumpet creeper	Campsis radicans	\checkmark	\checkmark
Water hickory	Carya aquatica	\checkmark	\checkmark
Water tupelo	Nyssa aquatica	\checkmark	\checkmark
Aster	Symphyotrichum spp.		\checkmark
Copper iris	Iris fulva		\checkmark
Dallisgrass	Paspalum dilatatum		\checkmark
Eastern bluestar	Amsonia tabernaemontana		\checkmark
Hop sedge	Carex lupulina		\checkmark
Maidencane	Panicum hemitomon		\checkmark
Saw greenbrier	Smilax bona-nox		√
Spanish moss	Tillandsia usneoides		↓ ↓
Spotted ladysthumb	Polygonum persicaria		 ✓
Sweetgum	Liquidambar styraciflua		 ✓
Alligatorweed	Alternanthera philoxeroides	\checkmark	v
American elm	Ulmus americana		
	Justicia americana	/	
American water willow			
Basketgrass	Oplismenus hirtellus		
Blue mistflower	Conoclinium coelestinum	√	
Bluejacket	Tradescantia ohiensis	√	
Bulbous bittercress	Cardamine bulbosa	\checkmark	
Canada germander	Teucrium canadense	√	
Canadian black snakeroot	Sanicula canadensis	√	
Carrot	Family Apiaceae	\checkmark	
Clasping Venus' looking-glass	Triodanis perfoliata	\checkmark	
Clover	Trifolium spp.	\checkmark	
Common boneset	Eupatorium perfoliatum	\checkmark	
Common chickweed	Stellaria media	\checkmark	
Common yellow oxalis	Oxalis stricta	\checkmark	
Creeping primrose-willow	Ludwigia repens	\checkmark	
Duckweed	Lemna spp.	`. ✓	

ATTACHMENT D-1 Comparison of Plants Documented on the Property and at the Sherburne Wildlife Management Area Reference Area August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Common Name	Scientific Name	Property Checklist	Sherburne WMA Checklist
Eastern marsh fern	Thelypteris palustris	\checkmark	
Elderberry	Sambucus spp.	\checkmark	
Elm	Ulmus spp.	\checkmark	
Fern	Clade Tracheophyta	\checkmark	
Fivelobe Cucumber	Cayaponia quinqueloba	\checkmark	
Goldenrod	Solidago spp.	\checkmark	
Green ash	Fraxinus pennsylvanica	\checkmark	
Green flatsedge	Cyperus virens	\checkmark	
Heartleaf nettle	Urtica chamaedryoides	\checkmark	
Honey locust	Gleditsia triacanthos	\checkmark	
Indian strawberry	Duchesnea indica	\checkmark	
Japanese climbing fern	Lygodium japonicum	\checkmark	
Kunth's maiden fern	Thelypteris kunthii	\checkmark	
Lateflowering thoroughwort	Eupatorium serotinum	\checkmark	
Lizard's tail	Saururus cernuus	\checkmark	
Long's sedge	Carex longii	\checkmark	
Marsh seedbox	Ludwigia palustris	\checkmark	
Melon	Family Cucurbitaceae	\checkmark	
Moss	Bryophyta	\checkmark	
Nuttall oak	Quercus texana	\checkmark	
Pecan	Carya illinoinensis	\checkmark	
Planertree	Planera aquatica	\checkmark	
Possumhaw (Ilex genus)	llex decidua	\checkmark	
Red mulberry	Morus rubra	\checkmark	
Resurrection fern	Pleopeltis polypodioides	\checkmark	
Savannah-panicgrass	Phanopyrum gymnocarpon	\checkmark	
Sawtooth blackberry	Rubus argutus	\checkmark	
Sieva bean	Phaseolus lunatus	\checkmark	
Slender yellow woodsorrel	Oxalis dillenii	\checkmark	
Spider lily	Hymenocallis occidentalis	\checkmark	
Spiny sowthistle	Sonchus asper	\checkmark	
Stiff marsh bedstraw	Galium tinctorium	\checkmark	
Virginia creeper	Parthenocissus quinquefolia	\checkmark	
Virginia dayflower	Commelina virginica	\checkmark	
Water locust	Gleditsia aquatica	\checkmark	
Water oak	Quercus nigra	\checkmark	
Water spangles	Salvinia minima	\checkmark	
West Indian nightshade	Solanum ptychanthum	\checkmark	
White clover	Trifolium repens	\checkmark	
Whitenymph	Trepocarpus aethusae	\checkmark	
Yellow Thistle	Cirsium horridulum	\checkmark	
Total Documented	97	87	39


Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

Sherburne Wildlife Management Area species recorded by Dr. Helen Connelly (ERM, May 5, 2022) and Mr. Jody Shugart (ERM, May 5, 2022).

References

U.S. Department of Agriculture (USDA) Natural Resources Conservation Service. 2022. PLANTS Database. Available: https://plants.sc.egov.usda.gov/java/. Accessed August 2022.

August Levert Property Location

Sherburne Wildlife Management Area

Important Bird Areas

Notes: Aerial Imagery Basemap via ESRI Important Bird Areas from US Audubon (2022). Attachment D-2 Important Bird Areas August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

> Environmental Resources Management www.erm.com

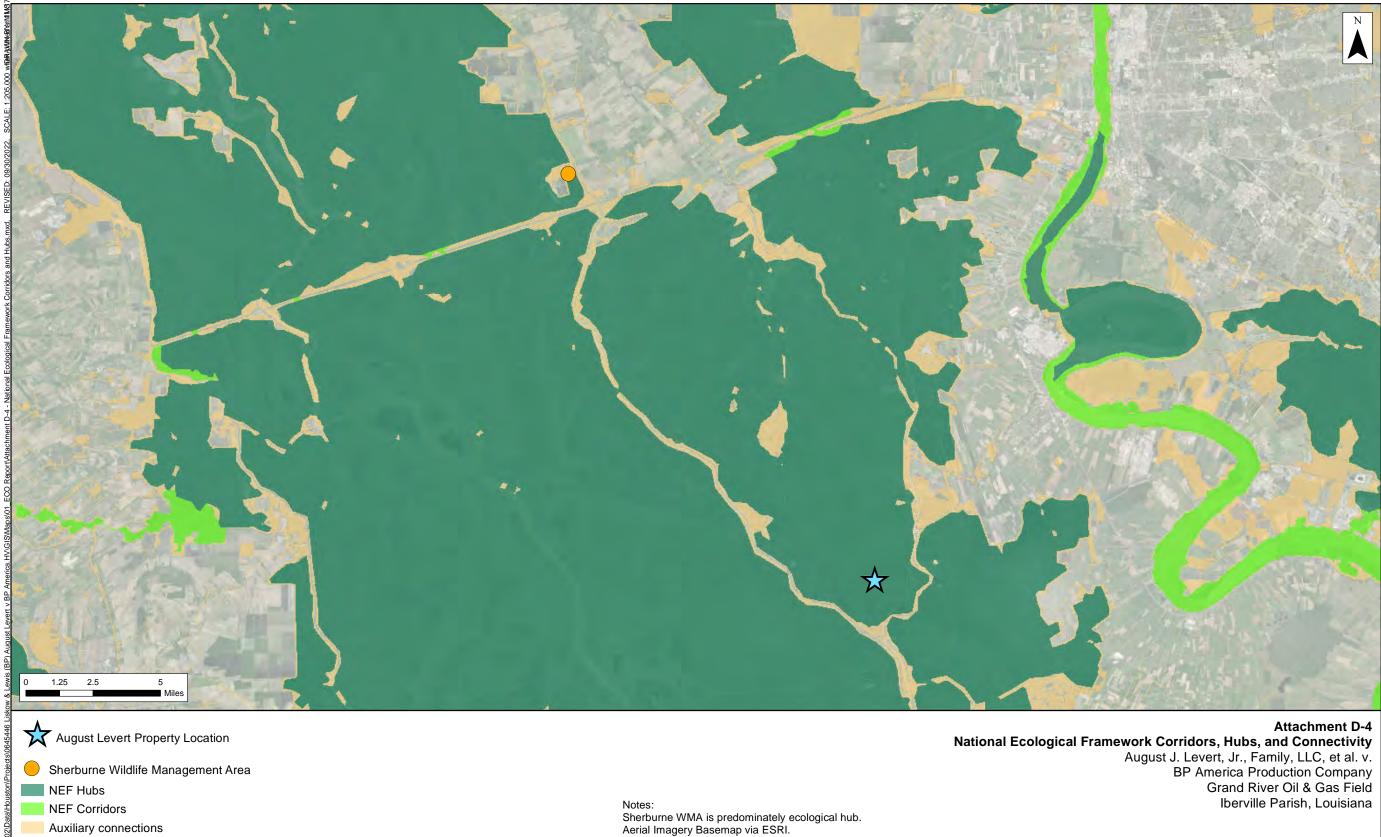
HOU\Proj\0645446\DM\30584H(AttD-2).pdf

ATTACHMENT D-3

Comparison of Birds Documented on the Property and at the Sherburne Wildlife Management Area Reference Area August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Common Name	Scientific Name	Property Checklist	Sherburne WMA Checklist
Acadian Flycatcher	Empidonax virescens	\checkmark	\checkmark
American Crow	Corvus brachyrhynchos	\checkmark	\checkmark
Barred Owl	Strix varia	\checkmark	\checkmark
Carolina Chickadee	Poecile carolinensis	\checkmark	\checkmark
Carolina Wren	Thryothorus ludovicianus	\checkmark	\checkmark
Downy Woodpecker	Dryobates pubescens	\checkmark	\checkmark
Fish Crow	Corvus ossifragus	√	
Little Blue Heron	Egretta caerulea	√	 √
Northern Cardinal	Cardinalis cardinalis	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Northern Parula	Setophaga americana	 ✓	· · · · · · · · · · · · · · · · · · ·
Pileated Woodpecker	Dryocopus pileatus	· · · · · · · · · · · · · · · · · · ·	 ✓
Prothonotary Warbler	Protonotaria citrea	· · · · · · · · · · · · · · · · · · ·	 ✓
Red-bellied Woodpecker	Melanerpes carolinus	 ✓	 ✓
Red-eyed Vireo	Vireo olivaceus	 √	
Tricolored Heron	Egretta tricolor	 ✓	 ✓
Tufted Titmouse	Baeolophus bicolor		
Turkey Vulture	Cathartes aura	∕	
		\checkmark	
White-eyed Vireo	Vireo griseus	\checkmark	√
Yellow-billed Cuckoo	Coccyzus americanus	\checkmark	∕
Anhinga	Anhinga anhinga		√
Barn Swallow	Hirundo rustica		\checkmark
Black-bellied Whistling Duck	Dendrocygna autumnalis		\checkmark
Blue Jay	Cyanocitta cristata		\checkmark
Blue-gray Gnatcatcher	Polioptila caerulea		✓
Brown-headed Cowbird	Molothrus ater		✓
Cliff Swallow	Petrochelidon pyrrhonota		✓
Common Gallinule	Gallinula galeata		\checkmark
Common Grackle	Quiscalus quiscula		\checkmark
Common Yellowthroat	Geothlypis trichas		\checkmark
Great Blue Heron	Ardea herodias		\checkmark
Great Crested Flycatcher	Myiarchus crinitus		\checkmark
Great Egret	Ardea alba		\checkmark
Green Heron	Butorides virescens		\checkmark
Indigo Bunting	Passerina cyanea		\checkmark
Kentucky Warbler	Geothlypis formosa		\checkmark
Least Bittern	Ixobrychus exilis		\checkmark
Mississippi Kite	Ictinia mississippiensis		\checkmark
Neotropic Cormorant	Phalacrocorax brasilianus		\checkmark
Orchard Oriole	Icterus spurius		\checkmark
Painted Bunting	Passerina ciris		\checkmark
Pied-billed Grebe	Podilymbus podiceps		 √
Purple Gallinule	Porphyrio porphyrio		 √
Red-winged Blackbird	Agelaius phoeniceus		 ✓
Ruby-throated Hummingbird	Archilochus colubris		 ✓
Snowy Egret	Egretta thula		 ✓
Spotted Sandpiper	Actitis macularius		 ✓
Wood Duck	Actilis maculands Aix sponsa		 ✓
Yellow-crowned Night-Heron	Nyctanassa violacea		 ✓
Chimney Swift	Chaetura pelagica	\checkmark	v
Red-shouldered Hawk	Buteo lineatus	√	
Yellow-throated Vireo	Vireo flavifrons		
		√	10
Total Specie	s 51	22	48

Diet data provided by the The Cornell Lab (2022).


Sherburne WMA South Farm Unit checklist combines field data from Dr. Helen Connelly (ERM) and Jody Shugart's (ERM) field data from the May 5, 2022, site investigation and all species documented on eBird in the South Farm Unit in May 2022 (eBird, 2022).

References

The Cornell Lab. 2022a. All About Birds. Available: https://www.allaboutbirds.org/news/. Accessed August 2022. eBird. 2022. "Sherburne WMA Complex--South Farm." Available: https://ebird.org/hotspot/L727380. Downloaded May 27, 2022.

Page 1 of 1

HOU\Proj\0645446\DM\30584H(AttD-3).pdf

Source: Esri - World Imagery Map; NAD 1983 UTM Zone 15N

Sherburne WMA is predominately ecological hub. Aerial Imagery Basemap via ESRI. NEF: National Ecological Framework from US EPA.

Environmental Resources Management www.erm.com

HOU\Proj\0645446\DM\30584H(AttD-4).pdf

ATTACHMENTE BARIUM SOIL SCREENING VALUE

November 2022

ATTACHMENT E-1

Calculated Barium Soil Screening Value

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

1. INTRODUCTION

The form (compound) of barium in Property soils is barium sulfate. X-ray diffraction analyses (XRD) demonstrate that barium sulfate is the only form of barium in Property soils (HET/ICON, 2022, see Table 5). Barium sulfate is of very low toxicity in aquatic and terrestrial soils and sediments.

I have calculated a barium sulfate soil screening value for delineating AOIs at this Property because screening values for barium sulfate are not available from USEPA, LDEQ, and LDNR. The screening value calculated for the Property is based on toxicity to invertebrates and plants, which are the ecological receptors that are primarily in direct contact with soils. There is sufficient information in the scientific literature to calculate an invertebrate and plant screening value based on barium sulfate and direct contact with soil, whereas the information in the scientific literature for mammals and birds and this pathway of exposure is limited. Barium sulfate risk to mammals and birds is calculated based on ingestion (including soil ingestion) as the primary route of exposure (USEPA, 1997).

2. LITERATURE REVIEW

To calculate the screening value, I performed a literature review and identified seven scientific studies that report invertebrate and/or plant effects associated with barium sulfate in soil. These scientific studies are specific to barium sulfate, rather than other more soluble forms of barium that have different toxicities. The studies identified are shown in Attachments E-2 through E-7 (Lamb et al., 2103; ESG, 2003; Simini et al., 2002; Kuperman et al., 2006; Kuperman et al., 2002; Honarvar, 1975; and Miller et al., 1980).

In the seven barium sulfate studies (literature review), there are 19 no observed effects concentrations (NOEC) and 7 lowest observed effects concentrations (LOEC) reported that I used to develop the soil screening value. A NOEC is defined as the highest tested concentration in a laboratory or field toxicity test at which no statistically or biologically significant adverse effects are observed. A LOEC is the lowest value at which an adverse effect is observed. NOECs and LOECs for the health effects of reproduction, growth, and survival in plants and invertebrates were included in developing the screening value (USEPA, 1997). The seven studies also report effects concentrations (NOECs and LOECs) that were not used in developing the screening value, however the 19 NOECs and 7 LOECs are the highest or the lowest, respectively, for each health effect studied, making these NOECs and LOECs the most conservative choices for developing the screening value. Both NOECs and LOECs are reported in ecological risk assessment (AOI delineation) is appropriate.

3. BARIUM ANALYTICAL METHODS

The studies we evaluated to develop the barium Property soil screening value include three types of barium concentrations: 1) "nominal" barium sulfate concentrations, which are the result of intentionally mixing known amounts of barium sulfate and soil in the lab, in order to achieve a

specific soil concentration for toxicity testing, 2) "total barium" concentrations, which result from analyzing the amount of barium that can be extracted from a sample using concentrated and heated acid, or from analyzing a sample using a mineralogic analysis, such as XRF, and 3) "barium" concentrations that are the result of acid extraction and analysis similar to the USEPA method 3050/6010 used in LDEQ investigations. Generally, "nominal" or "total barium" are larger concentrations than "barium" concentrations, however, the differences in reported concentrations from these methods are related to the analytical method, rather than the amount of barium in the sample. For the calculation of this soil screening value, "barium" concentrations are used. "Barium" concentration data (as defined here) are the type of data previously used by ERM to develop a sediment barium screening value (ERM, 2019) and are the type of data used by LDEQ (RECAP, 2003). There are sufficient "barium" NOECs and LOECs to calculate a soil barium screening value. All NOEC and LOEC data in the literature review, including all data from "total barium" and "nominal" studies, support that barium sulfate in soil is of very low toxicity to soil invertebrates and to plants.

3.1 "Nominal" Data: Barium Sulfate Toxicity

To understand the very low toxicity of barium sulfate to soil invertebrates and plants, all NOECs and LOECs ("nominal", "total barium", and "barium") from the literature search were evaluated. In the three studies that report "nominal" barium sulfate concentrations (ESG, 2003; Honavar, 1975; Miller et al., 1980), barium sulfate is shown to be of extremely low toxicity to soil invertebrates, such as insects and earthworms, and the reported no effect to survival (NOEC) value is 1,000,000 mg/kg dw barium sulfate (no effect due to exposure to 100% barium sulfate). For plants, such as clovers, grasses, green beans, and corn, the no effects to growth and survival (NOEC) value is an average of 297,777 mg/kg dw barium sulfate. This represents no effect to plants at higher concentrations than are encountered at the Property, or at legacy sites, generally. In summary, invertebrates and plants exposed to large amounts of nominally measured barium sulfate in soil, in a laboratory setting, are not predicted to have adverse effects to growth and survival. "Nominally" measured barium sulfate toxicity data are shown in Attachment E-3 and E-4.

3.2 "Total Barium" Data: Barium Sulfate Toxicity

NOECs and LOECs based on "total barium" concentrations from the literature review demonstrate no effects to growth, reproduction, and survival (invertebrates) in "total barium" concentrations up to 29,200 mg/kg dw barium in soil. The "total barium" no effects average is 10,900 mg/kg dw barium in soil for worms and insects, however this is likely a low estimate for no effects. That is, higher concentrations likely would also cause no effects. For most of these studies, the highest concentrations tested in each experiment (e.g., 10,000 – 29,200 mg/kg dw) did not cause adverse effects. The actual no effects value may be higher, if higher concentrations had been tested.

In some instances, there are "total barium" LOEC values that are lower than NOEC values (Simini et al., 2002; Kuperman et al., 2007). This is due to there being multiple types of tests performed and species used, which results in some variation, but this is not a source of concern. The authors of these specific studies (Simini et al., 2002; Kuperman et al., 2007) reported in their paper that they found barium sulfate to be so non-toxic, including in the LOECs mentioned here, that they elected to shift their study to soluble forms of barium, rather than barium sulfate, and calculated a USEPA toxicity value for soluble barium (which is not the form of barium at the Property). In summary, barium sulfate, measured as "total barium" is of very low toxicity, and is supportive of the ultimate barium soil screening value calculated using "barium" NOECs and LOECs. "Total barium" toxicity data are shown in Attachments E-5 and E-6.

3.3 "Barium" Data: Barium Sulfate Toxicity

The barium soil screening value developed for the Property was calculated using "barium" NOEC data for invertebrates (earthworms) and plants (ryegrass). These "barium" data used are the result of the same type of analytical methods that we have used previously to develop a barium sediment screening value (2197 mg/kg dw barium in sediment, ICON/HET? XXX). That is, the sediment barium screening value of 2,197 mg/kg dw and the calculated soil screening value (2,424 mg/kg dw) developed for this Property are both based on barium data that are the result of similar barium extraction and analysis laboratory methodology.

As explained, barium analytical results vary widely, depending on the extraction method and analytical equipment used, therefore, it is important that the analytical methods used to develop a screening value are similar to the analytical methods used to analyze barium in Property soils. For this reason, the "barium" NOECs are used to calculate the Property soil screening value, because the "barium" NOEC studies use similar acid digestion and inductively coupled plasma (ICP) analysis (Lamb et al., 2013; ESG, 2003), as used by ERM (3050/6010) to analyze Property data, in accordance with RECAP requirements. Therefore, the "barium" NOECs are the most appropriate data for calculating a barium soil screening value.

4. BARIUM SOIL SCREENING VALUE: CALCULATION

There are 3 "barium" invertebrate NOECs and one "barium" plant NOEC identified in the literature review of barium sulfate toxicity in soil. The four NOEC values are similar, which lends confidence to the results: 2033, 3377, 2080, 1910 (all mg/kg dw barium in soil). The three invertebrate NOECs of 2033, 3377, 2080 (mg/kg dw) are for no adverse effects to earthworm growth and survival (Lamb et al., 2013; ESG, 2003), and the plant NOEC of 1,910 mg/kg dw is for no adverse effect to ryegrass growth (ESG, 2003). There is a plant LOEC from Lamb et al. (2013) that is a lower value than the plant NOEC, but it is not included, as this plant study uniformly produced effects at all concentrations, other than the control, indicating interference from other factors. The authors (Lamb et al., 2013) identified that their results are not in agreement with other barium plant studies.

To calculate the barium soil screening value for the Property, the three invertebrate NOECs (2033 mg/kg dw, 3377 mg/kg dw, 2080 mg/kg dw) were used to calculate an average (2,493 mg/kg dw), a geometric mean (2,424 mg/kg dw) and a median (2,080 mg/kg dw). These three values were compared to the plant NOEC of 1,910 mg/kg dw, and the invertebrate values were selected for use, based on being similar to the plant value, and based on having more data to support them.

The geometric mean value of 2,424 mg/kg dw was selected as the soil screening value, as this represents the most commonly used measure of central tendency for toxicity values (USEPA, 2005a). See Inset Table E-1 below for calculations.

Values above 2,424 mg/kg dw do not represent toxicity, but are further evaluated in the ERA.

Data for the barium screening value of 2,424 mg/kg dw are shown on Attachments E-1 and E-2.

HOU\Proj\0645446\DM\30584H(AttE-1).docx

Barium Sulfate Invertebrate NOEC	Reference	Barium Sulfate Plant NOEC	Reference
2,033	Lamb et al., 2013	1,910	ESG International, 2003
3,377	Lamb et al., 2013		
2,080	ESG International, 2003		
2,424	Geometric Mean Invertebrate	NOEC	
2,493	Average Invertebrate NOEC		
2,080	Median Invertebrate NOEC		

Table E-1: Development of Barium Soil Screening Value

ATTACHMENT E-2 Barium Invertebrate NOEC for Barite August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

iber ville i al	sn, Louisiana				i i					i i i i i i i i i i i i i i i i i i i	-											
Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measure- ment	NOEC/LOEC	Concentration	Concentration Units (dw)	рН	Authors	Title	Source	Publication Year
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	Adult	NR	Acid Digestion, ICP/MS	Barium	Soil	Lab	NR	NR	Growth	Weight loss	No effect	NOEC	2,033	mg/kg	6.1 - 8.3	Lamb, D., Matanitobua, V., Palanisami, T., Megharaj, M. and Naidu, R.	Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite	Environmental Science and Technology, No. 47, pp. 4670-4676	2013
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	Adult	NR	Acid Digestion, ICP/MS	Barium	Soil	Lab	NR	NR	Survival	Mortality	No effect	NOEC	3,367	mg/kg	6.1 - 8.3	Lamb, D., Matanitobua, V., Palanisami, T., Megharaj, M. and Naidu, R.	Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite	Environmental Science and Technology, No. 47, pp. 4670-4676	2013
Barium sulfate	Eisenia andrei	Earthworm	Invertebrate	Adult	NR	E3073A aqua regia digest	Barium	Soil	Lab	14	Days	Survival	Mortality	No Effect	NOEC	2,080	mg/kg	8.01-8.48	ESG International, Guelph, Ontario	Ecotoxicity Evaluation of Reference Site Soils Amended with Barium Sulphate	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003

ATTACHMENT E-3 Barium Plant NOEC for Barite August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measure- ment	NOEC/LOEC	Concentration	Concentrati on Units (dw)	рН	Authors	Title	Source	Publication Year
Barium sulfate	Lactuca sativa L.	Great Lakes lettuce	Plant	Seed	Juvenile	Acid Digestion, ICP/MS	Barium	Soil	Lab	56	Days	Growth	Shoot Biomass	Lowest Effect	LOEC	483	mg/kg		Lamb, D., Matanitobua, V., Palanisami, T., Megharai, M. and Naidu, R.		Environmental Science and Technology, No. 47, pp. 4670-4676	2013
Barium sulfate	Lolium perenne	Ryegrass	Plant	Seed	Juvenile	E3073A aqua regia digest	Barium	Soil	Lab	14	Days	Growth	Root length	No Effect	NOEC	1,910	mg/kg	7.98-8.65	ESG International, Guelph, Ontario	Soils Amended with Barium Sulphate	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003

ATTACHMENT E-4

Nominally Measured Barium Sulfate Invertebrate Effects Due to Barite August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field

Iberville Parish, Louisiana

Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measurement	NOEC/LOEC	Concentration	Concentration Units (dw)	рН	Authors	Title	Source	Publication Year
Barium sulfate	Onychiurus folsomi	Springtail insect	Invertebrate	Adult	NR	Nominal	Barium sulfate	Soil	Lab	7	Days	Survival	Mortality	No Effect	NOEC	1,000,000	mg/kg	7.8-8.01	Ontario	Site Soils Amended with Barium	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003
Barium sulfate	Eisenia andrei	Earthworm	Invertebrate	Adult	NR	Nominal	Barium sulfate	Soil	Lab	14	Days	Survival	Mortality	No Effect	NOEC	1,000,000	mg/kg	8.01-8.48	Ontario	Site Soils Amended with Barium	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003

ATTACHMENT E-5 Nominally Measured Barium Sulfate Plant Effects Due to Barite August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Iberville Paris	n, Louisiana																					
Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measurement	NOEC/LOEC	Concentration	Concentration Units (dw)	рН	Authors	Title	Source	Publication Year
Barium	Phaseolus	Green beans	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	56	Days	Growth	Biomass	No effect	NOEC	795,833	mg/kg	6.0 - 6.2	Honarvar, S.	Effect of Drilling Fluid Components and Mixtures on Plants and Soils	Utah State University DigitalCommons, Masters Degree	1975
sulfate	vulgaris																		Miller, R., Honarvar, S., and Hunsaker, B.	Effects of Drilling Fluids on Soils and Plants: I. Individual Fluid Components	J. Environ. Quai., Vol. 9, no. 4	1980
Barium	Phaseolus	Green beans	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	56	Dave	Growth	Biomass	No effect	NOEC	227,500	malka	6.0 - 6.2	Honarvar, S.	Effect of Drilling Fluid Components and Mixtures on Plants and Soils	Utah State University DigitalCommons, Masters Degree	1975
sulfate	vulgaris	Green beans	Plant	Seed	Juvernie	Nominal	Danum Sunale	301	Lab	50	Days	Growin	DIOITIASS	NO ENECL	NOEC	227,500	mg/kg	0.0 - 0.2	Miller, R., Honarvar, S., and Hunsaker, B.	Effects of Drilling Fluids on Soils and Plants: I. Individual Fluid Components	J. Environ. Quai., Vol. 9, no. 5	1980
Barium	Zea mays	Quantaria	Diast	Const	hu en lle	Nervisel		0.1	Lab	56	Dava	Growth	Diamaga		NOTO	007 500			Honarvar, S.	Effect of Drilling Fluid Components and Mixtures on Plants and Soils	Utah State University DigitalCommons, Masters Degree	1975
sulfate	succharate	Sweet corn	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	96	Days	Growth	Biomass	No effect	NOEC	227,500	mg/kg	6.0 - 6.2	Miller, R., Honarvar, S., and Hunsaker, B.	Effects of Drilling Fluids on Soils and Plants: I. Individual Fluid Components	J. Environ. Quai., Vol. 9, no. 5	1980
Barium	Trifolium		Diané	Const	huner ite	Nervisel	Deriver Outfate	Co.ii	Lab		Dava	Growth	Root		NOFO	20.000		7 00 0 00		Ecotoxicity Evaluation of Reference Site Soils	Technical Appendices for Barite Soil	0000
sulfate	hybridum	Alsike Clover	Plant	Seed	Juvenile	Nominal	Barium Sulfate	Soil	Lab	21	Days	Growth	Biomass	No Effect	NOEC	30,000	mg/kg	7.98-9.06	ESG International, Guelph, Ontario	Amended with Barium Sulphate	Remediation Guidelines, Alberta, Canada	2003
Barium	Dactylis										_	0	Shoot							Ecotoxicity Evaluation of Reference Site Soils	Technical Appendices for Barite Soil	
sulfate	glomerata	Orchardgrass	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	14	Days	Growth	Biomass	No Effect	NOEC	1,000	mg/kg	7.86-8.58	ESG International, Guelph, Ontario	Amended with Barium Sulphate	Remediation Guidelines, Alberta, Canada	2003
Barium	Dactylis										_		_							Ecotoxicity Evaluation of Reference Site Soils	Technical Appendices for Barite Soil	
sulfate	glomerata	Orchardgrass	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	14	Days	Survival	Emergence	No Effect	NOEC	1,000,000	mg/kg	7.86-8.58	ESG International, Guelph, Ontario	Amended with Barium Sulphate	Remediation Guidelines, Alberta, Canada	2003
Barium																				Ecotoxicity Evaluation of Reference Site Soils	Technical Appendices for Barite Soil	
sulfate	Lolium perenne	Ryegrass	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	14	Days	Growth	Root length	No Effect	NOEC	300,000	mg/kg	7.98-8.65	ESG International, Guelph, Ontario	Amended with Barium Sulphate	Remediation Guidelines, Alberta, Canada	2003
Barium	Zea mays										_								Honarvar, S.	Effect of Drilling Fluid Components and Mixtures on Plants and Soils	Utah State University DigitalCommons, Masters Degree	1975
sulfate	succharate	Sweet corn	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	56	Days	Growth	Biomass	20% Reduction in weight	t LOEC	795,833	mg/kg	6.0 - 6.2	Miller, R., Honarvar, S., and Hunsaker, B.	Effects of Drilling Fluids on Soils and Plants: I. Individual Fluid Components	J. Environ. Quai., Vol. 9, no. 4	1980

Grand River	Oil & Gas Fie sh, Louisiana	ld	. Di America	Production Compan	y																
Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measurement	NOEC/LOEC	Concentration	Concentration Units (dw)	рН	Authors	Title Source	Publication Year
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	0.3 - 0.6 gms	Adult	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	21	Days	Reproduction	Cocoons	70% Reduction in number	LOEC	100 - 1,000	mg/kg	5.0	Phillips, C. Kuperman, R., Simini, M., Checkai, R.,	nd Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening Levels (ECO-SSL) Using Earthworm (<i>Eisenia fetida</i>) Benchmark Values Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , pp. 754-762	
Barium	Enchytraeus				Adult 1 cm long, with	USEPA Method							No. of						Phillips, C., Speicher, J., and Barclift, D. Kuperman, R., Simini, M., Checkai, R., a Phillips, C.	and <i>Enchytraeus crypticus</i> and Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Screening Levels (ECO- SSL) Using Enchytraeid Reproduction Benchmark Values	
sulfate	crypticus	Potworm	Invertebrate	Adult	eggs	200.8, ICP-MS	Total barium	Soil	Lab	28	Days	Reproduction	offspring	EC20	LOEC	5,000	mg/kg	5.0	Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Environmental Toxicology and Chemistry, Vol. 25, No. Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , pp. 754-762 and <i>Enchytraeus crypticus</i>	3, 2006
Barium sulfate	Enchytraeus crypticus	Potworm	Invertebrate	Adult	Adult 1 cm long, with eggs	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	28	Days	Reproduction	No. of offspring	Lowest Effect	LOEC	500 - 1,000	mg/kg	5.0	Kuperman, R., Simini, M., Checkai, R., a Phillips, C.	and Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Screening Levels (ECO-SSL) Using Enchytraeid Reproduction Benchmark Values	
Sunato	orypriode				Uggu	200.0, 101 100							onophing						Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	3, 2006
Barium	Eisenia fetida	Earthworm	Invertebrate	0.3 - 0.6 gms	Adult	USEPA Method	Total barium	Soil	Lab	21	Days	Reproduction	Cocoons	10% Reduction in	NOEC	500 - 5000	mg/kg	5.0	Simini, M., Checkai, R., Kuperman, R., a Phillips, C.	and Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening Levels (ECO-SSL) Using Earthworm (<i>Eisenia fetida</i>) Benchmark Values	2002
sulfate						200.8, ICP-MS								number					Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	3, 2006
Barium	Enchytraeus	Potworm	Invertebrate	Adult	Adult 1 cm long, with		Total barium	Soil	Lab	14	Days	Survival	Mortality	No effect	NOEC	10,000	mg/kg	5.0	Kuperman, R., Simini, M., Checkai, R., a Phillips, C.	and Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Screening Levels (ECO- SSL) Using Enchytraeid Reproduction Benchmark Values	2002
sulfate	crypticus				eggs	200.8, ICP-MS													Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	3, 2006
Barium sulfate	Folsomia candida	Springtail insect	Invertebrate	Adult	NR	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	14	Days	Survival	Mortality	No effect	NOEC	10,000	mg/kg	5.29	Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	3, 2006
Barium sulfate	Folsomia candida	Springtail insect	Invertebrate	Adult	NR	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	28	Days	Reproduction	No. of offspring	No effect	NOEC	10,000	mg/kg	5.29	Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	3, 2006
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	Adult	NR	XRF	Total Barium	Soil	Lab	NR	NR	Survival	Mortality	No effect	NOEC	29,200	mg/kg	6.1 - 8.3	Lamb, D., Matanitobua, V., Palanisami, Megharaj, M. and Naidu, R.	T., Bioavailability of Barium to Plants and Invertebrates in Soils Environmental Science and Technology, No. 47, pp. 4 Contaminated by Barite 4676	670- 2013
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	Adult	NR	XRF	Total Barium	Soil	Lab	NR	NR	Growth	Weight loss	No effect	NOEC	5,700	mg/kg	6.1 - 8.3	Lamb, D., Matanitobua, V., Palanisami, Megharaj, M. and Naidu, R.	T., Bioavailability of Barium to Plants and Invertebrates in Soils Environmental Science and Technology, No. 47, pp. 4 Contaminated by Barite 4676	670- 2013

ATTACHMENT E-7

Total Barium Plant Effects Due to Barite August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measurement	NOEC/LOEC	Concentration	Concentration Units (dw) pH	Authors	Title	Source	Publication Year
Barium sulfate	Lactuca sativa L.	Great Lakes lettuce	Plant	Seed	Juvenile	XRF	Total Barium	Soil	Lab	56	Days	Growth	Shoot Biomass	Lowest Effect	LOEC	1300	mg/kg 6.5	Megharaj, M. and Naidu, R.	Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite	Environmental Science and Technology, No. 47, pp. 4670-4676	2013

HOU\Projects\0645446\DM\30584H(AttE).xlsx

ATTACHMENT F BACKGROUND CALCULATIONS

November 2022

ATTACHMENT F-1 Background Data Collected by USGS August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

SiteID	StateID	CollDate	Depth (cm)	Aa (ma/ka)	D Aa (ma/ka)	As (ma/ka)	D As (ma/ka)	Ba (mg/kg)	D_Ba (mg/kg)
120	LA	7/30/2008	0-5	1	0	4.9	<u> </u>	514	1
140	LA	8/6/2008	0-5	1	0	2	1	111	1
204	LA	7/26/2008	0-5	1	0	5.7	1	296	1
332	LA	8/2/2008	0-5	1	0	2.5	1	187	1
460	LA	7/26/2008	0-5	1	0	3	1	210	1
588	LA	8/6/2008	0-5	1	0	4.8	1	138	1
824	LA	7/30/2008	0-5	1	0	4.2	1	448	1
1072	LA	7/28/2008	0-5	1	0	10	1	652	1
1144	LA	7/30/2008	0-5	1	0	11.4	1	654	1
1356	LA	8/2/2008	0-5	1	0	2.1	1	232	1
1612	LA	8/5/2008	0-5	1	0	5.1	1	520	1
1740	LA	8/3/2008	0-5	1	0	5.4	1	641	1
1848	LA	7/28/2008	0-5	1	0	5.5	1	542	1
2168	LA	7/29/2008	0-5	1	0	10.7	1	765	1
2380	LA	8/4/2008	0-5	1	0	1.9	1	236	1
2636	LA	8/6/2008	0-5	1	0	1.7	1	304	1
2872	LA	7/28/2008	0-5	1	0	7.4	1	712	1
2892	LA	8/6/2008	0-5	1	0	3.2	1	231	1
3404	LA	8/4/2008	0-5	1	0	2.9	1	425	1
3640	LA	7/31/2008	0-5	1	0	6.9	1	576	1
3896	LA	7/27/2008	0-5	1	0	1.3	1	104	1
3980	LA	8/1/2008	0-5	1	0	9.4	1	514	1
4216	LA	7/30/2008	0-5	1	0	5.4	1	648	1
4236	LA	8/6/2008	0-5	1	0	3.6	1	180	1
4300	LA	8/1/2008	0-5	1	0	4.3	1	624	1
4428	LA	8/2/2008	0-5	1	0	3.3	1	102	1
4492	LA	8/6/2008	0-5	1	0	5.6	1	342	1
4664	LA	7/31/2008	0-5	1	0	3.9	1	471	1
4684	LA	8/6/2008	0-5	1	0	2.6	1	75	1
4920	LA	7/31/2008	0-5	1	0	1	1	283	1
5240	LA	8/1/2008	0-5	1	0	10.1	1	2690	1
5452	LA	8/2/2008	0-5	1	0	4	1	363	1
5688	LA	7/31/2008	0-5	1	0	1.5	1	228	1
5708	LA	8/6/2008	0-5	1	0	6.8	1	378	1
5836	LA	8/4/2008	0-5	1	0	10.8	1	603	1
5944	LA	7/26/2008	0-5	1	0	3.8	1	264	1
6264	LA	7/29/2008	0-5	1	0	7	1	842	1
6476	LA	8/2/2008	0-5	1	0	2.8	1	103	1
6712	LA	7/31/2008	0-5	1	0	5.9	1	376	1
6968	LA	7/28/2008	0-5	1	0	5.8	1	728	1
7500	LA	8/4/2008	0-5	1	0	2.9	1	196	1
7736	LA	7/31/2008	0-5	1	0	5.6	1	269	1
7992	LA	7/28/2008	0-5	1	0	11.5	1	632	1
8012	LA	8/6/2008	0-5	1	0	3.8	1	368	1
8076	LA	8/1/2008	0-5	1	0	6.9	1	688	1
8312	LA	7/30/2008	0-5	1	0	7.6	1	692	1
8332	LA	8/6/2008	0-5	1	0	10.1	1	471	1
8396	LA	8/3/2008	0-5	1	0	9.3	1	606	1
8524	LA	8/4/2008	0-5	1	0	4.4	1	348	1
8780	LA	8/6/2008	0-5	1	0	3.2	1	273	1
8908	LA	8/4/2008	0-5	1	0	8.7	1	484	1
9016	LA	7/30/2008	0-5	1	0	3.3	1	687	1
9336	LA	7/30/2008	0-5	1	0	5.4	1	599	1
9548	LA	8/3/2008	0-5	1	0	1.6	1	408	1
9804	LA	8/6/2008	0-5	1	0	1.9	1	88	1

ATTACHMENT F-1 Background Data Collected by USGS August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

SiteID	StateID	CollDate	Depth (cm)	Aa (ma/ka)	D Ag (mg/kg)	As (ma/ka)	D As (ma/ka)	Ba (mg/kg)	D_Ba (mg/kg)
9932	LA	8/4/2008	0-5	1	0	12.7	<u> </u>	649	<u> </u>
10040	LA	7/29/2008	0-5	1	0	8.2	1	638	1
10060	LA	8/6/2008	0-5	1	0	1.2	1	64	1
10572	LA	7/31/2008	0-5	1	0	6.3	1	185	1
10808	LA	7/31/2008	0-5	1	0	4.4	1	203	1
11064	LA	7/28/2008	0-5	1	0	14.5	1	606	1
11148	LA	8/1/2008	0-5	1	0	4.3	1	634	1
11340	LA	8/4/2008	0-5	1	0	5.6	1	452	1
11468	LA	7/26/2008	0-5	1	0	3.4	1	206	1
11596	LA	8/4/2008	0-5	1	0	1.1	1	156	1
11724	LA	8/4/2008	0-5	1	0	17.4	1	710	1
11832	LA	7/30/2008	0-5	1	0	5.1	1	217	1
11852	LA	8/2/2008	0-5	1	0	32.6	1	198	1
12088	LA	7/29/2008	0-5	1	0	8.4	1	703	1
12408	LA	7/30/2008	0-5	1	0	8.7	1	710	1
12620	LA	8/2/2008	0-5	1	0	2	1	149	1
12856	LA	7/31/2008	0-5	1	0	2	1	144	1
12876	LA	8/6/2008	0-5	1	0	4.1	1	211	1
13004	LA	8/3/2008	0-5	1	0	6.5	1	731	1
13112	LA	7/31/2008	0-5	1	0	3.7	1	163	1
120	LA	7/30/2008	0-15	1	0	4.8	1	448	1
140	LA	8/6/2008	0-30	1	0	1.8	1	132	1
204	LA	7/26/2008	0-5	1	0	6.1	1	271	1
332	LA	8/2/2008	0-15	1	0	1	1	147	1
460	LA	7/26/2008	0-10	1	0	3.1	1	199	1
588	LA	8/6/2008	0-20	1	0	5.3	1	168	1
824	LA	7/30/2008	0-20	1	0	4	1	353	1
1072	LA	7/28/2008	0-20	1	0	6.8	1	474	1
1144	LA	7/30/2008	0-20	1	0	11	1	667	1
1356	LA	8/2/2008	0-20	1	0	1.4	1	226	1
1612	LA	8/5/2008	0-30	1	0	6.8	1	503	1
1740	LA	8/3/2008	0-20	1	0	7.9	1	624	1
1848	LA	7/28/2008	0-10	1	0	5	1	607	1
2168	LA	7/29/2008	0-8	1	0	9.6	1	775	1
2380	LA	8/4/2008	0-20	1	0	2.5	1	254	1
2636	LA	8/6/2008	0-15	1	0	1.4	1	267	1
2872	LA	7/28/2008	0-10	1	0	5.7	1	565	1
2892	LA	8/6/2008	0-20	1	0	3	1	234	1
3404	LA	8/4/2008	0-30	1	0	3.2	1	447	1
3640	LA	7/31/2008	0-30	1	0	6.9	1	468	1
3896	LA	7/27/2008	0-20	1	0	2.3	1	111	1
3980	LA	8/1/2008	0-10	1	0	8.7	1	535	1
4216	LA	7/30/2008	0-20	1	0	5.7	1	629	1
4236	LA	8/6/2008	0-20	1	0	3.8	1	154	1
4300	LA	8/1/2008	0-5	1	0	5.6	1	592	1
4428	LA	8/2/2008	0-20	1	0	1.8	1	86	1
4492	LA	8/6/2008	0-10	1	0	5.3	1	291	1
4664	LA	7/31/2008	0-15	1	0	3.9	1	432	1
4684	LA	8/6/2008	0-30	1	0	5.7	1	68	1
4920	LA	7/31/2008	0-5	1	0	1.4	1	364	1
5240	LA	8/1/2008	0-15	1	0	14	1	2530	1
5452	LA	8/2/2008	0-20	1	0	4	1	339	1
5688	LA	7/31/2008	0-30	1	0	2.7	1	242	1
5708	LA	8/6/2008	0-20	1	0	6.6	1	318	1
5836	LA	8/4/2008	0-20	1	0	13.7	1	686	1

ATTACHMENT F-1 Background Data Collected by USGS August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

SiteID	StateID	CollDate	Depth (cm)	Ag (mg/kg)	D_Ag (mg/kg)	As (mg/kg)	D_As (mg/kg)	Ba (mg/kg)	D_Ba (mg/kg)
5944	LA	7/26/2008	0-20	1	0	4.5	1	304	1
6264	LA	7/29/2008	0-20	1	0	7.5	1	847	1
6476	LA	8/2/2008	0-20	1	0	2.9	1	97	1
6712	LA	7/31/2008	0-25	1	0	6.7	1	354	1
6968	LA	7/28/2008	0-25	1	0	8.4	1	667	1
7500	LA	8/4/2008	0-15	1	0	3	1	205	1
7736	LA	7/31/2008	0-15	1	0	5.6	1	287	1
7992	LA	7/28/2008	0-8	1	0	11.4	1	647	1
8012	LA	8/6/2008	0-20	1	0	3.9	1	370	1
8076	LA	8/1/2008	0-20	1	0	7.3	1	694	1
8312	LA	7/30/2008	0-30	1	0	4.9	1	657	1
8332	LA	8/6/2008	0-70	1	0	10.4	1	536	1
8396	LA	8/3/2008	0-30	1	0	8.9	1	597	1
8524	LA	8/4/2008	0-20	1	0	3.9	1	387	1
8780	LA	8/6/2008	0-10	1	0	3.8	1	232	1
8908	LA	8/4/2008	0-20	1	0	8.8	1	479	1
9016	LA	7/30/2008	0-30	1	0	3.3	1	238	1
9336	LA	7/30/2008	0-20	1	0	6.9	1	646	1
9548	LA	8/3/2008	0-20	1	0	5.8	1	403	1
9804	LA	8/6/2008	0-15	1	0	2	1	74	1
9932	LA	8/4/2008	0-30	1	0	11.1	1	648	1
10040	LA	7/29/2008	0-30	1	0	9.6	1	708	1
10060	LA	8/6/2008	0-25	1	0	1.2	1	74	1
10572	LA	7/31/2008	0-10	1	0	6.3	1	187	1
10808	LA	7/31/2008	0-10	1	0	3.4	1	162	1
11064	LA	7/28/2008	0-8	1	0	13.9	1	654	1
11148	LA	8/1/2008	0-20	1	0	4.8	1	575	1
11340	LA	8/4/2008	0-30	1	0	6.4	1	402	1
11468	LA	7/26/2008	0-30	1	0	3.4	1	223	1
11596	LA	8/4/2008	0-30	1	0	1.9	1	170	1
11724	LA	8/4/2008	0-50	1	0	18	1	617	1
11832	LA	7/30/2008	0-20	1	0	4.9	1	243	1
11852	LA	8/2/2008	0-20	1	0	38.2	1	180	1
12088	LA	7/29/2008	0-30	1	0	8	1	638	1
12408	LA	7/30/2008	0-30	1	0	8.6	1	749	1
12620	LA	8/2/2008	0-25	1	0	1.8	1	159	1
12856	LA	7/31/2008	0-20	1	0	1.9	1	141	1
12876	LA	8/6/2008	0-10	1	0	3.3	1	218	1
13004	LA	8/3/2008	0-20	1	0	6.7	1	701	1
13112	LA	7/31/2008	0-20	1	0	3.8	1	169	1

SiteID	StateID	CollDate	Depth (cm)	Cd (mg/kg)	D Cd (mg/kg)	Cr (mg/kg)	D Cr (mg/kg)	Hg (mg/kg)	D_Hg (mg/kg)
120	LA	7/30/2008	0-5	0.3	1	66	1	0.09	1
140	LA	8/6/2008	0-5	0.1	0	19	1	0.01	1
204	LA	7/26/2008	0-5	0.3	1	35	1	0.08	1
332	LA	8/2/2008	0-5	0.1	0	20	1	0.02	1
460	LA	7/26/2008	0-5	0.1	0	27	1	0.05	1
588	LA	8/6/2008	0-5	0.1	0	31	1	0.02	1
824	LA	7/30/2008	0-5	0.1	0	39	1	0.03	1
1072	LA	7/28/2008	0-5	0.6	1	70	1	0.06	1
1144	LA	7/30/2008	0-5	0.4	1	71	1	0.05	1
1356	LA	8/2/2008	0-5	0.1	0	18	1	0.01	1
1612	LA	8/5/2008	0-5	0.3	1	62	1	0.07	1
1740	LA	8/3/2008	0-5	1.1	1	65	1	0.09	1
1848	LA	7/28/2008	0-5	0.4	1	38	1	0.05	1
2168	LA	7/29/2008	0-5	0.3	1	40	1	0.03	1
2380	LA	8/4/2008	0-5	0.1	0	30	1	0.03	1
2636	LA	8/6/2008	0-5	0.1	0	23	1	0.01	1
2872	LA	7/28/2008	0-5	0.3	1	52	1	0.05	1
2892	LA	8/6/2008	0-5	0.1	0	34	1	0.01	1
3404	LA	8/4/2008	0-5	0.1	0	24	1	0.07	1
3640	LA	7/31/2008	0-5	0.2	1	48	1	0.06	1
3896	LA	7/27/2008	0-5	0.1	1	12	1	0.05	1
3980	LA	8/1/2008	0-5	0.4	1	80	1	0.06	1
4216	LA	7/30/2008	0-5	0.2	1	39	1	0.04	1
4236	LA	8/6/2008	0-5	0.2	1	28	1	0.04	1
4300	LA	8/1/2008	0-5	0.2	1	58	1	0.13	1
4428	LA	8/2/2008	0-5	0.2	0	21	1	0.04	1
4492	LA	8/6/2008	0-5	0.1	0	32	1	0.02	1
4664	LA	7/31/2008	0-5	0.1	0	20	1	0.00	0
4684	LA	8/6/2008	0-5	0.1	0	20	1	0.01	1
4920	LA	7/31/2008	0-5	0.1	0	5	1	0.02	1
5240	LA	8/1/2008	0-5	0.1	1	23	1	4.43	1
5452	LA	8/2/2008	0-5	0.3	1	34	1	0.01	1
5688	LA	7/31/2008	0-5	0.1	0	25	1	0.01	1
5708	LA	8/6/2008	0-5	0.1	1	66	1	0.02	1
5836	LA		0-5	1	1	67	1	0.08	1
5944		8/4/2008 7/26/2008	0-5	0.2	1	15		0.07	4
					<u> </u>		1		1
6264 6476	LA	7/29/2008	0-5	0.2	0	38 18	1	0.03	1
	LA	8/2/2008	0-5	0.1			1	0.03	
6712	LA	7/31/2008	0-5	0.2	1	19 60	1	0.03	1
6968 7500	LA	7/28/2008	0-5 0-5	0.4	<u> </u>	15	1	0.05	1
	LA	8/4/2008		0.1			1	0.02	1
7736	LA	7/31/2008	0-5	0.1	0	30	1	0.03	1
7992	LA	7/28/2008	0-5	0.5	1	47	1	0.11	1
8012	LA	8/6/2008	0-5	0.1	0	28	1	0.04	1
8076	LA	8/1/2008	0-5	0.5	1	57	1	0.06	1
8312	LA	7/30/2008	0-5	0.3	1	54	1	0.04	1
8332	LA	8/6/2008	0-5	0.1	1	72	1	0.02	1
8396	LA	8/3/2008	0-5	0.4	1	75	1	0.05	1
8524	LA	8/4/2008	0-5	0.1	0	31	1	0.03	1
8780	LA	8/6/2008	0-5	0.1	1	19	1	0.02	1
8908	LA	8/4/2008	0-5	0.1	1	39	1	0.06	1
9016	LA	7/30/2008	0-5	0.1	0	27	1	0.02	1
9336	LA	7/30/2008	0-5	0.1	1	37	1	0.03	1
9548	LA	8/3/2008	0-5	0.1	0	22	1	0.03	1
9804	LA	8/6/2008	0-5	0.1	0	25	1	0.01	1

SiteIDStateIDCollDateDepth (cm)Cd (mg/kg)D_Cd (mg/kg)Cr (mg/kg)D_Cr (mg/kg)Hg (mg/kg)D_Hg9932LA $8/4/2008$ 0-50.214610.0210040LA $7/29/2008$ 0-51.115510.0710060LA $8/6/2008$ 0-50.101010.0110572LA $7/31/2008$ 0-50.103810.0210808LA $7/31/2008$ 0-50.103110.0411064LA $7/28/2008$ 0-50.816110.0811148LA $8/1/2008$ 0-50.215510.0811340LA $8/4/2008$ 0-50.103510.0611596LA $8/4/2008$ 0-50.103310.0211724LA $8/4/2008$ 0-50.113210.0111832LA $7/30/2008$ 0-50.103310.0211852LA $8/2/2008$ 0-50.107710.0412088LA $7/30/2008$ 0-50.101810.0212876LA $8/6/2008$ 0-50.102710.0312048LA $7/31/2008$ 0-50.102710.0312876LA <th>1 1 0 1</th>	1 1 0 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 1 1 1 1 1 1 1 1 1 1 1
10572LA $7/31/2008$ 0.5 0.1 0 38 1 0.02 10808LA $7/31/2008$ 0.5 0.1 0 31 1 0.04 11064LA $7/28/2008$ 0.5 0.8 1 61 1 0.04 11064LA $7/28/2008$ 0.5 0.8 1 61 1 0.04 11148LA $8/1/2008$ 0.5 0.2 1 55 1 0.08 11340LA $8/4/2008$ 0.5 0.1 0 22 1 0.01 11468LA $7/26/2008$ 0.5 0.1 0 35 1 0.06 11596LA $8/4/2008$ 0.5 0.1 0 35 1 0.06 11724LA $8/4/2008$ 0.5 0.1 0 19 1 0.02 11724LA $8/4/2008$ 0.5 0.1 0 33 1 0.02 11822LA $7/30/2008$ 0.5 0.1 0 33 1 0.02 11852LA $8/2/2008$ 0.5 0.1 0 77 1 0.04 12088LA $7/30/2008$ 0.5 0.5 1 59 1 0.04 12620LA $8/2/2008$ 0.5 0.1 0 27 1 0.02 12876LA $8/6/2008$ 0.5 0.1 0 27 1 0.03 13004LA 8	1 1
10808LA $7/31/2008$ 05 0.1 0 31 1 0.04 11064LA $7/28/2008$ 05 0.8 1 61 1 0.08 11148LA $8/1/2008$ 05 0.2 1 55 1 0.08 11340LA $8/4/2008$ 05 0.1 0 22 1 0.01 11468LA $7/26/2008$ 05 0.1 0 35 1 0.06 11596LA $8/4/2008$ 05 0.1 0 19 1 0.02 11724LA $8/4/2008$ 05 0.1 0 19 1 0.02 11724LA $8/4/2008$ 05 0.1 0 33 1 0.02 11832LA $7/30/2008$ 05 0.1 0 33 1 0.02 11852LA $8/2/2008$ 05 0.1 0 77 1 0.04 12088LA $7/29/2008$ 05 0.3 1 60 1 0.04 12408LA $7/30/2008$ 05 0.1 0 18 1 0.02 12856LA $7/31/2008$ 05 0.1 0 27 1 0.03 13004LA $8/3/2008$ 05 0.1 0 23 1 0.03 120LA $7/30/2008$ 05 0.1 0 23 1 0.07 140L	1 1
11064 LA 7/28/2008 0-5 0.8 1 61 1 0.08 11148 LA 8/1/2008 0-5 0.2 1 55 1 0.08 11340 LA 8/4/2008 0-5 0.1 0 22 1 0.01 11468 LA 7/26/2008 0-5 0.1 0 35 1 0.06 11596 LA 8/4/2008 0-5 0.1 0 19 1 0.02 11724 LA 8/4/2008 0-5 0.1 1 32 1 0.01 11832 LA 7/30/2008 0-5 0.1 0 33 1 0.02 11852 LA 8/2/2008 0-5 0.3 1 60 1 0.04 12088 LA 7/29/2008 0-5 0.5 1 59 1 0.02 12804 LA 7/31/2008 0-5 0.1 0 <t< td=""><td>1 1</td></t<>	1 1
11148 LA 8/1/2008 0-5 0.2 1 55 1 0.08 11340 LA 8/4/2008 0-5 0.1 0 22 1 0.01 11468 LA 7/26/2008 0-5 0.1 0 35 1 0.06 11596 LA 8/4/2008 0-5 0.1 0 19 1 0.02 11724 LA 8/4/2008 0-5 0.1 1 32 1 0.01 11832 LA 7/30/2008 0-5 0.1 0 33 1 0.02 11852 LA 8/2/2008 0-5 0.1 0 77 1 0.04 12088 LA 7/29/2008 0-5 0.5 1 59 1 0.04 12408 LA 7/30/2008 0-5 0.1 0 18 1 0.02 12856 LA 7/31/2008 0-5 0.1 0 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	1 1 1 1 1 1 1 1 1 1 1 1 1 1
11340 LA 8/4/2008 0-5 0.1 0 22 1 0.01 11468 LA 7/26/2008 0-5 0.1 0 35 1 0.06 11596 LA 8/4/2008 0-5 0.1 0 19 1 0.02 11724 LA 8/4/2008 0-5 0.1 1 32 1 0.01 11832 LA 7/30/2008 0-5 0.1 0 33 1 0.02 11852 LA 8/2/2008 0-5 0.1 0 77 1 0.04 12088 LA 7/29/2008 0-5 0.5 1 59 1 0.04 12408 LA 7/30/2008 0-5 0.1 0 18 1 0.02 12826 LA 7/31/2008 0-5 0.1 0 24 1 0.02 12876 LA 8/6/2008 0-5 0.1 0 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	1 1 1 1 1 1 1 1 1 1 1 1 1 1
11468 LA 7/26/2008 0-5 0.1 0 35 1 0.06 11596 LA 8/4/2008 0-5 0.1 0 19 1 0.02 11724 LA 8/4/2008 0-5 0.1 1 32 1 0.01 11832 LA 7/30/2008 0-5 0.1 0 33 1 0.02 11852 LA 8/2/2008 0-5 0.1 0 77 1 0.04 12088 LA 7/29/2008 0-5 0.3 1 60 1 0.04 12088 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12620 LA 8/2/2008 0-5 0.1 0 18 1 0.02 12856 LA 7/31/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 23 1 0.03 13112 LA 7/30/2008 0-5 0.1 <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11596 LA 8/4/2008 0-5 0.1 0 19 1 0.02 11724 LA 8/4/2008 0-5 0.1 1 32 1 0.01 11832 LA 7/30/2008 0-5 0.1 0 33 1 0.02 11852 LA 8/2/2008 0-5 0.1 0 77 1 0.04 12088 LA 7/29/2008 0-5 0.3 1 60 1 0.04 12088 LA 7/29/2008 0-5 0.5 1 59 1 0.04 12408 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12620 LA 8/2/2008 0-5 0.1 0 18 1 0.02 12856 LA 7/31/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	1 1 1 1 1 1 1 1 1 1 1 1 1 1
11724 LA 8/4/2008 0-5 0.1 1 32 1 0.01 11832 LA 7/30/2008 0-5 0.1 0 33 1 0.02 11852 LA 8/2/2008 0-5 0.1 0 77 1 0.04 12088 LA 7/29/2008 0-5 0.3 1 60 1 0.04 12088 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12088 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12620 LA 8/2/2008 0-5 0.1 0 18 1 0.02 12856 LA 7/31/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 23 1 0.03 13112 LA 7/31/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 <td>1 1 1 1 1 1 1 1 1 1 1 1 1</td>	1 1 1 1 1 1 1 1 1 1 1 1 1
11832 LA 7/30/2008 0-5 0.1 0 33 1 0.02 11852 LA 8/2/2008 0-5 0.1 0 77 1 0.04 12088 LA 7/29/2008 0-5 0.3 1 60 1 0.04 12088 LA 7/29/2008 0-5 0.3 1 59 1 0.04 12408 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12620 LA 8/2/2008 0-5 0.1 0 18 1 0.02 12856 LA 7/31/2008 0-5 0.1 0 24 1 0.02 12876 LA 8/6/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1	1 1 1 1 1 1 1 1 1 1
11852 LA 8/2/2008 0-5 0.1 0 77 1 0.04 12088 LA 7/29/2008 0-5 0.3 1 60 1 0.04 12088 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12408 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12620 LA 8/2/2008 0-5 0.1 0 18 1 0.02 12856 LA 7/31/2008 0-5 0.1 0 24 1 0.02 12876 LA 8/6/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 44 1 0.02 13112 LA 7/31/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1	1 1 1 1 1 1 1 1 1
12088 LA 7/29/2008 0-5 0.3 1 60 1 0.04 12408 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12408 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12620 LA 8/2/2008 0-5 0.1 0 18 1 0.02 12856 LA 7/31/2008 0-5 0.1 0 24 1 0.02 12876 LA 8/6/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 44 1 0.02 13112 LA 7/31/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1 0 11 1 0.01	1 1 1 1 1 1 1 1 1
12408 LA 7/30/2008 0-5 0.5 1 59 1 0.04 12620 LA 8/2/2008 0-5 0.1 0 18 1 0.02 12856 LA 7/31/2008 0-5 0.1 0 24 1 0.02 12876 LA 8/6/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 44 1 0.02 13112 LA 7/31/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1 0 11 1 0.01	1 1 1 1 1 1
12620 LA 8/2/2008 0-5 0.1 0 18 1 0.02 12856 LA 7/31/2008 0-5 0.1 0 24 1 0.02 12876 LA 8/6/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 44 1 0.02 13112 LA 7/31/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1 0 11 1 0.01	1 1 1 1 1
12856 LA 7/31/2008 0-5 0.1 0 24 1 0.02 12876 LA 8/6/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 44 1 0.02 13112 LA 7/31/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1 0 11 1 0.01	1 1 1 1
12876 LA 8/6/2008 0-5 0.1 0 27 1 0.03 13004 LA 8/3/2008 0-5 0.1 0 44 1 0.02 13112 LA 7/31/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1 0 11 1 0.01	1 1 1
13004 LA 8/3/2008 0-5 0.1 0 44 1 0.02 13112 LA 7/31/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1 0 11 1 0.01	1 1
13112 LA 7/31/2008 0-5 0.1 0 23 1 0.03 120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1 0 11 1 0.01	1
120 LA 7/30/2008 0-15 0.2 1 67 1 0.07 140 LA 8/6/2008 0-30 0.1 0 11 1 0.01	
140 LA 8/6/2008 0-30 0.1 0 11 1 0.01	1
	1
	1
	1
332 LA 8/2/2008 0-15 0.1 0 16 1 0.04	1
460 LA 7/26/2008 0-10 0.1 0 33 1 0.04	1
588 LA 8/6/2008 0-20 0.1 0 25 1 0.02	1
824 LA 7/30/2008 0-20 0.1 0 32 1 0.03	1
1072 LA 7/28/2008 0-20 0.6 1 57 1 0.04	1
1144 LA 7/30/2008 0-20 0.4 1 61 1 0.05	1
1356 LA 8/2/2008 0-20 0.1 0 21 1 0.01	1
1612 LA 8/5/2008 0-30 0.2 1 84 1 0.07	1
1740 LA 8/3/2008 0-20 0.8 1 62 1 0.07	1
1848 LA 7/28/2008 0-10 0.3 1 45 1 0.03	1
2168 LA 7/29/2008 0-8 0.3 1 53 1 0.03	1
2380 LA 8/4/2008 0-20 0.1 0 23 1 0.02	1
	0
2872 LA 7/28/2008 0-10 0.3 1 37 1 0.05	1
2892 LA 8/6/2008 0-20 0.1 0 19 1 0.01	1
3404 LA 8/4/2008 0-30 0.1 0 29 1 0.06	1
3640 LA 7/31/2008 0-30 0.2 1 37 1 0.05	1
3896 LA 7/27/2008 0-20 0.1 1 19 1 0.04	1
3980 LA 8/1/2008 0-10 0.4 1 79 1 0.05	1
4216 LA 7/30/2008 0-20 0.2 1 51 1 0.04	1
4236 LA 8/6/2008 0-20 0.2 1 30 1 0.11	1
4300 LA 8/1/2008 0-5 0.2 1 60 1 0.04	1
4428 LA 8/2/2008 0-20 0.1 0 18 1 0.02	1
4492 LA 8/6/2008 0-10 0.1 0 31 1 0.06	1
4664 LA 7/31/2008 0-15 0.1 0 6 1 0.01	1
4684 LA 8/6/2008 0-30 0.1 0 13 1 0.01	1
4920 LA 7/31/2008 0-5 0.1 0 7 1 0.02	1
5240 LA 8/1/2008 0-15 0.3 1 35 1 6.24	1
5452 LA 8/2/2008 0-20 0.1 1 31 1 0.01	0
5688 LA 7/31/2008 0-30 0.1 0 22 1 0.02	1
5708 LA 8/6/2008 0-20 0.1 0 69 1 0.04	1
5836 LA 8/4/2008 0-20 0.8 1 78 1 0.06	1

SiteID	StateID	CollDate	Depth (cm)	Cd (mg/kg)	D_Cd (mg/kg)	Cr (mg/kg)	D_Cr (mg/kg)	Hg (mg/kg)	D_Hg (mg/kg)
5944	LA	7/26/2008	0-20	0.2	1	28	1	0.05	1
6264	LA	7/29/2008	0-20	0.3	1	37	1	0.04	1
6476	LA	8/2/2008	0-20	0.1	0	24	1	0.02	1
6712	LA	7/31/2008	0-25	0.2	1	35	1	0.05	1
6968	LA	7/28/2008	0-25	0.3	1	47	1	0.06	1
7500	LA	8/4/2008	0-15	0.1	0	17	1	0.02	1
7736	LA	7/31/2008	0-15	0.1	0	26	1	0.03	1
7992	LA	7/28/2008	0-8	0.4	1	53	1	0.09	1
8012	LA	8/6/2008	0-20	0.1	0	39	1	0.06	1
8076	LA	8/1/2008	0-20	0.4	1	47	1	0.06	1
8312	LA	7/30/2008	0-30	0.3	1	52	1	0.03	1
8332	LA	8/6/2008	0-70	0.1	1	84	1	0.01	1
8396	LA	8/3/2008	0-30	0.3	1	60	1	0.05	1
8524	LA	8/4/2008	0-20	0.1	0	22	1	0.02	1
8780	LA	8/6/2008	0-10	0.1	1	24	1	0.02	1
8908	LA	8/4/2008	0-20	0.1	0	35	1	0.04	1
9016	LA	7/30/2008	0-30	0.1	0	25	1	0.01	1
9336	LA	7/30/2008	0-20	0.1	0	51	1	0.03	1
9548	LA	8/3/2008	0-20	0.1	0	21	1	0.03	1
9804	LA	8/6/2008	0-15	0.1	0	19	1	0.01	0
9932	LA	8/4/2008	0-30	0.2	1	39	1	0.02	1
10040	LA	7/29/2008	0-30	1	1	78	1	0.07	1
10060	LA	8/6/2008	0-25	0.1	0	16	1	0.01	0
10572	LA	7/31/2008	0-10	0.1	0	38	1	0.02	1
10808	LA	7/31/2008	0-10	0.1	0	26	1	0.04	1
11064	LA	7/28/2008	0-8	0.8	1	56	1	0.09	1
11148	LA	8/1/2008	0-20	0.2	1	65	1	0.1	1
11340	LA	8/4/2008	0-30	0.1	0	23	1	0.02	1
11468	LA	7/26/2008	0-30	0.1	0	24	1	0.05	1
11596	LA	8/4/2008	0-30	0.1	0	13	1	0.02	1
11724	LA	8/4/2008	0-50	0.2	1	22	1	0.02	1
11832	LA	7/30/2008	0-20	0.1	0	32	1	0.03	1
11852	LA	8/2/2008	0-20	0.1	0	75	1	0.03	1
12088	LA	7/29/2008	0-30	0.3	1	41	1	0.04	1
12408	LA	7/30/2008	0-30	0.5	1	63	1	0.04	1
12620	LA	8/2/2008	0-25	0.1	0	17	1	0.02	1
12856	LA	7/31/2008	0-20	0.1	0	17	1	0.02	1
12876	LA	8/6/2008	0-10	0.1	0	22	1	0.05	1
13004	LA	8/3/2008	0-20	0.1	0	47	1	0.01	0
13112	LA	7/31/2008	0-20	0.1	0	33	1	0.02	1

SiteID	StateID	CollDate	Depth (cm)	Pb (ma/ka)	D Pb (ma/ka)	Se (ma/ka)	D_Se (mg/kg)	Sr (ma/ka)	D Sr (mg/kg)
120	LA	7/30/2008	0-5	90.8	<u> </u>	<u>1</u>	<u> </u>	87.3	<u> </u>
140	LA	8/6/2008	0-5	6.7	1	0.2	0	11	1
204	LA	7/26/2008	0-5	18.7	1	0.7	1	45	1
332	LA	8/2/2008	0-5	10.7	1	0.2	0	15.6	1
460	LA	7/26/2008	0-5	15.3	1	0.3	1	22.8	1
588	LA	8/6/2008	0-5	10.1	1	0.2	0	14.2	1
824	LA	7/30/2008	0-5	18.3	1	0.4	1	82.8	1
1072	LA	7/28/2008	0-5	47.2	1	0.7	1	122	1
1144	LA	7/30/2008	0-5	20.9	1	0.5	1	121	1
1356	LA	8/2/2008	0-5	10.9	1	0.2	0	21.2	1
1612	LA	8/5/2008	0-5	35	1	0.7	1	95.5	1
1740	LA	8/3/2008	0-5	25.4	1	1	1	96.4	1
1848	LA	7/28/2008	0-5	26	1	0.4	1	149	1
2168	LA	7/29/2008	0-5	19.6	1	0.2	1	167	1
2380	LA	8/4/2008	0-5	14.1	1	0.2	0	25.7	1
2636	LA	8/6/2008	0-5	11.3	1	0.2	0	32.4	1
2872	LA	7/28/2008	0-5	24.1	1	0.3	1	177	1
2892	LA	8/6/2008	0-5	9.8	1	0.2	0	30.8	1
3404	LA	8/4/2008	0-5	17.5	1	0.3	1	52	1
3640	LA	7/31/2008	0-5	24.8	1	0.5	1	142	1
3896	LA	7/27/2008	0-5	25.7	1	0.5	1	112	1
3980	LA	8/1/2008	0-5	41.7	1	0.7	1	96.3	1
4216	LA	7/30/2008	0-5	18.9	1	0.5	1	150	1
4236	LA	8/6/2008	0-5	26.3	1	0.2	0	24.6	1
4300	LA	8/1/2008	0-5	19.2	1	0.4	1	114	1
4428	LA	8/2/2008	0-5	11.1	1	0.2	0	12.9	1
4492	LA	8/6/2008	0-5	21.3	1	0.4	1	48	1
4664	LA	7/31/2008	0-5	13.9	1	0.2	0	203	1
4684	LA	8/6/2008	0-5	7.6	1	0.2	0	9.1	1
4920	LA	7/31/2008	0-5	9.3	1	0.2	0	31.2	1
5240	LA	8/1/2008	0-5	31.8	1	0.2	0	160	1
5452	LA	8/2/2008	0-5	19.2	1	0.2	0	75.5	1
5688	LA	7/31/2008	0-5	13.6	1	0.4	1	34.7	1
5708	LA	8/6/2008	0-5	27.6	1	0.9	1	78.3	1
5836	LA	8/4/2008	0-5	30.5	1	1.2	1	92.3	1
5944		7/26/2008		26.2	1	0.3	1	104	1
6264	LA	7/29/2008		13.6	1	0.2	0	182	1
6476	LA	8/2/2008	0-5	11.3	1	0.2	0	11.3	1
6712	LA	7/31/2008		12.7	1	0.2	1	275	1
6968	LA	7/28/2008	0-5	27.9	1	0.6	1	124	1
7500	LA	8/4/2008	0-5	10.8	1	0.2	0	21.6	1
7736	LA	7/31/2008		16.4	1	0.3	1	37.2	1
7992	LA	7/28/2008		46.7	1	0.7	1	127	1
8012	LA	8/6/2008	0-5	17.8	1	0.4	1	44.7	1
8076	LA	8/1/2008	0-5	22.2	1	0.8	1	135	1
8312	LA	7/30/2008	0-5	17.5	1	0.4	1	160	1
8332	LA	8/6/2008	0-5	19.6	1	0.3	1	98	1
8396	LA	8/3/2008	0-5	25.9	1	0.9	1	104	1
8524	LA	8/4/2008	0-5	18.9	1	0.2	0	69.9	1
8780	LA	8/6/2008	0-5	14.6	1	0.2	0	30.6	1
8908	LA	8/4/2008	0-5	19.7	1	0.3	1	70.7	1
9016	LA	7/30/2008	0-5	17.2	1	0.3	1	27.9	1
9336	LA	7/30/2008		31.3	1	0.4	1	143	1
9548	LA	8/3/2008	0-5	22.2	1	0.2	0	74.9	1
9804	LA	8/6/2008	0-5	10	1	0.2	0	11.9	1

SiteID	StateID	CollDate	Depth (cm)	Pb (mg/kg)	D_Pb (mg/kg)	Se (mg/kg)	D_Se (mg/kg)	Sr (mg/kg)	D_Sr (mg/kg)
9932	LA	8/4/2008	0-5	17.5	<u> </u>	0.4	<u> </u>	136	1
10040	LA	7/29/2008	0-5	80.6	1	1.1	1	124	1
10060	LA	8/6/2008	0-5	8.1	1	0.2	0	7	1
10572	LA	7/31/2008	0-5	16	1	0.3	1	20.1	1
10808	LA	7/31/2008	0-5	22.4	1	0.4	1	32.7	1
11064	LA	7/28/2008	0-5	34.1	1	0.7	1	152	1
11148	LA	8/1/2008	0-5	32.1	1	0.5	1	131	1
11340	LA	8/4/2008	0-5	11.8	1	0.0	0	83.5	1
11468	LA	7/26/2008	0-5	19.8	1	0.2	1	20.5	1
11596	LA	8/4/2008	0-5	9.3	1	0.0	0	15.4	1
11724	LA	8/4/2008	0-5 0-5	11.8	1	0.2	0	213	1
11832	LA	7/30/2008	0-5	13.3	1	0.2	1	213	1
11852	LA	8/2/2008	0-5	36.2	1	0.3	1	27.4	1
		7/29/2008			1	-	1		1
12088	LA		0-5	19.8	•	0.4	-	145	-
12408	LA	7/30/2008	0-5	23.2	1	0.7	1	143	1
12620	LA	8/2/2008	0-5	9.3	1	0.2	0	12.6	1
12856	LA	7/31/2008	0-5	8.8	1	0.2	0	16	1
12876	LA	8/6/2008	0-5	11.4	1	0.2	0	30.5	1
13004	LA	8/3/2008	0-5	13.3	1	0.2	0	136	1
13112	LA	7/31/2008	0-5	16.2	1	0.4	1	19.3	1
120	LA	7/30/2008	0-15	35.2	1	0.8	1	98.8	1
140	LA	8/6/2008	0-30	8.1	1	0.2	0	13	1
204	LA	7/26/2008	0-5	22.5	1	0.7	1	49.6	1
332	LA	8/2/2008	0-15	9.3	1	0.2	0	18	1
460	LA	7/26/2008	0-10	13.4	1	0.3	1	23.4	1
588	LA	8/6/2008	0-20	11.5	1	0.2	0	16.8	1
824	LA	7/30/2008	0-20	16.8	1	0.4	1	65.5	1
1072	LA	7/28/2008	0-20	35.7	1	0.4	1	82.5	1
1144	LA	7/30/2008	0-20	22.5	1	0.4	1	114	1
1356	LA	8/2/2008	0-20	11.1	1	0.2	1	26.1	1
1612	LA	8/5/2008	0-30	31	1	0.7	1	96.4	1
1740	LA	8/3/2008	0-20	28	1	1	1	104	1
1848	LA	7/28/2008	0-10	26.8	1	0.3	1	181	1
2168	LA	7/29/2008	0-8	15.5	1	0.2	0	173	1
2380	LA	8/4/2008	0-20	13.6	1	0.2	0	26.3	1
2636	LA	8/6/2008	0-15	9.4	1	0.2	0	28.1	1
2872	LA	7/28/2008		23.4	1	0.4	1	172	1
2892	LA	8/6/2008	0-20	11.2	1	0.2	0	31.5	1
3404	LA	8/4/2008	0-30	16	1	0.3	1	53.1	1
3640	LA	7/31/2008	0-30	20.8	1	0.3	1	139	1
3896	LA	7/27/2008	0-20	23.6	1	0.5	1	128	1
3980	LA	8/1/2008	0-10	33.3	1	0.6	1	101	1
4216	LA	7/30/2008	0-20	18.4	1	0.0	1	144	1
4236	LA	8/6/2008	0-20	25.5	1	0.3	1	21.2	1
4300	LA	8/1/2008	0-5	20	1	0.3	1	124	1
4428	LA	8/2/2008	0-20	9.7	1	0.4	0	16.3	1
4492	LA	8/6/2008	0-20	20.3	1	0.2	1	52	1
4664	LA	7/31/2008	0-10	16.4	1	0.0	0	225	1
4684	LA	8/6/2008	0-15	8.2	1	0.2	0	8.9	1
4004	LA		0-30	0.2 10.9	1	0.2	1	32.4	1
		7/31/2008	0-5			0.2			
5240	LA	8/1/2008		18.4	1		0	156	1
5452	LA	8/2/2008	0-20	17.5	1	0.2	1	82.9	1
5688	LA	7/31/2008	0-30	16.3	1	0.4	1	40.3	1
5708	LA	8/6/2008	0-20	24.6	1	0.6	1	78.7	1
5836	LA	8/4/2008	0-20	31.4	1	1.1	1	115	1

SiteID	StateID	CollDate	Depth (cm)	Pb (mg/kg)	D_Pb (mg/kg)	Se (mg/kg)	D_Se (mg/kg)	Sr (mg/kg)	D_Sr (mg/kg)
5944	LA	7/26/2008	0-20	31.9	1	0.3	1	100	1
6264	LA	7/29/2008	0-20	18.5	1	0.3	1	159	1
6476	LA	8/2/2008	0-20	10.4	1	0.2	0	10	1
6712	LA	7/31/2008	0-25	12.1	1	0.3	1	290	1
6968	LA	7/28/2008	0-25	27	1	0.7	1	133	1
7500	LA	8/4/2008	0-15	11.6	1	0.2	0	21.4	1
7736	LA	7/31/2008	0-15	18	1	0.3	1	38	1
7992	LA	7/28/2008	0-8	44.2	1	0.7	1	117	1
8012	LA	8/6/2008	0-20	19.6	1	0.4	1	47	1
8076	LA	8/1/2008	0-20	22.2	1	0.9	1	133	1
8312	LA	7/30/2008	0-30	16	1	0.4	1	174	1
8332	LA	8/6/2008	0-70	20.5	1	0.2	1	113	1
8396	LA	8/3/2008	0-30	24.5	1	1	1	93.9	1
8524	LA	8/4/2008	0-20	16.2	1	0.2	0	75.2	1
8780	LA	8/6/2008	0-10	12.8	1	0.2	0	29.1	1
8908	LA	8/4/2008	0-20	16.1	1	0.3	1	68.2	1
9016	LA	7/30/2008	0-30	10.9	1	0.2	0	26	1
9336	LA	7/30/2008	0-20	19	1	0.5	1	139	1
9548	LA	8/3/2008	0-20	14	1	0.2	0	85.7	1
9804	LA	8/6/2008	0-15	7.2	1	0.2	0	10.3	1
9932	LA	8/4/2008	0-30	20.1	1	0.3	1	134	1
10040	LA	7/29/2008	0-30	41.6	1	1	1	132	1
10060	LA	8/6/2008	0-25	4.4	1	0.2	0	8.1	1
10572	LA	7/31/2008	0-10	17.4	1	0.3	1	20.4	1
10808	LA	7/31/2008	0-10	20.3	1	0.4	1	31.7	1
11064	LA	7/28/2008	0-8	38	1	0.6	1	143	1
11148	LA	8/1/2008	0-20	20.9	1	0.5	1	115	1
11340	LA	8/4/2008	0-30	14.1	1	0.2	0	87.1	1
11468	LA	7/26/2008	0-30	19.7	1	0.5	1	21.5	1
11596	LA	8/4/2008	0-30	10.5	1	0.2	0	18.9	1
11724	LA	8/4/2008	0-50	13.2	1	0.2	0	196	1
11832	LA	7/30/2008	0-20	15.2	1	0.4	1	28.9	1
11852	LA	8/2/2008	0-20	37.4	1	1.2	1	31.6	1
12088	LA	7/29/2008	0-30	19	1	0.4	1	152	1
12408	LA	7/30/2008	0-30	23.9	1	0.6	1	151	1
12620	LA	8/2/2008	0-25	8.8	1	0.2	0	12.2	1
12856	LA	7/31/2008	0-20	9.6	1	0.2	1	14.3	1
12876	LA	8/6/2008	0-10	13.2	1	0.3	1	27	1
13004	LA	8/3/2008	0-20	13.8	1	0.2	0	132	1
13112	LA	7/31/2008	0-20	15.2	1	0.4	1	19.9	1

SiteID	StateID	CollDate	Depth (cm)	Zn (mg/kg)	D_Zn (mg/kg)
120	LA	7/30/2008	0-5	87	1
140	LA	8/6/2008	0-5	8	1
204	LA	7/26/2008	0-5	38	1
332	LA	8/2/2008	0-5	10	1
460	LA	7/26/2008	0-5	21	1
588	LA	8/6/2008	0-5	24	1
824	LA	7/30/2008	0-5	28	1
1072	LA	7/28/2008	0-5	135	1
1144	LA	7/30/2008	0-5	98	1
1356	LA	8/2/2008	0-5	15	1
1612	LA	8/5/2008	0-5	119	1
1740	LA	8/3/2008	0-5	111	1
1848	LA	7/28/2008	0-5	90	1
2168	LA	7/29/2008	0-5	70	1
2380	LA	8/4/2008	0-5	9	1
2636	LA	8/6/2008	0-5	9	1
2872	LA	7/28/2008		77	1
2892	LA	8/6/2008	0-5	11	1
3404	LA	8/4/2008	0-5	38	1
3640	LA	7/31/2008		140	1
3896	LA	7/27/2008		19	1
3980	LA	8/1/2008	0-5	112	1
4216	LA	7/30/2008	0-5	71	1
4236	LA	8/6/2008	0-5	98	1
4300	LA	8/1/2008	0-5	73	1
4428	LA	8/2/2008	0-5	25	1
4492	LA	8/6/2008	0-5	18	1
4664	LA	7/31/2008	0-5	55	1
4684	LA	8/6/2008	0-5	16	1
4920	LA	7/31/2008	0-5	8	1
5240	LA	8/1/2008	0-5	54	1
5452	LA	8/2/2008	0-5	33	1
5688	LA	7/31/2008	0-5	15	1
5708	LA	8/6/2008	0-5	75	1
5836	LA	8/4/2008	0-5	121	1
5944	LA	7/26/2008	0-5	37	1
6264	LA	7/29/2008	0-5	45	1
6476	LA	8/2/2008	0-5	10	1
6712	LA	7/31/2008	0-5	53	1
6968	LA	7/28/2008	0-5	95	1
7500	LA	8/4/2008	0-5	17	1
7736	LA	7/31/2008	0-5	21	1
7992	LA	7/28/2008	0-5	119	1
8012	LA	8/6/2008	0-5	32	1
8076	LA	8/1/2008	0-5	87	1
8312	LA	7/30/2008	0-5	75	1
8332	LA	8/6/2008	0-5	76	1
8396	LA	8/3/2008	0-5	118	1
8524	LA	8/4/2008	0-5	34	1
8780	LA	8/6/2008	0-5	76	1
8908	LA	8/4/2008	0-5	51	1
9016	LA	7/30/2008	0-5	14	1
9336	LA	7/30/2008	0-5	55	1
9548	LA	8/3/2008	0-5	17	1
9804	LA	8/6/2008	0-5	7	1

SiteID	StateID	CollDate	Depth (cm)	Zn (mg/kg)	D_Zn (mg/kg)
9932	LA	8/4/2008	0-5	56	1
10040	LA	7/29/2008	0-5	148	1
10060	LA	8/6/2008	0-5	4	1
10572	LA	7/31/2008	0-5	13	1
10808	LA	7/31/2008	0-5	65	1
11064	LA	7/28/2008	0-5	385	1
11148	LA	8/1/2008	0-5	88	1
11340	LA	8/4/2008	0-5	19	1
11468	LA	7/26/2008	0-5	24	1
11596	LA	8/4/2008	0-5	8	1
11724	LA	8/4/2008	0-5	30	1
11832	LA	7/30/2008	0-5	20	1
11852	LA	8/2/2008	0-5	55	1
12088	LA	7/29/2008		79	1
12408	LA	7/30/2008		86	1
12620	LA	8/2/2008	0-5	5	1
12856	LA	7/31/2008	0-5	11	1
12876	LA	8/6/2008	0-5	73	1
13004	LA	8/3/2008	0-5	40	1
13112	LA	7/31/2008	0-5	 15	1
120	LA			92	1
		7/30/2008			1
140	LA	8/6/2008	0-30	10	
204	LA	7/26/2008	0-5	38	1
332	LA	8/2/2008	0-15	10	1
460	LA	7/26/2008	0-10	15	1
588	LA	8/6/2008	0-20	27	1
824	LA	7/30/2008	0-20	23	1
1072	LA	7/28/2008	0-20	228	1
1144	LA	7/30/2008	0-20	105	1
1356	LA	8/2/2008	0-20	10	1
1612	LA	8/5/2008	0-30	121	1
1740	LA	8/3/2008	0-20	123	1
1848	LA	7/28/2008	0-10	70	1
2168	LA	7/29/2008	0-8	71	1
2380	LA	8/4/2008	0-20	9	1
2636	LA	8/6/2008	0-15	7	1
2872	LA	7/28/2008		72	1
2892	LA	8/6/2008	0-20	11	1
3404	LA	8/4/2008	0-30	36	1
3640	LA	7/31/2008	0-30	127	1
3896	LA	7/27/2008	0-20	18	1
3980	LA	8/1/2008	0-10	114	1
4216	LA	7/30/2008	0-20	65	1
4236	LA	8/6/2008	0-20	88	1
4300	LA	8/1/2008	0-5	72	1
4428	LA	8/2/2008	0-20	13	1
4492	LA	8/6/2008	0-10	19	1
4664	LA	7/31/2008	0-15	60	1
4684	LA	8/6/2008	0-30	18	1
4920	LA	7/31/2008	0-5	9	1
5240	LA	8/1/2008	0-15	52	1
5452	LA	8/2/2008	0-20	37	1
5688	LA	7/31/2008	0-30	15	1
5708	LA	8/6/2008	0-20	67	1
5836	LA	8/4/2008	0-20	134	1

SiteID	StateID	CollDate	Depth (cm)	Zn (mg/kg)	D_Zn (mg/kg)
5944	LA	7/26/2008	0-20	31	1
6264	LA	7/29/2008	0-20	63	1
6476	LA	8/2/2008	0-20	6	1
6712	LA	7/31/2008	0-25	46	1
6968	LA	7/28/2008	0-25	93	1
7500	LA	8/4/2008	0-15	14	1
7736	LA	7/31/2008	0-15	21	1
7992	LA	7/28/2008	0-8	123	1
8012	LA	8/6/2008	0-20	31	1
8076	LA	8/1/2008	0-20	90	1
8312	LA	7/30/2008	0-30	74	1
8332	LA	8/6/2008	0-70	86	1
8396	LA	8/3/2008	0-30	117	1
8524	LA	8/4/2008	0-20	34	1
8780	LA	8/6/2008	0-10	80	1
8908	LA	8/4/2008	0-20	32	1
9016	LA	7/30/2008	0-30	12	1
9336	LA	7/30/2008	0-20	71	1
9548	LA	8/3/2008	0-20	23	1
9804	LA	8/6/2008	0-15	6	1
9932	LA	8/4/2008	0-30	68	1
10040	LA	7/29/2008	0-30	140	1
10060	LA	8/6/2008	0-25	4	1
10572	LA	7/31/2008	0-10	14	1
10808	LA	7/31/2008	0-10	57	1
11064	LA	7/28/2008	0-8	220	1
11148	LA	8/1/2008	0-20	80	1
11340	LA	8/4/2008	0-30	22	1
11468	LA	7/26/2008	0-30	23	1
11596	LA	8/4/2008	0-30	8	1
11724	LA	8/4/2008	0-50	36	1
11832	LA	7/30/2008	0-20	14	1
11852	LA	8/2/2008	0-20	61	1
12088	LA	7/29/2008	0-30	78	1
12408	LA	7/30/2008	0-30	93	1
12620	LA	8/2/2008	0-25	5	1
12856	LA	7/31/2008	0-20	9	1
12876	LA	8/6/2008	0-10	50	1
13004	LA	8/3/2008	0-20	49	1
13112	LA	7/31/2008	0-20	17	1

Outlier Tests for Selected Variables excluding nondetects

User Selected Options Date/Time of Computation ProUCL 5.17/14/2020 1:20:12 PM From File ProUCL data_USGS Bkg_Top 5 cm and A horizon_LA.xls Full Precision OFF

Rosner's Outlier Test for 5 Outliers in As (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	5.988
SD of Detects	4.832
Number of data	150
Number of suspected outliers	5

NDs not included in the following:

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value [,] a	lue (5%) <i>'</i> a	lue (1%)
1	5.988	4.816	38.2	143	6.689	3.52	3.89
2	5.772	4.056	32.6	68	6.615	3.51	3.89
3	5.591	3.41	18	141	3.639	3.51	3.89
4	5.506	3.263	17.4	66	3.645	3.51	3.88
5	5.425	3.121	14.5	61	2.908	3.51	3.88

For 5% significance level, there are 4 Potential Outliers 38.2, 32.6, 18, 17.4

For 1% Significance Level, there are 2 Potential Outliers 38.2, 32.6

Rosner's Outlier Test for 5 Outliers in Ba (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	429.3
SD of Detects	333.7
Number of data	150
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value [,] a	lue (5%) <i>'</i> a	lue (1%)
1	429.3	332.6	2690	31	6.798	3.52	3.89
2	414.1	278.1	2530	106	7.609	3.51	3.89
3	399.8	217.2	847	112	2.059	3.51	3.89
4	396.8	214.8	842	37	2.073	3.51	3.88
5	393.7	212.3	775	89	1.796	3.51	3.88

For 5% significance level, there are 2 Potential Outliers 2690, 2530

For 1% Significance Level, there are 2 Potential Outliers 2690, 2530

Rosner's Outlier Test for 5 Outliers in Cd (mg/kg)

Total N	150
Number NDs	77
Number Detects	73
Mean of Detects	0.34
SD of Detects	0.243
Number of data	73
Number of suspected outliers	5
NDs not included in the following:	
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	alue (5%) 'a	alue (1%)
1	0.34	0.241	1.1	6	3.149	3.275	3.635
2	0.329	0.227	1.1	33	3.391	3.265	3.635
3	0.318	0.209	1	19	3.257	3.265	3.625
4	0.309	0.194	1	68	3.565	3.255	3.618
5	0.299	0.176	0.8	34	2.847	3.255	3.615

For 5% significance level, there are 4 Potential Outliers 1.1, 1.1, 1, 1

For 1% Significance Level, there is no Potential Outlier

Rosner's Outlier Test for 5 Outliers in Cr (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	37.67
SD of Detects	19.3
Number of data	150
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	valuera	alue (5%) [,] a	alue (1%)
1	37.67	19.24	84	86	2.408	3.52	3.89
2	37.36	18.99	84	122	2.456	3.51	3.89
3	37.05	18.66	80	22	2.302	3.51	3.89
4	36.76	18.38	79	97	2.298	3.51	3.88
5	36.47	18.1	78	110	2.294	3.51	3.88

For 5% Significance Level, there is no Potential Outlier

For 1% Significance Level, there is no Potential Outlier

Rosner's Outlier Test for 5 Outliers in Pb (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	20.12
SD of Detects	11.61
Number of data	150
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value [,] a	lue (5%) a	alue (1%)
1	20.12	11.57	90.8	1	6.107	3.52	3.89
2	19.64	10.09	80.6	57	6.042	3.51	3.89
3	19.23	8.776	47.2	8	3.187	3.51	3.89
4	19.04	8.495	46.7	43	3.256	3.51	3.88
5	18.85	8.206	44.2	118	3.089	3.51	3.88

For 5% significance level, there are 2 Potential Outliers 90.8, 80.6

For 1% Significance Level, there are 2 Potential Outliers 90.8, 80.6

Rosner's Outlier Test for 5 Outliers in Hg (mg/kg)

Total N	150
Number NDs	7
Number Detects	143
Mean of Detects	0.114
SD of Detects	0.634
Number of data	143
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value [,] a	alue (5%) [,] a	lue (1%)
1	0.114	0.631	6.24	103	9.702	3.5	3.87
2	0.0708	0.369	4.43	30	11.81	3.492	3.87
3	0.0399	0.0242	0.13	24	3.719	3.492	3.87
4	0.0393	0.0231	0.11	42	3.066	3.49	3.86
5	0.0388	0.0223	0.11	96	3.188	3.49	3.86

For 5% significance level, there are 3 Potential Outliers 6.24, 4.43, 0.13

For 1% Significance Level, there are 2 Potential Outliers 6.24, 4.43

Rosner's Outlier Test for 5 Outliers in Se (mg/kg)

Total N	150
Number NDs	53
Number Detects	97
Mean of Detects	0.511
SD of Detects	0.253
Number of data	97
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	alue (5%) <i>'a</i>	alue (1%)
1	0.511	0.252	1.2	21	2.733	3.371	3.741
2	0.504	0.244	1.2	92	2.846	3.368	3.738
3	0.497	0.235	1.1	36	2.567	3.368	3.738
4	0.49	0.228	1.1	70	2.677	3.361	3.728
5	0.484	0.22	1	1	2.348	3.358	3.728

For 5% Significance Level, there is no Potential Outlier

For 1% Significance Level, there is no Potential Outlier

Rosner's Outlier Test for 5 Outliers in Sr (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	81.84
SD of Detects	61.29
Number of data	150
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	valuera	alue (5%) <i>'a</i>	alue (1%)
1	81.84	61.08	290	114	3.408	3.52	3.89
2	80.44	59.05	275	39	3.295	3.51	3.89
3	79.13	57.02	225	103	2.558	3.51	3.89
4	78.13	55.92	213	66	2.412	3.51	3.88
5	77.21	54.97	203	28	2.288	3.51	3.88

For 5% Significance Level, there is no Potential Outlier

For 1% Significance Level, there is no Potential Outlier

Rosner's Outlier Test for 5 Outliers in Zn (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	55.21
SD of Detects	51.06
Number of data	150
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value [,] a	lue (5%) <i>'</i> a	lue (1%)
1	55.21	50.89	385	61	6.481	3.52	3.89
2	52.99	43.42	228	83	4.031	3.51	3.89
3	51.81	41.08	220	136	4.094	3.51	3.89
4	50.67	38.79	148	57	2.509	3.51	3.88
5	50	38.07	140	20	2.364	3.51	3.88

For 5% significance level, there are 3 Potential Outliers 385, 228, 220

For 1% Significance Level, there are 3 Potential Outliers 385, 228, 220

ATTACHMENT F-3 ProUCL Background Threshold Values August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil Gas Field Iberville Parish, Louisiana

Background Threshold Values

		ground Thr		
I	Background Statistics for Data	Sets with N	lon-Detects	
User Selected Options	-			
Date/Time of Computation	ProUCL 5.17/14/2020 1:22:06 PN	1		
From File	ProUCL data_USGS Bkg_Top 5 c	cm and A ho	rizon_LA.xls	
Full Precision	OFF			
Confidence Coefficient	95%			
Coverage	95%			
nt or Future K Observations	1			
per of Bootstrap Operations 2	2000			
s (mg/kg)				
General Statistics				
	Total Number of Observations	150	Number of Distinct Observations	86
	Minimum	1	First Quartile	3.2
	Second Largest	32.6	Median	5.05
	Maximum	38.2	Third Quartile	7.375
	Mean	5.988	SD	4.832
	Coefficient of Variation	0.807	Skewness	3.415
	Mean of logged Data	1.557	SD of logged Data	0.683
		-	nd Threshold Values (BTVs)	
	Tolerance Factor K (For UTL)	1.868	d2max (for USL)	3.343
		Normal G		
	Shapiro Wilk Test Statistic	0.738	Normal GOF Test	
	5% Shapiro Wilk P Value Lilliefors Test Statistic	0	Data Not Normal at 5% Significance Level	
		0.158	Lilliefors GOF Test	
	5% Lilliefors Critical Value Data Not N	0.0727 Iormal at 5%	Data Not Normal at 5% Significance Level 6 Significance Level	
	Background Sta	tistics Assu	Iming Normal Distribution	
	_	15.01	-	12 18
	95% UTL with 95% Coverage	15.01 14.01	90% Percentile (z)	12.18 13.94
	_	15.01 14.01 22.14	-	
	95% UTL with 95% Coverage 95% UPL (t)	14.01	90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	13.94
	95% UTL with 95% Coverage 95% UPL (t)	14.01 22.14	90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	13.94
	95% UTL with 95% Coverage 95% UPL (t) 95% USL	14.01 22.14 Gamma G	90% Percentile (z) 95% Percentile (z) 99% Percentile (z) 99% Fercentile (z)	13.94 17.23
	95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic	14.01 22.14 Gamma G 0.659	90% Percentile (z) 95% Percentile (z) 99% Percentile (z) 99% Percentile (z) OF Test Anderson-Darling Gamma GOF Test	13.94 17.23
	95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774	90% Percentile (z) 95% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) 60F Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	13.94 17.23 ce Level
	95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist	90% Percentile (z) 95% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) 60F Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance cributed at 5% Significance Level	13.94 17.23 ce Level
	95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear G	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist	90% Percentile (z) 95% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) 60F Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level	13.94 17.23 ce Level ce Level
	95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear G k hat (MLE)	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist Gamma S 2.302	90% Percentile (z) 95% Percentile (z) 99% Percentil	13.94 17.23 ce Level ce Level 2.26 ⁷
	95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear G k hat (MLE) Theta hat (MLE)	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist Gamma S 2.302 2.601	90% Percentile (z) 95% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) 60F Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level tatistics k star (bias corrected MLE) Theta star (bias corrected MLE)	13.94 17.23 ce Level ce Level 2.261 2.649
	95% UTL with 95% Coverage 95% UPL (t) 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear G k hat (MLE) Theta hat (MLE) nu hat (MLE)	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist Gamma S 2.302 2.601 690.7	90% Percentile (z) 95% Percentile (z) 99% Percentil	13.94 17.23 ce Level ce Level 2.261 2.649 678.2
	95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear G k hat (MLE) Theta hat (MLE)	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist Gamma S 2.302 2.601	90% Percentile (z) 95% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) 60F Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level tatistics k star (bias corrected MLE) Theta star (bias corrected MLE)	13.94 17.23 ce Level ce Level 2.261 2.649
05% Wilcon Life	95% UTL with 95% Coverage 95% UPL (t) 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear C k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background Stat	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist Gamma S 2.302 2.601 690.7 5.988	90% Percentile (z) 95% Percentile (z) 99% Percentil	13.94 17.23 ce Level 2.261 2.649 678.2 3.983
	95% UTL with 95% Coverage 95% UPL (t) 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear G k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background Stat	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist Gamma S 2.302 2.601 690.7 5.988 tistics Assu 13.56	90% Percentile (z) 95% Percentile (z) 99% Percentile	13.94 17.23 ce Level 2.261 2.649 678.2 3.983
95% Hawkins Wi	95% UTL with 95% Coverage 95% UPL (t) 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear G k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background Stat ferty (WH) Approx. Gamma UPL xley (HW) Approx. Gamma UPL	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist Gamma Dist Gamma S 2.302 2.601 690.7 5.988 tistics Assu 13.56 13.73	90% Percentile (z) 95% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile 99% Percentile 95% Percentile	13.94 17.23 ce Level 2.261 2.649 678.2 3.983 11.32 13.67
95% Hawkins Wix 95% WH Approx. Ga	95% UTL with 95% Coverage 95% UPL (t) 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear G k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background Stat	14.01 22.14 Gamma G 0.659 0.764 0.0636 0.0774 Gamma Dist Gamma S 2.302 2.601 690.7 5.988 tistics Assu 13.56	90% Percentile (z) 95% Percentile (z) 99% Percentile	13.94 17.23 ce Level ce Level 2.261 2.649 678.2

Background Threshold Values

	5		
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.979	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0.334	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0534	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0727	Data appear Lognormal at 5% Significance Level	
Data appear L	.ognormal	at 5% Significance Level	
Packground Stati	ctice accu	ming Lognormal Distribution	
95% UTL with 95% Coverage	17	90% Percentile (z)	11.39
95% UPL (t)	14.76	95% Percentile (z)	14.6
95% USL	46.59	99% Percentile (z)	23.26
-		Free Background Statistics uted at 5% Significance Level	
Nonparametric Uppe	r l imits fo	r Background Threshold Values	
Order of Statistic, r	146	95% UTL with 95% Coverage	14.5
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
		Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	14.5	95% BCA Bootstrap UTL with 95% Coverage	14.5
95% UPL	13.79	90% Percentile	10.71
90% Chebyshev UPL	20.53	95% Percentile	13.25
95% Chebyshev UPL	27.12	99% Percentile	25.45
95% USL	38.2		
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balanc	only when th ions collect ce between	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data maite observations need to be compared with the BTV.	
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balanc represents a background data set and who	only when th ions collect ce between	ne data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data	
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balanc represents a background data set and who a (mg/kg)	only when th ions collect ce between	ne data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data	
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balanc represents a background data set and who a (mg/kg)	only when th ions collect ce between	ne data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data	134
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balanc represents a background data set and who a (mg/kg)	only when th ions collect ce between en many or	he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV.	134 207
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a baland represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations	only when th ions collect ce between en many or 150 64	he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations	-
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a baland represents a background data set and who a (mg/kg) eneral Statistics Total Number of Observations Minimum	only when th ions collect ce between en many or 150 64 2530	he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile	207
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a baland represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest	only when th ions collect ce between en many or 150 64 2530	he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median	207 373
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a baland represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum	only when th ions collect ce between en many or 150 64 2530 2690	he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile	207 373 624 333.7
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a baland represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean	150 64 2530 429.3	he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD	207 373 624 333.7 3.749
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a baland represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data	150 64 2530 429.3 0.777 5.832	he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness	207 373 624 333.7 3.749
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a baland represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data	150 64 2530 429.3 0.777 5.832	he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data	207 373 624
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a baland represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data	150 64 2530 2690 429.3 0.777 5.832 Backgrou 1.868	ne data set represents a background data set free of outliers ted from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data	207 373 624 333.7 3.749 0.695
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a baland represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data	150 64 2530 2690 429.3 0.777 5.832 Backgrou 1.868	ne data set represents a background data set free of outliers ted from clean unimpacted locations. false positives and false negatives provided the data isite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data and Threshold Values (BTVs)	207 373 624 333.7 3.749 0.695
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balance represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for Tolerance Factor K (For UTL) Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value	150 64 2530 2690 429.3 0.777 5.832 r Backgrou 1.868 Normal (0.704 0	ne data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data Ind Threshold Values (BTVs) d2max (for USL) GOF Test Normal GOF Test Data Not Normal at 5% Significance Level	207 373 624 333.7 3.74 0.69
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balance represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for Tolerance Factor K (For UTL) Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic	150 64 2530 2690 429.3 0.777 5.832 r Backgrou 1.868 Normal 0 0.704 0 0.138	ne data set represents a background data set free of outliers red from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data and Threshold Values (BTVs) d2max (for USL) GOF Test Normal GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	207 373 624 333.7 3.74 0.69
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balance represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for Tolerance Factor K (For UTL) Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value	150 64 2530 2690 429.3 0.777 5.832 r Backgrou 1.868 Normal (0.704 0 0.138 0.0727	ne data set represents a background data set free of outliers red from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data Ind Threshold Values (BTVs) d2max (for USL) GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level	207 373 624 333.7 3.749 0.697
Therefore, one may use USL to estimate a BTV of and consists of observat The use of USL tends to provide a balance represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for Tolerance Factor K (For UTL) Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N	150 64 2530 2690 429.3 0.777 5.832 r Backgrou 1.868 Normal 0 0.704 0 0.138 0.0727 Normal at 5	ee data set represents a background data set free of outliers red from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data Ind Threshold Values (BTVs) GOF Test Cata Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level SW Significance Level	207 373 624 333.7 3.749 0.695
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balance represents a background data set and whe a (mg/kg) eneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for Tolerance Factor K (For UTL) Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N	150 64 2530 2690 429.3 0.777 5.832 r Backgrou 1.868 Normal 0 0.704 0 0.138 0.0727 Normal at 5	ee data set represents a background data set free of outliers eed from clean unimpacted locations. false positives and false negatives provided the data asite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data and Threshold Values (BTVs) d2max (for USL) GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level SW Significance Level SW Significance Level	207 373 624 333.7 3.749 0.697 3.343
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balance represents a background data set and whe a (mg/kg) seneral Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for Tolerance Factor K (For UTL) Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Background Sta	150 64 2530 2690 429.3 0.777 5.832 r Backgrou 1.868 Normal 0 0.704 0 0.138 0.0727 Normal at 5	ee data set represents a background data set free of outliers eed from clean unimpacted locations. false positives and false negatives provided the data asite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data and Threshold Values (BTVs) GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level Swing Normal Distribution 90% Percentile (z)	207 373 624 333.7 3.749 0.697 3.343
Therefore, one may use USL to estimate a BTV o and consists of observat The use of USL tends to provide a balance represents a background data set and whe Ba (mg/kg) General Statistics Total Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for Tolerance Factor K (For UTL) Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not N Background Sta 95% UTL with 95% Coverage 95% UTL with 95% Coverage	150 64 2530 2690 429.3 0.777 5.832 r Backgrou 1.868 Normal 0 0.704 0 0.138 0.0727 Normal at 5	ee data set represents a background data set free of outliers red from clean unimpacted locations. false positives and false negatives provided the data isite observations need to be compared with the BTV. Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data and Threshold Values (BTVs) GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level Significance Level Suming Normal Distribution 90% Percentile (z) 95% Percentile (z)	207 373 624 333.7 3.749 0.697 3.343

ATTACHMENT F-3 ProUCL Background Threshold Values August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil Gas Field Iberville Parish, Louisiana

Background Threshold Values

		GOF Test	
A-D Test Statistic	1.966	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.764	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.0888	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.0774	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamm	a Distribute	ed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	2.328	k star (bias corrected MLE)	2.28
Theta hat (MLE)	184.4	Theta star (bias corrected MLE)	187.8
nu hat (MLE)	698.3	nu star (bias corrected)	685.6
MLE Mean (bias corrected)	429.3	MLE Sd (bias corrected)	284
_		suming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL		90% Percentile	809.4
95% Hawkins Wixley (HW) Approx. Gamma UPL	988.3	95% Percentile	976.8
95% WH Approx. Gamma UTL with 95% Coverage	1075	99% Percentile	1345
95% HW Approx. Gamma UTL with 95% Coverage	1102		
95% WH USL	2032	95% HW USL	2225
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.944	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	6.1525E-6	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0997	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0727	Data Not Lognormal at 5% Significance Level	
Data Not Lo	gnormal at	t 5% Significance Level	
Background Stati	stics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage		90% Percentile (z)	833.5
95% UPL (t)		95% Percentile (z)	1074
95% USL		99% Percentile (z)	1727
No un orași e D		Free Destances of Oteliation	
-		Free Background Statistics ernible Distribution (0.05)	
		r Background Threshold Values	
Order of Statistic, r	146	95% UTL with 95% Coverage	775
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.87
		Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	775	95% BCA Bootstrap UTL with 95% Coverage	775
95% UPL	739.1	90% Percentile	694.7
90% Chebyshev UPL	1434	95% Percentile	729.7
95% Chebyshev UPL	1889	99% Percentile	1705
95% USL	2690		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

MLE Sd (bias corrected)

0.218

Background Threshold Values

Cd (mg/kg)

	General Statis	stics	
Total Number of Observations	150	Number of Missing Observations	0
Number of Distinct Observations	9		
Number of Detects	73	Number of Non-Detects	77
Number of Distinct Detects	9	Number of Distinct Non-Detects	1
Minimum Detect	0.1	Minimum Non-Detect	0.1
Maximum Detect	1.1	Maximum Non-Detect	0.1
Variance Detected	0.0591	Percent Non-Detects	51.33%
Mean Detected	0.34	SD Detected	0.243
Mean of Detected Logged Data	-1.291	SD of Detected Logged Data	0.646
Critical Values for	· Background T	hreshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.868	d2max (for USL)	3.343
Norma	I GOF Test on	Detects Only	
Shapiro Wilk Test Statistic	0.786	Normal GOF Test on Detected Observations Only	
5% Shapiro Wilk P Value		Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.25	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.104	Data Not Normal at 5% Significance Level	
		gnificance Level	
Data Not is			
Kaplan Meier (KM) Backg	round Statistics	s Assuming Normal Distribution	
KM Mean	0.217	KM SD	0.207
95% UTL95% Coverage	0.603	95% KM UPL (t)	0.56
90% KM Percentile (z)	0.482	95% KM Percentile (z)	0.557
99% KM Percentile (z)	0.698	95% KM USL	0.908
DL/2 Substitution Backgr	ound Statistics	Assuming Normal Distribution	
Mean	0.191	SD	0.223
95% UTL95% Coverage	0.607	95% UPL (t)	0.561
90% Percentile (z)	0.477	95% Percentile (z)	0.558
99% Percentile (z)	0.709	95% USL	0.936
DL/2 is not a recommended method	d. DL/2 provide	d for comparisons and historical reasons	
Gamma GOF T	ests on Detecte	ed Observations Only	
A-D Test Statistic	2.18	Anderson-Darling GOF Test	
5% A-D Critical Value	0.76	Data Not Gamma Distributed at 5% Significance Leve	I
K-S Test Statistic	0.177	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.105	Data Not Gamma Distributed at 5% Significance Leve	I
Data Not Gamma	a Distributed at	5% Significance Level	
Gamma S	tatistics on Det	ected Data Only	
k hat (MLE)	2.521	k star (bias corrected MLE)	2.426
Theta hat (MLE)	0.135	Theta star (bias corrected MLE)	0.14
nu hat (MLE)	368.1	nu star (bias corrected)	354.3
MLE Mean (bias corrected)	0.34		20 110
	0.01		

10.84

95% Percentile of Chisquare (2kstar)

Commo BOS	Statistics w	aing Imputed Nen Detecto	
		sing Imputed Non-Detects	
-		6 NDs with many tied observations at multiple DLs	
-		s <1.0, especially when the sample size is small (e.g., <15-20)	
	•	yield incorrect values of UCLs and BTVs on the sample size is small.	
	•	by be computed using gamma distribution on KM estimates	
Minimur		Mean	0.173
Maximur		Median	0.0531
SI		CV	1.363
k hat (MLE		k star (bias corrected MLE)	0.542
Theta hat (MLE		Theta star (bias corrected MLE)	0.318
nu hat (MLE		nu star (bias corrected)	162.6
MLE Mean (bias corrected	,	MLE Sd (bias corrected)	0.234
95% Percentile of Chisquare (2kstar		90% Percentile	0.459
95% Percentil		99% Percentile	1.096
		ng Gamma ROS Statistics on Imputed Data	11000
-	-	(H) and Hawkins Wixley (HW) Methods	
WH	HW	, wh	HW
95% Approx. Gamma UTL with 95% Coverage 0.718	0.777	95% Approx. Gamma UPL 0.604	0.637
95% Gamma USL 1.968	2.548		
Estimates of C	Samma Parar	meters using KM Estimates	
Mean (KM		SD (KM)	0.207
Variance (KM	l) 0.0427	SE of Mean (KM)	0.017
k hat (KM	l) 1.099	k star (KM)	1.081
nu hat (KM	1) 329.6	nu star (KM)	324.4
theta hat (KM	l) 0.197	theta star (KM)	0.2
80% gamma percentile (KM	l) 0.346	90% gamma percentile (KM)	0.489
95% gamma percentile (KN	l) 0.631	99% gamma percentile (KM)	0.96
The following statistics are o	computed usi	ing gamma distribution and KM estimates	
Upper Limits using Wilso	on Hilferty (W	(H) and Hawkins Wixley (HW) Methods	
WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage 0.572	0.571	95% Approx. Gamma UPL 0.512	0.509
95% KM Gamma Percentile 0.508	0.504	95% Gamma USL 1.129	1.197
_		etected Observations Only	
Shapiro Wilk Approximate Test Statisti		Shapiro Wilk GOF Test	
5% Shapiro Wilk P Valu		Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statisti		Lilliefors GOF Test	
5% Lilliefors Critical Valu		Data Not Lognormal at 5% Significance Level	
Data Not I	Lognormal at	5% Significance Level	
Peakaround Leanermal DOS Statistic		ennermal Distribution Using Imputed Nen Detecto	
	-	Lognormal Distribution Using Imputed Non-Detects Mean in Log Scale	-2.171
Mean in Original Scal SD in Original Scal		SD in Log Scale	1.071
95% UTL95% Coverag		95% BCA UTL95% Coverage	0.8
95% Bootstrap (%) UTL95% Coverag		95% DEA 011295% Coverage 95% UPL (t)	0.675
90% Percentile (z		95% Percentile (z)	0.664
99% Percentile (z		95% USL	4.089
	-, 1.077		4.003
Statistics using KM estimates	on Loaged I	Data and Assuming Lognormal Distribution	
KM Mean of Logged Dat		95% KM UTL (Lognormal)95% Coverage	0.578
KM SD of Logged Dat		95% KM UPL (Lognormal)	0.502
95% KM Percentile Lognormal (z		95% KM USL (Lognormal)	1.565
	,		

Background DL/2 Sta	atistics As	suming Lognormal Distribution	
Mean in Original Scale	0.191	Mean in Log Scale	-2.166
SD in Original Scale	0.223	SD in Log Scale	0.966
95% UTL95% Coverage	0.696	95% UPL (t)	0.57
90% Percentile (z)	0.395	95% Percentile (z)	0.561
99% Percentile (z)	1.084	95% USL	2.895
		ovided for comparisons and historical reasons.	2.000
-		Free Background Statistics ernible Distribution (0.05)	
Nonparametric Upper Limits for BT	Vs(no disti	inction made between detects and nondetects)	
Order of Statistic, r	146	95% UTL with95% Coverage	0.8
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
Approximate Sample Size needed to achieve specified CC	181	95% UPL	0.8
95% USL	1.1	95% KM Chebyshev UPL	1.121
	1.1		1.121
Therefore, one may use USL to estimate a BTV o and consists of observati The use of USL tends to provide a balanc	nly when th ions collect e between	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers ted from clean unimpacted locations. false positives and false negatives provided the data the background data be compared with the BTV.	
Cr (mg/kg)			
General Statistics			
Total Number of Observations	150	Number of Distinct Observations	64
Minimum	5	First Quartile	22
Second Largest	84	Median	33
Maximum	84	Third Quartile	52.75
Mean	37.67	SD	19.3
Coefficient of Variation	0.512	Skewness	0.637
Mean of logged Data	3.488	SD of logged Data	0.557
Critical Values for	Bookaro	ind Threehold Veluce (PTVe)	
Tolerance Factor K (For UTL)	т васкдго . 1.868	und Threshold Values (BTVs) d2max (for USL)	3.343
		GOF Test	
Shapiro Wilk Test Statistic	0.918	Normal GOF Test	
5% Shapiro Wilk P Value 5		Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.126	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0727	Data Not Normal at 5% Significance Level	
Data Not N	formal at 5	5% Significance Level	
Background Sta	tistics Ass	suming Normal Distribution	
	70 70	90% Percentile (z)	62.41
95% UTL with 95% Coverage	73.73		CO 40
95% UTL with 95% Coverage 95% UPL (t)	73.73 69.73	95% Percentile (z)	69.43
		95% Percentile (z) 99% Percentile (z)	69.43 82.58
95% UPL (t)	69.73 102.2	99% Percentile (z)	
95% UPL (t) 95% USL	69.73 102.2 Gamma	99% Percentile (z)	
95% UPL (t) 95% USL A-D Test Statistic	69.73 102.2 Gamma 1.034	99% Percentile (z) GOF Test Anderson-Darling Gamma GOF Test	82.58
95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value	69.73 102.2 Gamma 1.034 0.757	99% Percentile (z) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	82.58
95% UPL (t) 95% USL A-D Test Statistic	69.73 102.2 Gamma 1.034	99% Percentile (z) GOF Test Anderson-Darling Gamma GOF Test	82.58 I

Background	Threshold	Values
- aongroana		

	Gamma	Statistics	
k hat (MLE)	3.707	k star (bias corrected MLE)	3.637
Theta hat (MLE)	10.16	Theta star (bias corrected MLE)	10.36
nu hat (MLE)		nu star (bias corrected)	1091
MLE Mean (bias corrected)	37.67	MLE Sd (bias corrected)	19.75
	0.101		
-		uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	75.05	90% Percentile	64.16
95% Hawkins Wixley (HW) Approx. Gamma UPL	76.4	95% Percentile	74.92
95% WH Approx. Gamma UTL with 95% Coverage	81.67	99% Percentile	98
95% HW Approx. Gamma UTL with 95% Coverage	83.64		
95% WH USL	140.4	95% HW USL	151
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.957	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value		Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0673	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0727	Data appear Lognormal at 5% Significance Level	
		normal at 5% Significance Level	
		j	
Background Stat	istics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	92.55	90% Percentile (z)	66.78
95% UPL (t)	82.47	95% Percentile (z)	81.75
95% USL	210.4	99% Percentile (z)	119.5
-		Free Background Statistics Distribution at 5% Significance Level	
Data appear Approximat			
Nonparametric Uppe	er Limits fo	r Background Threshold Values	
Order of Statistic, r		95% UTL with 95% Coverage	78
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
		Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	78	95% BCA Bootstrap UTL with 95% Coverage	78
95% UPL	75.9	90% Percentile	66.1
90% Chebyshev UPL	95.78	95% Percentile	75
95% Chebyshev UPL	122.1	99% Percentile	82.04
95% USL	84		
		of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV of	only when th	e data set represents a background data set free of outliers	
		ed from clean unimpacted locations.	
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data	
represents a background data set and wh	nen many or	site observations need to be compared with the BTV.	
Pb (mg/kg)			

Total Number of Observations	150	Number of Distinct Observations	114
Minimum	4.4	First Quartile	12.73
Second Largest	80.6	Median	18.15
Maximum	90.8	Third Quartile	24.05
Mean	20.12	SD	11.61
Coefficient of Variation	0.577	Skewness	2.792
Mean of logged Data	2.878	SD of logged Data	0.484

General Statistics

Critical Values for	r Background T	hreshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.868	d2max (for USL)	3.343
	Normal GOF	Test	
Shapiro Wilk Test Statistic	0.794	Normal GOF Test	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.146	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0727	Data Not Normal at 5% Significance Level	
		gnificance Level	
		-	
_		g Normal Distribution	
95% UTL with 95% Coverage	41.81	90% Percentile (z)	35
95% UPL (t)	39.4	95% Percentile (z)	39.22
95% USL	58.94	99% Percentile (z)	47.13
	Gamma GOF	Test	
A-D Test Statistic	1.111	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.756	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.0779	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.0768	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gamma	a Distributed at	5% Significance Level	
	Commo Statia		
k bot (MLE)	Gamma Statis		4 4 9 7
k hat (MLE)	4.217	k star (bias corrected MLE)	4.137
Theta hat (MLE)	4.771	Theta star (bias corrected MLE)	4.863
nu hat (MLE)	1265 20.12	nu star (bias corrected)	1241 9.891
MLE Mean (bias corrected)	20.12	MLE Sd (bias corrected)	9.091
Background Sta	tistics Assumin	g Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	38.55	90% Percentile	33.37
95% Hawkins Wixley (HW) Approx. Gamma UPL	38.71	95% Percentile	38.65
95% WH Approx. Gamma UTL with 95% Coverage	41.77	99% Percentile	49.91
95% HW Approx. Gamma UTL with 95% Coverage	42.12		
95% WH USL	69.98	95% HW USL	73.25
	Lognormal GO	- Test	
Shapiro Wilk Test Statistic	0.988	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0.873	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0427	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0727	Data appear Lognormal at 5% Significance Level	
		Significance Level	
-	-	Lognormal Distribution	00.07
95% UTL with 95% Coverage	43.92	90% Percentile (z)	33.07
95% UPL (t)	39.73	95% Percentile (z)	39.43
95% USL	89.68	99% Percentile (z)	54.83
Nonparametric D	istribution Free	Background Statistics	
-		Significance Level	

Data appear Lognormal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold	/alues
	aiues

146	95% UTL with 95% Coverage	44.2
1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
	Approximate Sample Size needed to achieve specified CC	181
44.2	95% BCA Bootstrap UTL with 95% Coverage	44.2
39.62	90% Percentile	32.22
55.07	95% Percentile	37.73
70.9	99% Percentile	64.23
90.8		
	146 1.537 44.2 39.62 55.07 70.9	1.537Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC44.295% BCA Bootstrap UTL with95% Coverage39.6290% Percentile55.0795% Percentile70.999% Percentile

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Hg (mg/kg)

	General Statis	etice	
Total Number of Observations	150	Number of Missing Observations	0
Number of Distinct Observations	14		U
Number of Detects	143	Number of Non-Detects	7
Number of Distinct Detects	14	Number of Distinct Non-Detects	1
Minimum Detect	0.01	Minimum Non-Detect	0.01
Maximum Detect	6.24	Maximum Non-Detect	0.01
Variance Detected	0.401	Percent Non-Detects	4.667%
Mean Detected	0.114	SD Detected	0.634
Mean of Detected Logged Data	-3.34	SD of Detected Logged Data	0.874
Critical Values for	^r Background T	hreshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.868	d2max (for USL)	3.343
Norma	I GOF Test on I	Detects Only	
Shapiro Wilk Test Statistic	0.143	Normal GOF Test on Detected Observations Only	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.482	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0745	Data Not Normal at 5% Significance Level	
Data Not N	lormal at 5% Si	gnificance Level	
Kaplan Meier (KM) Backg	round Statistics	s Assuming Normal Distribution	
KM Mean	0.109	KM SD	0.617
95% UTL95% Coverage	1.261	95% KM UPL (t)	1.134
90% KM Percentile (z)	0.9	95% KM Percentile (z)	1.124
99% KM Percentile (z)	1.544	95% KM USL	2.171
DL/2 Substitution Backgr	ound Statistics	Assuming Normal Distribution	
Mean	0.109	SD	0.619

	0.400	20	0.040
Mean	0.109	SD	0.619
95% UTL95% Coverage	1.265	95% UPL (t)	1.137
0			
90% Percentile (z)	0.902	95% Percentile (z)	1.127
99% Percentile (z)	1.549	95% USL	2.178
	110 10		20
10 to wat a water water and a dimensional	DI /0	lad fan aanvonde awa and blataniaal waarana	

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

Gamma GO	F Tests on De	etected Observations Only	
A-D Test Statis		Anderson-Darling GOF Test	
5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Lev	ol
		-	ei
K-S Test Statis		Kolmogorov-Smirnov GOF	.1
5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gan	nma Distribut	ed at 5% Significance Level	
Gamm	a Statistics o	n Detected Data Only	
k hat (ML	E) 0.538	k star (bias corrected MLE)	0.531
Theta hat (ML	E) 0.212	Theta star (bias corrected MLE)	0.215
nu hat (ML	E) 153.8	nu star (bias corrected)	151.9
MLE Mean (bias correcte	d) 0.114		
MLE Sd (bias correcte	d) 0.156	95% Percentile of Chisquare (2kstar)	3.994
		sing Imputed Non-Detects	
-		% NDs with many tied observations at multiple DLs	
-		as <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
-		ay be computed using gamma distribution on KM estimates	
Minimu		Mean	0.109
Maximu	im 6.24	Median	0.03
S	SD 0.619	CV	5.672
k hat (ML	E) 0.532	k star (bias corrected MLE)	0.525
Theta hat (ML	E) 0.205	Theta star (bias corrected MLE)	0.208
nu hat (ML	E) 159.5	nu star (bias corrected)	157.6
MLE Mean (bias correcte	d) 0.109	MLE Sd (bias corrected)	0.151
95% Percentile of Chisquare (2ksta	ar) 3.966	90% Percentile	0.292
95% Percent	ile 0.412	99% Percentile	0.705
The following statistics are o	omputed usi	ng Gamma ROS Statistics on Imputed Data	
		/H) and Hawkins Wixley (HW) Methods	1.15.47
WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage 0.307 95% Gamma USL 0.824	0.253	95% Approx. Gamma UPL 0.259	0.213
95% Gamma USL 0.824	0.722		
		meters using KM Estimates	
Mean (Ki		SD (KM)	0.617
Variance (KI	,	SE of Mean (KM)	0.0505
k hat (KI	M) 0.0313	k star (KM)	0.0351
nu hat (KI	M) 9.389	nu star (KM)	10.53
theta hat (KI	M) 3.487	theta star (KM)	3.108
80% gamma percentile (KI	M) 0.00312	90% gamma percentile (KM)	0.0919
95% gamma percentile (KI	VI) 0.481	99% gamma percentile (KM)	2.692
The following statistics are	computed us	ing gamma distribution and KM estimates	
-	-	/H) and Hawkins Wixley (HW) Methods	
WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage 0.305	0.252	95% Approx. Gamma UPL 0.258	0.212
95% KM Gamma Percentile 0.255	0.21	95% Gamma USL 0.819	0.717
-		Detected Observations Only	
Shapiro Wilk Approximate Test Statis		Shapiro Wilk GOF Test	
5% Shapiro Wilk P Val		Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statis		Lilliefors GOF Test	
5% Lilliefors Critical Val		Data Not Lognormal at 5% Significance Level	
Data Not	Lognormal a	t 5% Significance Level	

Rar				
	ckground Lognormal ROS Statistics A	Assumina	Lognormal Distribution Using Imputed Non-Detects	
	Mean in Original Scale	0.109	Mean in Log Scale	-3.427
	SD in Original Scale	0.619	SD in Log Scale	0.942
	95% UTL95% Coverage	0.189	95% BCA UTL95% Coverage	0.0955
ç	95% Bootstrap (%) UTL95% Coverage	0.11	95% UPL (t)	0.155
	90% Percentile (z)	0.109	95% Percentile (z)	0.153
	99% Percentile (z)	0.291	95% USL	0.757
		0.20		0.1.01
	Statistics using KM estimates or	n Logged I	Data and Assuming Lognormal Distribution	
	KM Mean of Logged Data	-3.399	95% KM UTL (Lognormal)95% Coverage	0.177
	KM SD of Logged Data	0.891	95% KM UPL (Lognormal)	0.147
	95% KM Percentile Lognormal (z)	0.145	95% KM USL (Lognormal)	0.657
	_		suming Lognormal Distribution	o (o)
	Mean in Original Scale	0.109	Mean in Log Scale	-3.431
	SD in Original Scale	0.619	SD in Log Scale	0.948
	95% UTL95% Coverage	0.19	95% UPL (t)	0.156
	90% Percentile (z)	0.109	95% Percentile (z)	0.154
	99% Percentile (z)	0.294	95% USL	0.77
	DL/2 is not a Recommended Method	d. DL/2 pro	wided for comparisons and historical reasons.	
	Nonparametric D	istribution	Free Background Statistics	
	-		ernible Distribution (0.05)	
	Nonparametric Upper Limits for BT	Vs(no dist	inction made between detects and nondetects)	
	Order of Statistic, r	146	95% UTL with95% Coverage	0.11
Ar	pprox, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
Approximate Sample	e Size needed to achieve specified CC	181	95% UPL	0.09
	95% USL	6.24	95% KM Chebyshev UPL	2.807
	93 % USL	0.24		2.007
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observati ne use of USL tends to provide a balanc	e estimate nly when th ions collect e between	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data maite observations need to be compared with the BTV.	2.007
Therefore, Th	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observati ne use of USL tends to provide a balanc	e estimate nly when th ions collect e between	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data	2.007
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observati ne use of USL tends to provide a balanc	e estimate nly when th ions collect e between en many or	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data	2.007
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observati ne use of USL tends to provide a balanc	e estimate nly when th ions collect e between en many or	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV.	0
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observati ne use of USL tends to provide a balanc presents a background data set and whe	e estimate nly when th ions collect e between en many or General	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. The false positives and false negatives provided the data the observations need to be compared with the BTV. Statistics	
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observati ne use of USL tends to provide a balanc presents a background data set and whe Total Number of Observations	e estimate nly when th ions collect e between en many or General 150	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. The false positives and false negatives provided the data the observations need to be compared with the BTV. Statistics	
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observatione use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations	e estimate nly when th ions collect e between en many or General 150 11	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. If alse positives and false negatives provided the data insite observations need to be compared with the BTV. Statistics Number of Missing Observations	0
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observati ne use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Detects	e estimate nly when th ions collect ie between en many or General 150 11 97	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. If false positives and false negatives provided the data insite observations need to be compared with the BTV. Statistics Number of Missing Observations Number of Non-Detects	0 53
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observations oresents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects	e estimate nly when th ions collect ie between en many or General 150 11 97 11	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects	0 53 1
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observations he use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect	e estimate nly when th ions collect e between en many or General 150 11 97 11 0.2	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. Talse positives and false negatives provided the data ansite observations need to be compared with the BTV. Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detects	0 53 1 0.2
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observations the use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Mumber of Distinct Detects Minimum Detect Maximum Detect	e estimate nly when th ions collect ie between en many or General 150 11 97 11 0.2 1.2	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. The false positives and false negatives provided the data the observations need to be compared with the BTV. Statistics Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	0 53 1 0.2 0.2
Therefore, Tr rep	use of USL tends to yield a conservative , one may use USL to estimate a BTV o and consists of observations the use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Mumber of Distinct Detects Minimum Detect Variance Detected	e estimate nly when th ions collect e between en many or General 150 11 97 11 0.2 1.2 0.0641	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data insite observations need to be compared with the BTV. Statistics Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	0 53 1 0.2 0.2 35.33%
Therefore, Tr rep	use of USL tends to yield a conservative, one may use USL to estimate a BTV o and consists of observations be use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Variance Detected Mean Detected Mean of Detected Logged Data	e estimate nly when the ions collect te between en many or General 150 11 97 11 0.2 1.2 0.0641 0.511 -0.782	of BTV, especially when the sample size starts exceeding 20. he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data isite observations need to be compared with the BTV. Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect SD Detected SD of Detected Logged Data	0 53 1 0.2 0.2 35.33% 0.253
Therefore, Tr rep	use of USL tends to yield a conservative, one may use USL to estimate a BTV of and consists of observations be use of USL tends to provide a balance oresents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Variance Detected Mean Detected Mean of Detected Logged Data	e estimate nly when the ions collect the between en many or General 150 11 97 11 0.2 1.2 0.0641 0.511 -0.782	of BTV, especially when the sample size starts exceeding 20. the data set represents a background data set free of outliers ted from clean unimpacted locations. false positives and false negatives provided the data isite observations need to be compared with the BTV. Statistics Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data	0 53 1 0.2 0.2 35.33% 0.253 0.467
Therefore, Tr rep	use of USL tends to yield a conservative, one may use USL to estimate a BTV o and consists of observations be use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Variance Detected Mean Detected Mean of Detected Logged Data	e estimate nly when the ions collect te between en many or General 150 11 97 11 0.2 1.2 0.0641 0.511 -0.782	of BTV, especially when the sample size starts exceeding 20. he data set represents a background data set free of outliers and from clean unimpacted locations. false positives and false negatives provided the data isite observations need to be compared with the BTV. Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect SD Detected SD of Detected Logged Data	0 53 1 0.2 0.2 35.33% 0.253
Therefore, Tr rep	use of USL tends to yield a conservative, one may use USL to estimate a BTV of and consists of observations be use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean of Detected Logged Data Critical Values for Tolerance Factor K (For UTL)	e estimate nly when the ions collect the between en many or General 150 11 97 11 0.2 1.2 0.0641 0.511 -0.782 • Backgrou 1.868	of BTV, especially when the sample size starts exceeding 20. the data set represents a background data set free of outliers ted from clean unimpacted locations. false positives and false negatives provided the data isite observations need to be compared with the BTV. Statistics Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data	0 53 1 0.2 0.2 35.33% 0.253 0.467
Therefore, Tr rep	use of USL tends to yield a conservative, one may use USL to estimate a BTV of and consists of observations be use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean of Detected Logged Data Critical Values for Tolerance Factor K (For UTL)	e estimate nly when the ions collect the between en many or General 150 11 97 11 0.2 1.2 0.0641 0.511 -0.782 • Backgrou 1.868	of BTV, especially when the sample size starts exceeding 20. the data set represents a background data set free of outliers and threshold Values (BTVs) of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers the data set represents a background	0 53 1 0.2 0.2 35.33% 0.253 0.467 3.343
Therefore, Tr rep	use of USL tends to yield a conservative, one may use USL to estimate a BTV of and consists of observations be use of USL tends to provide a balance presents a background data set and when total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Of Detected Logged Data Critical Values for Tolerance Factor K (For UTL) Norma Shapiro Wilk Test Statistic	e estimate nly when the ions collect ie between en many or General 150 11 97 11 0.2 1.2 0.0641 0.511 -0.782 Backgrou 1.868 I GOF Tes 0.857	of BTV, especially when the sample size starts exceeding 20. the data set represents a background data set free of outliers ted from clean unimpacted locations. false positives and false negatives provided the data asite observations need to be compared with the BTV. Statistics Number of Missing Observations Number of Non-Detects Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data and Threshold Values (BTVs) d2max (for USL) t on Detects Only Normal GOF Test on Detected Observations Only	0 53 1 0.2 0.2 35.33% 0.253 0.467 3.343
Therefore, Tr rep	use of USL tends to yield a conservative, one may use USL to estimate a BTV of and consists of observations be use of USL tends to provide a balance oresents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean of Detected Logged Data Critical Values for Tolerance Factor K (For UTL)	e estimate nly when the ions collect ie between en many or General 150 11 97 11 0.2 1.2 0.0641 0.511 -0.782 Backgrou 1.868 I GOF Tes 0.857	of BTV, especially when the sample size starts exceeding 20. the data set represents a background data set free of outliers ted from clean unimpacted locations. false positives and false negatives provided the data is to observations need to be compared with the BTV. Statistics Number of Missing Observations Number of Non-Detects Number of Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data and Threshold Values (BTVs) (2max (for USL)	0 53 1 0.2 0.2 35.33% 0.253 0.467 3.343
Therefore, Tr rep	use of USL tends to yield a conservative, one may use USL to estimate a BTV of and consists of observations be use of USL tends to provide a balance presents a background data set and whe Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Of Detected Logged Data Critical Values for Tolerance Factor K (For UTL) Norma Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value 2	e estimate nly when the ions collect ie between en many or General 150 11 97 11 0.2 1.2 0.0641 0.511 -0.782 • Backgrou 1.868 • I GOF Tes 0.857 1.499E-13	of BTV, especially when the sample size starts exceeding 20. the data set represents a background data set free of outliers ted from clean unimpacted locations. false positives and false negatives provided the data asite observations need to be compared with the BTV. Statistics Number of Missing Observations Number of Non-Detects Number of Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data and Threshold Values (BTVs) t on Detects Only Normal GOF Test on Detected Observations Only Data Not Normal at 5% Significance Level	0 53 1 0.2 0.2 35.33% 0.253 0.467 3.343

Kaplan Meier	(KM) Background	Statistics Assuming	Normal Distribution
--------------	-----------------	---------------------	---------------------

Kaplan Meier (KM) Ba	ackgr	ound Stat	tistics Assuming Normal Distribution	
KM Me	ean	0.401	KM SD	0.251
95% UTL95% Covera	age	0.871	95% KM UPL (t)	0.819
90% KM Percentile	e (z)	0.724	95% KM Percentile (z)	0.815
99% KM Percentile	e (z)	0.986	95% KM USL	1.242
DL/2 Substitution Ba	ckgro	ound Stati	istics Assuming Normal Distribution	
Me	ean	0.366	SD	0.283
95% UTL95% Covera	age	0.895	95% UPL (t)	0.836
90% Percentile	e (z)	0.729	95% Percentile (z)	0.832
99% Percentile	e (Z)	1.025	95% USL	1.313
DL/2 is not a recommended me	ethod	l. DL/2 pro	ovided for comparisons and historical reasons	
Gamma Go	OF T€	ests on De	etected Observations Only	
A-D Test Stati	stic	2.705	Anderson-Darling GOF Test	
5% A-D Critical Va	alue	0.755	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Stati	stic	0.205	Kolmogorov-Smirnov GOF	
5% K-S Critical Va	alue	0.0911	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Ga	mma	Distribut	ed at 5% Significance Level	
Gamr	na St	atistics or	n Detected Data Only	
k hat (M	LE)	4.672	k star (bias corrected MLE)	4.534
Theta hat (M	LE)	0.109	Theta star (bias corrected MLE)	0.113
nu hat (M	LE)	906.4	nu star (bias corrected)	879.7
MLE Mean (bias correct	ed)	0.511		
MLE Sd (bias correct	ed)	0.24	95% Percentile of Chisquare (2kstar)	17.02
			sing Imputed Non-Detects	
•			6 NDs with many tied observations at multiple DLs	
-			is <1.0, especially when the sample size is small (e.g., <15-20)	
		•	yield incorrect values of UCLs and BTVs	
		•	en the sample size is small.	
			ay be computed using gamma distribution on KM estimates	0.050
Minim		0.01	Mean	0.358
Maxim		1.2	Median	0.3
	SD	0.293	CV	0.82
k hat (M	,	1.007	k star (bias corrected MLE)	0.991
Theta hat (M	,	0.356	Theta star (bias corrected MLE)	0.361
nu hat (M	,	302	nu star (bias corrected)	297.3
MLE Mean (bias correct	,	0.358	MLE Sd (bias corrected)	0.36
95% Percentile of Chisquare (2ks	,	5.956	90% Percentile	0.826
95% Percer		1.076	99% Percentile	1.656
-		-	ng Gamma ROS Statistics on Imputed Data	
	son l		/H) and Hawkins Wixley (HW) Methods	
WH		HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage 1.223		1.361	95% Approx. Gamma UPL 1.066	1.163
95% Gamma USL 2.796		3.588		
Estimates o	f Gar	nma Para	meters using KM Estimates	
Mean (k	<m)< td=""><td>0.401</td><td>SD (KM)</td><td>0.251</td></m)<>	0.401	SD (KM)	0.251
Variance (F	(M)	0.0632	SE of Mean (KM)	0.0206
k hat (k	(M)	2.549	k star (KM)	2.502
nu hat (ł	(M)	764.6	nu star (KM)	750.6
theta hat (P	<m)< td=""><td>0.157</td><td>theta star (KM)</td><td>0.16</td></m)<>	0.157	theta star (KM)	0.16
80% gamma percentile (F	<m)< td=""><td>0.585</td><td>90% gamma percentile (KM)</td><td>0.741</td></m)<>	0.585	90% gamma percentile (KM)	0.741
95% gamma percentile (k	(M)	0.888	99% gamma percentile (KM)	1.211

The following stati	stics are cor	nputed usi	ing gamma distribution and KM estimates	
-		-	(H) and Hawkins Wixley (HW) Methods	
	ŴН	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.9	0.909	95% Approx. Gamma UPL 0.824	0.827
95% KM Gamma Percentile	0.818	0.821	95% Gamma USL 1.587	1.676
Log	normal GOF	Test on D	etected Observations Only	
- Shapiro Wilk Approximate T	est Statistic	0.924	Shapiro Wilk GOF Test	
5% Shapiro V	Vilk P Value 7	7.3138E-6	Data Not Lognormal at 5% Significance Level	
Lilliefors T	est Statistic	0.18	Lilliefors GOF Test	
5% Lilliefors C	ritical Value	0.0902	Data Not Lognormal at 5% Significance Level	
	Data Not Log	gnormal at	5% Significance Level	
Background Lognormal RO	S Statistics A	ssuming	Lognormal Distribution Using Imputed Non-Detects	
Mean in Oi	iginal Scale	0.386	Mean in Log Scale	-1.177
SD in O	iginal Scale	0.266	SD in Log Scale	0.688
95% UTL959	% Coverage	1.113	95% BCA UTL95% Coverage	1
95% Bootstrap (%) UTL959	% Coverage	1	95% UPL (t)	0.965
• • •	ercentile (z)	0.744	95% Percentile (z)	0.955
99% P	ercentile (z)	1.526	95% USL	3.071
Statistics using KM	estimates or	n Loaaed I	Data and Assuming Lognormal Distribution	
KM Mean of L		-1.074	95% KM UTL (Lognormal)95% Coverage	0.945
	ogged Data	0.545	95% KM UPL (Lognormal)	0.844
95% KM Percentile Lo		0.837	95% KM USL (Lognormal)	2.109
Backgro	und DL/2 Sta	atistics As	suming Lognormal Distribution	
_	iginal Scale	0.366	Mean in Log Scale	-1.319
	iginal Scale	0.283	SD in Log Scale	0.82
95% UTL95	•	1.238	95% UPL (t)	1.044
	ercentile (z)	0.765	95% Percentile (z)	1.031
	ercentile (z)	1.803	95% USL	4.151
	()		vided for comparisons and historical reasons.	
Non	parametric D	istribution	Free Background Statistics	
-			ernible Distribution (0.05)	
Nonparametric Upper L	imits for BT	Vs(no disti	nction made between detects and nondetects)	
	of Statistic, r	146	95% UTL with95% Coverage	1
Approx, f used to compute a	,	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
Approximate Sample Size needed to achieve s		181	95% UPL	1
	95% USL	1.2	95% KM Chebyshev UPL	1.501
-			of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers	
-		•	ed from clean unimpacted locations.	
			false positives and false negatives provided the data	
		C DCIWEEII		

represents a background data set and when many onsite observations need to be compared with the BTV.

Sr (mg/kg)

Si (ilig/kg)			
General Statistics			
Total Number of Observations	150	Number of Distinct Observations	131
Minimum	7	First Quartile	26.15
Second Largest	275	Median	76.9
Maximum	290	Third Quartile	131.8
Mean	81.84	SD	61.29
Coefficient of Variation	0.749	Skewness	0.706
Mean of logged Data	4.039	SD of logged Data	0.939
Critical Values fo	r Backgrou	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.868	d2max (for USL)	3.343
	1.000		0.040
	Normal G	GOF Test	
Shapiro Wilk Test Statistic	0.898	Normal GOF Test	
5% Shapiro Wilk P Value	1.332E-15	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.162	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0727	Data Not Normal at 5% Significance Level	
		% Significance Level	
_		uming Normal Distribution	
95% UTL with 95% Coverage	196.3	90% Percentile (z)	160.4
95% UPL (t)	183.6	95% Percentile (z)	182.6
95% USL	286.7	99% Percentile (z)	224.4
	Gamma O	GOF Test	
A-D Test Statistic	3.313	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.77	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.128	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.078	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gamm	a Distribute	ed at 5% Significance Level	
	Gamma S	Statistics	
k hat (MLE)	1.514	k star (bias corrected MLE)	1.488
Theta hat (MLE)	54.05	Theta star (bias corrected MLE)	54.99
nu hat (MLE)	454.2	nu star (bias corrected)	446.4
MLE Mean (bias corrected)	81.84	MLE Sd (bias corrected)	67.09
_		uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL		90% Percentile	170.9
95% Hawkins Wixley (HW) Approx. Gamma UPL	223	95% Percentile	213.7
95% WH Approx. Gamma UTL with 95% Coverage	241.3	99% Percentile	310.6
95% HW Approx. Gamma UTL with 95% Coverage	254.7		507.0
95% WH USL	504.7	95% HW USL	587.8
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.912	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	2.240E-12	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.141	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0727	Data Not Lognormal at 5% Significance Level	
Data Not Lo	gnormal at	5% Significance Level	
Background Stati	stics assur	ning Lognormal Distribution	
95% UTL with 95% Coverage		90% Percentile (z)	189.2
95% UPL (t)	270.1	95% Percentile (z)	266.1
95% USL		99% Percentile (z)	504.6

Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Upper Limits for Background Threshold Values						
Order of Statistic, r	146	95% UTL with 95% Coverage	203			
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874			
		Approximate Sample Size needed to achieve specified CC	181			
95% Percentile Bootstrap UTL with 95% Coverage	203	95% BCA Bootstrap UTL with 95% Coverage	203			
95% UPL	181.5	90% Percentile	159.1			
90% Chebyshev UPL	266.3	95% Percentile	179.2			
95% Chebyshev UPL	349.9	99% Percentile	250.5			
95% USL	290					

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Zn (mg/kg)

General Statistics

Total Number of Observations Number of Distinct Observations 150 86 Minimum 4 First Quartile 16.25 Second Largest 228 Median 39 Maximum 385 Third Quartile 78.75 SD Mean 55.21 51.06 Coefficient of Variation Skewness 2.454 0.925 Mean of logged Data 3.589 SD of logged Data 0.985 Critical Values for Background Threshold Values (BTVs) Т 343

Tolerance Factor K (For UTL)	1.868	d2max (for USL)	3.34
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.811	Normal GOF Test	

-			
	5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
	Lilliefors Test Statistic	0.158	Lilliefors GOF Test
5	5% Lilliefors Critical Value	0.0727	Data Not Normal at 5% Significance Level
	Data Not No	ormal at 5%	Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage 95% UPL (t) 95% USL	140	90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	139.2
A-D Test Statistic	Gamma GOF Test 1.524	Anderson-Darling Gamma GOF Test	

A-D Test Statistic	1.524	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.775	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.0841	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0783	Data Not Gamma Distributed at 5% Significance Level
Data Not Gamma	Distribute	d at 5% Significance Level

	Gamma S	tetieties	
k hat (MLE)	1.328	k star (bias corrected MLE)	1.306
Theta hat (MLE)	41.58	Theta star (bias corrected MLE)	42.28
nu hat (MLE)	398.3	nu star (bias corrected)	42.20 391.7
MLE Mean (bias corrected)	55.21	MLE Sd (bias corrected)	48.31
WEE Weart (blas corrected)	55.21		40.51
Background Sta	tistics Assu	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	149.4	90% Percentile	119
95% Hawkins Wixley (HW) Approx. Gamma UPL	154.8	95% Percentile	150.7
95% WH Approx. Gamma UTL with 95% Coverage	169.4	99% Percentile	223
95% HW Approx. Gamma UTL with 95% Coverage	177.9		
95% WH USL	365.8	95% HW USL	425.3
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.949	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value		Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.11	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0727	Data Not Lognormal at 5% Significance Level	
		5% Significance Level	
	0	5	
Background Stati	stics assun	ning Lognormal Distribution	
95% UTL with 95% Coverage	228.1	90% Percentile (z)	128
95% UPL (t)	186	95% Percentile (z)	183.1
95% USL	976	99% Percentile (z)	358.4
Nonparametric D	istribution	Free Background Statistics	
-		ernible Distribution (0.05)	
		Destaurant Theorem 14 Matrice	
		Background Threshold Values	140
Order of Statistic, r	146	95% UTL with 95% Coverage	140
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
05% Dereentile Destation LITL with 05% Coverage	140	Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	140 124 5	95% BCA Bootstrap UTL with 95% Coverage 90% Percentile	140 119 1
95% UPL 90% Chebyshev UPL	134.5 208.9	90% Percentile 95% Percentile	118.1 130.0
90% Chebyshev OPL 95% Chebyshev UPL	208.9 278.5	95% Percentile 99% Percentile	130.9 224.1
95% Chebysnev OPL 95% USL	276.5 385		224.1
95% USL	300		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

ATTACHMENT G LAA DISCUSSION

November 2022

ATTACHMENT G-1

Assessment of Ecological Risk in Soil Remediation Areas

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

1. INTRODUCTION

The assessment presented here focuses on the soils that are planned for remediation in the Limited Admission Areas (LAAs). Soil remediation areas (SRAs) are planned for LAA2 and LAA3 and no soil remediation is planned for LAA1 (Figure 19). The SRAs in the LAAs are former operational areas that were not included in the Baseline Ecological Risk Assessment (BERA), due to being designated for corrective action. The finding of this assessment is that the SRAs are not predicted to be a source of ecological risk, even though they include soils planned for remediation to meet regulatory requirements.

Soils (0-4') in areas of the Property not planned for remediation are assessed in the BERA and are not included in the assessment presented here.

This assessment of the soil remediation areas includes soil concentrations (0-24"). This soil depth of 0-24" includes the effective root zone depth at the Property (0-24", HET, 2022) and the 0-12" recommended depth for the biologically active zone for soils (USEPA, 2015). The depth of 0-24" represents the depth of the majority of potential soil exposure for plants and animals in the SRAs (USEPA, 2015).

The SRAs in LAA2 and LAA3 are not included in the BERA. Therefore, this discussion of soil concentrations (0-2') in the SRAs is presented for reference and is supportive of the observed lack of ecological impact in these areas and throughout the Property. The BERA (for soils outside of the SRAs) is calculated using soil concentrations from 0-4', which includes both the USEPA (2015) recommended depth of 0-12" and the LDEQ RECAP (2003) depth of 0-3'.

The following sections are a discussion of ecological risk and the SRAs on the Property. Ecological risk is not predicted in the SRAs.

2. LAA1

Soils in LAA1 are not planned for remediation and are assessed in the BERA, rather than in the assessment presented in this section. Per the BERA, ecological risk is not predicted in LAA1, and no further action is recommended for LAA1 for any ecological reason.

3. LAA2: METALS ECOLOGICAL RISK

There is one small (approximately 0.04 acre) former operational area in LAA2, and this area is planned for remediation (see Figure 19). This SRA is referred to as Limited Admission Area 2 – Soil Remediation Area (LAA2-SRA). Average metal concentrations in the LAA2-SRA are generally below ecological screening values and ecological risk is not predicted due to exposure to metals in LAA2-SRA.

Ten of the eleven metals assessed in the LAA2-SRA are below ecological screening values (ESVs) and are not predicted to be associated with ecological risk. Specifically, three of the metals (mercury, selenium, and silver) are not detected, and seven metals (arsenic, barium, lead,

chromium, lead, and zinc) have average soil concentrations (0-2') that are below ESVs. Strontium in within the range of unimpacted Louisiana soils (background).

One metal, cadmium, has an average concentration in LAA2-SRA that slightly exceeds the ESV. This is an artifact of including an elevated reporting limit in calculating the cadmium average. Specifically, cadmium was detected at HA-1 (0-2') at 0.658 mg/kg-dry (which is below the ESV), and the associated split sample was non-detect at an elevated reporting limit of <5.2 mg/kg-dry. Location LT-2 (0-4'), which is within LAA2 but outside the SRA, was non-detect (<0.489 mg/kg-dry) at a much lower reporting limit. Relying on the more representative data, rather than a skewed average value, ecological risk is not predicted due to cadmium in soils in LAA2-SRA (see inset Table G-1, below).

Table G-1. 95%UCL, Maximum, and Average COC Concentrations (0-2') in LAA2-SRA (Pit) Compared to Screening Values

Constituents of Concern	95% UCL # of Obs.	95% UCL Performed (≥8Obs.) Y/N	95% UCL Conc.	MAX Conc.	AVG Conc.	Ecological Screening Value (ESV)
Arsenic	2	N	NA	11.62	8.8	12
Barium*	2	N	NA	228	222	2424
Cadmium	2	N	NA	0.658	1.6	0.8
Chromium*	2	N	NA	38.2	28.1	84
Lead*	2	N	NA	28.4	25.0	44
Mercury	2	N	NA	ND	ND	0.18
Selenium	2	N	NA	ND	ND	1
Silver	1	N	NA	ND	ND	4.2
Strontium	1	N	NA	251	NA	203
Zinc	2	N	NA	130.9	106	140

Notes

 The ESV for wetland soil is the highest of: Louisiana USGS soil background, USEPA Eco-SSL (lowest value amongst bird, mammal, invertebrate, and plant Eco-SSLs), and NOAA SQuiRT freshwater threshold effect concentration (TEC) and probable effect concentration (PEC). The ESV for barium is the higher of Louisiana USGS soil background and calculated barium soil screening value.

2) Averages were calculated using 1/2 the detection limit for concentrations that are non-detect.

3) Louisiana background range from USGS data (Smith et al., 2013).

4) * Barium, chromium, and lead are not predicted to be present in SRA soils in bioavailable or toxic forms, based on soil pH and known biogeochemistry of these metals. Ecological Screening Values (ESVs) for chromium and lead are for bioavailable forms of these metals that are not predicted to be present at the Property.

In summary, ecological risk due to metal concentrations in LAA2-SRA is not predicted.

4. LAA3: METALS BIOAVAILABILITY AND ECOLOGICAL RISK

There are two small (approximately 0.03 and 0.05 acres) former operational areas within LAA3 that are planned for remediation for regulatory reasons. The two operational areas are described in this section as Western Pit and Eastern Pit (See Figure 19). The SRAs associated with these pits are referred to as Limited Admission Area 3 – Western Pit Soil Remediation Area (LAA3-WP SRA) and Limited Admission Area 3 – Eastern Pit Soil Remediation Area (LAA3-EP SRA). Metals bioavailability and the potential for ecological risk in the two soil remediation areas (Western Pit and Eastern Pit) are discussed in this section.

Metals in LAA3-WP SRA and LAA3-EP SRA are demonstrated to be of low bioavailability. Constituents of low bioavailability are not easily absorbed, taken up, or accumulated by living organisms. Compounds or constituents that are of low bioavailability are also of low toxicity, because a poorly bioavailable constituent will only be absorbed or accumulated by the organism in very small amounts, and therefore toxicity is limited.

In wetland soils, such as in the soils in LAA3-WP SRA and LAA3-EP SRA, a metal may be present in elevated concentrations, and still be of limited bioavailability and low toxicity due to the specific metal compound (or species) that is present. In the wetland soil conditions found in LAA3-WP SRA and LAA3-EP SRA, where the soil pH is approximately neutral, most metals are of very low bioavailability (Reddy and DeLaune, 2008) and of very low toxicity.

4.1 Barium Bioavailability and Ecological Risk

Barium is not predicted to be a source of ecological toxicity in LAA3-WP SRA and LAA3-EP SRA.

Average barium in LAA3-EP SRA (1,924 mg/kg-dw) is below the ESV of 2,424 mg/kg-dw (see Attachment E), and no ecological risk due to barium in LAA3 is predicted.

Average barium in LAA3-WP SRA (2,938 mg/kg-dw) slightly exceeds the barium ESV of 2,424 mg/kg-dw. This ESV (2,424 mg/kg-dw) was calculated using the range (2,033 – 3,377 mg/kg-dw) of barium sulfate concentrations in soil that produce no ecological effects to invertebrates and plants (see Attachment E). Barium in LAA3-WP SRA (2,938 mg/kg-dw average) is within this range (2,033 – 3,377 mg/kg-dw) of no effects concentrations and is not predicted to be a source of ecological risk. Experience with barium in soil throughout south Louisiana also informs the opinion that average barium of 2,938 mg/kg-dw is not associated with risk to wildlife, including mammals and birds. The low average concentration of barium in soil in the LAA3-WP SRA is not predicted to be a source of e a source of ecological risk.

Barium in LAA3-WP SRA is in the form of barium sulfate, which is of very low bioavailability and very low toxicity. Barium speciation performed on soils using XRD analysis (see Table 5) demonstrates that the form of barium present is barite (barium sulfate). Barium in LAA3-EP SRA at SB-03 and SB-04 (0-2') was analyzed and found to be in the form of barite, per XRD analysis and no other forms of barium were present. Barium was also analyzed in LAA3-WP SRA at SB-11 and SB-12 (2-4') and found to be in the form of barite, per XRD analysis, and no other forms of barium were present.

Barite is of very low ecological toxicity and is not of ecological concern (USEPA, 1994; ERM, 2019). There is no ecological risk predicted in LAA3-WP SRA, LAA3-EP SRA, or throughout the Property due to barium in soils.

4.2 Chromium and Lead Bioavailability and Ecological Risk

Chromium and lead are not predicted to be sources of ecological toxicity in LAA3-WP SRA and LAA3-EP SRA.

Chromium and lead form compounds in neutral pH wetland soils that are of very low solubility, very low bioavailability, and very low toxicity (DeLaune and Reddy, 2008).

In both LAA3-WP SRA and LAA3-EP SRA, the very limited bioavailability of chromium and lead is demonstrated by SPLP analyses. SPLP analysis involves dissolving 100 grams of soil into two liters of water over an 18-hour period, to determine if the metals present in the soil sample can dissolve in water.

SPLP analyses of soils in LAA3-EP SRA (0-2', SB-03 and SB-04) demonstrate very low water solubility of lead and chromium. Chromium and lead were only detected in SPLP solution water in very low concentrations ranging from 0.02 – 0.12 mg/L (see Table 4). This is very low solubility, which indicates very low bioavailability (low levels of absorption/uptake), and very low toxicity to living organisms.

In LAA3-WP SRA, chromium and lead are also estimated to be of very low bioavailability and very low toxicity in in the 0-2' interval, based on SPLP analyses. Location HA-2 (0-2') in LAA3-WP SRA had non-detect SPLP results for both chromium and lead (<0.1 mg/L), indicating very low solubility and very low bioavailability of both chromium and lead.

Based on SPLP analyses demonstrating very low solubility in soil, ecological toxicity is not predicted due to lead and chromium in LAA3-WP SRA and LAA3-EP SRA.

4.3 Ecological Risk: Arsenic, Cadmium, Mercury, Selenium, Silver, Strontium, and Zinc

Arsenic, cadmium, mercury, selenium, silver, strontium, and zinc are not predicted to be sources of ecological toxicity in the soil remediation areas within LAA3-WP SRA and LAA3-EP SRA.

Average metals concentrations of arsenic, cadmium, mercury, selenium, silver, strontium, and zinc in the soil remediation areas within LAA3-WP SRA and LAA3-EP SRA are concentrations that are not associated with ecological risk (see Table G-2).

Arsenic: Below Ecological Risk Levels

Average arsenic (0-2') concentrations in LAA3-WP SRA and LAA3-EP SRA are 7.3 mg/kg-dw and 8.8 mg/kg-dw, respectively, which are both below the arsenic Louisiana background value of 12 mg/kg-dw. Arsenic in LAA3-WP SRA and LAA3-EP SRA is not predicted to be a source of ecological risk.

Cadmium: Below Ecological Risk Levels

There is one elevated cadmium value (0-2') in LAA3-WP SRA (HA-2, 0-2', 7.52 mg/kg-dw) that is not confirmed by the resample (SB-09, 0-2', 0.86 mg/kg-dw) collected in the immediate area. Otherwise, the average cadmium concentrations of 1.27 mg/kg-dw (LAA3-WP SRA) and 0.86 mg/kg-dw (LAA3-EP SRA) are similar to cadmium values evaluated in the BERA that are below levels of ecological risk. For example, the maximum cadmium concentration assessed in the BERA (1.7 mg/kg-dw, SB-06R, 0-2') for soils outside of the remediation areas, does not result in HQ values greater than the benchmark of 1.0 (HQ < or = 0.01). Therefore, average cadmium concentrations in LAA3-WP SRA and LAA3-EP SRA (0.86 - 1.1 mg/kg-dw), which are less than the maximum cadmium value assessed in the BERA (1.7 mg/kg-dw), are also not predicted to be associated with ecological risk. Based on this assessment, cadmium is not predicted to be a source of ecological risk in LAA3-WP SRA and LAA3-EP SRA.

Mercury: Below Ecological Risk Levels

Average mercury concentrations (0-2') in LAA3-WP SRA (0.72 mg/kg-dw) and LAA3-EP SRA (0.41 mg/kg-dw) are not predicted to be associated with ecological risk to wildlife, based on comparison to the mercury risk calculations performed for mercury in soils outside of the remediation areas, as part of the BERA. In the BERA, the average mercury concentration in preliminary AOI SB-14 (0.85 mg/kg-dw) is slightly higher than in LAA3-WP SRA (0.72 mg/kg-dw) and LAA3-EP SRA (0.41 mg/kg-dw) and was not found to be a source of ecological risk.

Therefore, in LAA3-WP SRA and LAA3-EP SRA, where average mercury concentrations are lower, mercury is also predicted not to be a risk to wildlife. Mercury in LAA3-WP SRA and LAA3-EP SRA is not predicted to be a source of ecological risk.

Zinc: Below Ecological Risk Levels

There is one elevated zinc value (0-2') in LAA3-WP SRA (HA-2, 0-2' 1350 mg/kg-dw) that was not confirmed by the split sample (232.9 mg/kg-dw), collected on the same day (08/29/19, Table 4), or by the resample (SB-09, 0-2', 108.5 mg/kg-dw) collected in the immediate area. The split sample (232.9 mg/kg-dw) is typical of zinc concentrations (0-2') throughout the Property (35.3 - 273 mg/kg-dw, 0-2') and the sample (1350 mg/kg-dw) is not. Otherwise, average zinc concentrations in LAA3-WP SRA (158 mg/kg-dw) and LAA3-EP SRA (158 mg/kg-dw) are slightly elevated above the ecological screening value of 140 mg/kg-dw, but are less than the maximum zinc value in soils outside of the remediation areas (199 mg/kg-dw), which was not calculated in the BERA to be a source of ecological risk (see Inset Table 5-2). Therefore, lower values (both SRAs: average 158 mg/kg-dw) in LAA3-WP SRA and the LAA3-EP SRA are also not predicted to be a source of ecological risk. Zinc in soils is not predicted to be a source of ecological risk. RA3-WP SRA

Selenium, Silver, and Strontium: Below Ecological Risk Levels

Selenium, silver, and strontium are not predicted to be a source of ecological risk in LAA3-WP SRA and LAA3-EP SRA. Selenium is not detected, and therefore, no ecological risk due to selenium is predicted for the soil remediation areas within LAA3. Average silver is below the ESV (4.2 mg/kg-dw) in LAA3-EP SRA and not detected in LAA-WP SRA, and therefore, no ecological risk due to silver is predicted. Strontium in within the range of unimpacted Louisiana soils (background). In summary, no ecological risk is predicted in LAA3-WP SRA and LAA3-EP SRA due to selenium, silver, or strontium.

Constituents of Concern	95% UCL # of Obs.	95% UCL Performed (≥8Obs.) Y/N	95% UCL Conc.	MAX Conc.	AVG Conc	Ecological Screening Value (ESV)
LAA3-WP SRA						
Arsenic	9	Y	13.6	23.4	7.3	12
Barium*	9	Y	4749	12019	2938	2424
Cadmium	7	N	NA	1.65	1.27	0.8
Chromium*	8	Y	192	435	116	84
Lead*	8	Y	NA	707	139	44
Mercury	8	Y	1.29	2.7	0.72	0.18
Selenium	6	N	NA	ND	ND	1
Silver	5	N	NA	ND	ND	4.2
Strontium	3	N	NA	336	220	203
Zinc	7	N	NA	273	158	140
LAA3-EP SRA						
Arsenic	9	Y	11.8	16.5	8.8	12
Barium*	9	Y	2961	4510	1924	2424
Cadmium	8	Y	1.09	1.78	0.86	0.8
Chromium*	8	Y	503	800	314	84

Table G-2. 95%UCL, Maximum, and Average COC Concentrations (0-2') inLAA3-WP SRA and LAA3-EP SRA Compared to Screening Values

Constituents of Concern	95% UCL # of Obs.	95% UCL Performed (≥8Obs.) Y/N	95% UCL Conc.	MAX Conc.	AVG Conc	Ecological Screening Value (ESV)
Lead*	8	Y	255	302	167	44
Mercury	7	N	NA	1.24	0.41	0.18
Selenium	6	N	NA	ND	ND	1
Silver	5	N	NA	1.71	0.77	4.2
Strontium	3	N	NA	219	154	203
Zinc	8	Y	200	231	158	140

Notes

- 1) Screening value for wetland soil is the highest of soil background and lowest of the USEPA Eco-SSLs for bird, mammal, invertebrate, and plant, and the NOAA SQuiRT freshwater TEC and PEC. The ESV for barium is the higher of Louisiana soil background and calculated barium soil screening value.
- 2) 95% Upper Confidence Limits (UCLs) were calculated using ProUCL 5.2 software (USEPA, 2022c).
- 3) Averages were calculated using ½ the detection limit for concentrations that are non-detect.
- 4) Sample Location ICON HA-2 (0-2') cadmium (7.52 mg/kg-dw) and zinc (1350 mg/kg-dw) concentrations were elevated and not confirmed by HET split samples or by resamples (location SB-09), and are not included in the maximum, average, or 95% UCL calculations for LAA3-WP SRA.
- 5) Louisiana background from USGS data (Smith et al., 2013).
- 6) * Barium, chromium, and lead are not predicted to be present in LAA soils in bioavailable or toxic forms, based on soil pH and known biogeochemistry of these metals. ESVs for chromium and lead are for bioavailable forms of these metals that are not predicted to be present at the Property.

5. TPH IN SRAS

TPH are not predicted to be a source of ecological risk in the SRAs in LAA2 or LAA3.

TPH in soils in the SRAs (0-2'), as assessed by PAH concentrations, are not predicted to be a source of ecological risk. PAH concentrations are used to evaluate ecological risk due to TPH. There are not ecological screening values for TPH.

In the LAA3-EP SRA, total TPH fractions range from 243 – 1685 mg/kg-dw. PAH, used to assess TPH, are below USEPA Eco SSL screening values for soil in the LAA3-EP SRA. PAH were measured in the LAA3-EP SRA at the location of maximum TPH (SB-04, 0-2'), and sum totals are 9.15 mg/kg-dw total PAH (NOAA TEC and PEC, 1.61 – 22.8 mg/kg-dw), 8.92 mg/kg-dw low molecular weight (LMW) PAH (USEPA Eco SSL screening value 29 mg/kg-dw) and 0.23 mg/kg-dw high molecular weight (HMW) PAH (USEPA Eco SSL screening value 1.1 mg/kg-dw). These measured PAH are below USEPA soil screening values and within the range of NOAA TEC and PEC in the LAA3-EP SRA, and no ecological risk is predicted to be associated with PAH or TPH in the LAA3-EP SRA.

In the LAA3-WP SRA, total TPH fractions in soil (0-2') are low, 22.0 - 321 mg/kg-dw. PAH data were not collected, but these low TPH concentrations in soils are not predicted to be associated with ecological effects, based on the weathered nature of the TPH. The majority of the TPH detected in the LAA3-WP SRA (0-2') are in the C₁₆-C₃₅ aliphatic range of hydrocarbons, which is typical of weathered and degraded TPH of low toxicity and low bioavailability. The C₁₆-C₃₅ aliphatic range of hydrocarbons makes up the largest percentage of hydrocarbons detected throughout the area, which is consistent with aged and weathered TPH of low ecological toxicity. No ecological effects due to TPH are predicted in the LAA3-WP SRA.

In the LAA2-SRA, total TPH fraction concentrations (0-2') are 2390 – 5989 mg/kg-dw. PAH were measured at the location of maximum TPH (SB-20, 0-2') as 0.47 mg/kg-dw total PAH, 0.25 mg/kg-dw LMW PAH and 0.22 mg/kg-dw HMW PAH, which is below all USEPA Eco-SSL PAH screening

values (1.1 - 100 mg/kg-dw) and NOAA TEC and PEC (1.61 - 22.8 mg/kg-dw). PAH and TPH are not predicted to be a source of ecological risk in the soil remediation area within LAA2.

In summary, TPH, evaluated as aged and weathered hydrocarbons, and as analyzed by PAH below screening values in soil (0-2') are not predicted to be a source of ecological risk in SRAs in the LAAs.

6. SUMMARY OF ECOLOGICAL RISK IN SOIL REMEDIATION AREAS

The soil concentrations in the SRAs within LAA2 and LAA3 are not predicted to be a source of risk to ecological species.

Average metal concentrations detected in soils planned for remediation (0-2') are of low bioavailability and low toxicity or are below conservative ecological screening values. Barium, chromium, and lead are predicted to be present only in forms of limited bioavailability and therefore, limited toxicity, and not associated with ecological risk. Cadmium, mercury, and zinc average concentrations are not predicted to be a source of ecological risk, by comparison to BERA calculations performed for soils of similar concentrations (outside the remediation areas). Arsenic average concentrations in the remediation areas are below ESVs and not predicted to be a source of risk. Selenium and silver average values are below ESVs and not predicted to be a source of ecological risk, and strontium does not have available ecological screening values.

TPH (0-2') in the soil remediation areas in the LAAs are assessed as weathered and degraded and of low toxicity. There are not ecological screening values for TPH, and TPH are assessed for ecological risk by evaluating PAH. PAH concentrations (0-2') are below ecological screening values, and not predicted to be a source of ecological risk.

Soil metal, TPH, and PAH concentrations in the SRAs in the LAAs are not predicted to be a source of ecological risk. This prediction of lack of ecological impact from soil (0-2') in SRAs in LAAs is strongly supported by the evidence of thriving vegetative and wildlife communities at each SRA. The SRAs will be remediated to meet regulatory standards, but there is not evidence that these areas require remediation for ecological reasons.

Area:	Location ID:	Sample Depth:	Sample ID:	Sample Date:	Sampler	Arsenic (mg/kg-dry)	D_Arsenic (mg/kg-dry)	Barium (mg/kg-dry)	D_Barium (mg/kg-dry)	True Total Barium (mg/kg-dry)	D_True Total Barium (mg/kg-dry)	Cadmium (mg/kg-dry)	D_Cadmium (mg/kg-dry)
LAA3-WP SRA	HA-2	0-2'	HA-2 (0-2')	08/29/19	ICON	23.4	1	3630	1	265000	1	7.52	1
LAA3-WP SRA	HA-2	0-2'	HA-2 (0-2')	08/29/19	HET	11.74	0	12019	1	25700	1	5.9	0
LAA3-WP SRA	LT-3	0-4'	LT-3 (0-4')	09/26/19	ICON	7.15	1	245	1	361	1	0.465	0
LAA3-WP SRA	SB-09	0-2'	SB-09 (0-2')	06/22/22	HET	5.49	0	560	1	2130	1	0.857	1
LAA3-WP SRA	SB-10	0-2'	SB-10 (0-2')	06/22/22	HET	5.83	0	155.7	1	5750	1	0.76	1
LAA3-WP SRA	SB-10	0-2'	SB-10 (0-2')	06/22/22	ICON	6.35	1	3370	1	21600	1	NA	NA
LAA3-WP SRA	SB-11	0-2'	SB-11 (0-2')	06/22/22	HET	5.86	1	284	1	14000	1	1.04	1
LAA3-WP SRA	SB-11	0-2'	SB-11 (0-2')	06/22/22	ICON	8.47	1	3740	1	102000	1	1.65	1
LAA3-WP SRA	SB-12	0-2'	SB-12 (0-2')	06/22/22	HET	4.88	1	1336	1	7510	1	0.756	1
LAA3-WP SRA	SB-12	0-2'	SB-12 (0-2')	06/22/22	ICON	5.34	1	1350	1	6510	1	0.844	1
LAA3-EP SRA	SB-01	0-2'	SB-01 (0-2')	06/21/22	HET	5.95	1	2255	1	25800	1	0.864	1
LAA3-EP SRA	SB-1	0-2'	SB-1 (0-2')	06/21/22	ICON	3.85	1	3050	1	51900	1	NA	NA
LAA3-EP SRA	SB-02	0-2'	SB-02 (0-2')	06/21/22	HET	7	1	1489	1	64400	1	0.504	1
LAA3-EP SRA	SB-03	0-2'	SB-03 (0-2')	06/21/22	HET	11.56	1	684	1	207000	1	0.794	1
LAA3-EP SRA	SB-3	0-2'	SB-3 (0-2')	06/21/22	ICON	12	1	4510	1	412000	1	0.654	1
LAA3-EP SRA	SB-04	0-2'	SB-04 (0-2')	06/21/22	HET	16.5	1	387	1	301000	1	0.641	1
LAA3-EP SRA	SB-4	0-2'	SB-4 (0-2')	06/21/22	ICON	13.3	1	4230	1	439000	1	0.611	1
LAA3-EP SRA	SB-5R	0-2'	SB-5R (0-2')	9/27/2022	HET	2.13	1	389	1	219	1	1.78	1
LAA3-EP SRA	SB-5R	0-2'	SB-5R (0-2')	9/27/2022	ICON	6.88	1	328	1	467	1	0.997	0

Notes:

Results in yellow were not included for maximum, average, and 95% UCLs. Reporting limits are shown for non-detects. 1/2 reporting limit was used to calculated averages.

Area:	Location ID:	Sample Depth:	Sample ID:	Sample Date:	Sampler	Chromium (mg/kg-dry)	D_Chromium (mg/kg-dry)	Lead (mg/kg- dry)	D_Lead (mg/kg-dry)	Mercury (mg/kg-dry)	D_Mercury (mg/kg-dry)	Selenium (mg/kg-dry)	D_Selenium (mg/kg-dry)	Silver (mg/kg- dry)
LAA3-WP SRA	HA-2	0-2'	HA-2 (0-2')	08/29/19	ICON	435	1	707	1	2.08	1	3.69	0	NA
LAA3-WP SRA	HA-2	0-2'	HA-2 (0-2')	08/29/19	HET	89.2	1	115.3	1	0.162	0	11.7	0	11.7
LAA3-WP SRA	LT-3	0-4'	LT-3 (0-4')	09/26/19	ICON	35.5	1	18.8	1	0.101	0	3.72	0	NA
LAA3-WP SRA	SB-09	0-2'	SB-09 (0-2')	06/22/22	HET	20.22	1	21.32	1	0.0371	1	2.75	0	1.374
LAA3-WP SRA	SB-10	0-2'	SB-10 (0-2')	06/22/22	HET	31.5	1	29.4	1	0.0603	1	2.92	0	1.458
LAA3-WP SRA	SB-10	0-2'	SB-10 (0-2')	06/22/22	ICON	NA	NA	NA	NA	NA	NA	NA	NA	NA
LAA3-WP SRA	SB-11	0-2'	SB-11 (0-2')	06/22/22	HET	109.9	1	59	1	0.248	1	2.36	0	1.182
LAA3-WP SRA	SB-11	0-2'	SB-11 (0-2')	06/22/22	ICON	196	1	122	1	0.523	1	NA	NA	NA
LAA3-WP SRA	SB-12	0-2'	SB-12 (0-2')	06/22/22	HET	25.6	1	31	1	2.7	1	2.37	0	1.185
LAA3-WP SRA	SB-12	0-2'	SB-12 (0-2')	06/22/22	ICON	22.3	1	23.2	1	0.109	0	NA	NA	NA
LAA3-EP SRA	SB-01	0-2'	SB-01 (0-2')	06/21/22	HET	288	1	92	1	0.0516	1	1.63	0	0.817
LAA3-EP SRA	SB-1	0-2'	SB-1 (0-2')	06/21/22	ICON	NA	NA	NA	NA	NA	NA	NA	NA	NA
LAA3-EP SRA	SB-02	0-2'	SB-02 (0-2')	06/21/22	HET	90.9	1	57.2	1	0.213	1	1.89	0	0.943
LAA3-EP SRA	SB-03	0-2'	SB-03 (0-2')	06/21/22	HET	800	1	288	1	0.1127	1	1.55	0	1.077
LAA3-EP SRA	SB-3	0-2'	SB-3 (0-2')	06/21/22	ICON	481	1	302	1	1.12	1	NA	NA	NA
LAA3-EP SRA	SB-04	0-2'	SB-04 (0-2')	06/21/22	HET	579	1	293	1	0.0718	1	1.4	0	1.71
LAA3-EP SRA	SB-4	0-2'	SB-4 (0-2')	06/21/22	ICON	220	1	266	1	1.24	1	NA	NA	NA
LAA3-EP SRA	SB-5R	0-2'	SB-5R (0-2')	9/27/2022	HET	29	1	18.5	1	0.074	1	0.3495	0	0.175
LAA3-EP SRA	SB-5R	0-2'	SB-5R (0-2')	9/27/2022	ICON	26.1	1	20.6	1	NA	NA	3.99	0	NA

Notes:

Results in yellow were not included for maximum, average, and 95% UCLs. Reporting limits are shown for non-detects. 1/2 reporting limit was used to calculated averages.

Area:	Location ID:	Sample Depth:	Sample ID:	Sample Date:	Sampler	D_Silver (mg/kg-dry)	Strontium (mg/kg-dry)	D_Strontium (mg/kg-dry)	Zinc (mg/kg- dry)	
LAA3-WP SRA	HA-2	0-2'	HA-2 (0-2')	08/29/19	ICON	NA	336	1	1350	
LAA3-WP SRA	HA-2	0-2'	HA-2 (0-2')	08/29/19	HET	0	NA	NA	232.9	ľ
LAA3-WP SRA	LT-3	0-4'	LT-3 (0-4')	09/26/19	ICON	NA	76.9	1	85	Γ
LAA3-WP SRA	SB-09	0-2'	SB-09 (0-2')	06/22/22	HET	0	NA	NA	108.5	Γ
LAA3-WP SRA	SB-10	0-2'	SB-10 (0-2')	06/22/22	HET	0	NA	NA	114	Γ
LAA3-WP SRA	SB-10	0-2'	SB-10 (0-2')	06/22/22	ICON	NA	NA	NA	NA	ľ
LAA3-WP SRA	SB-11	0-2'	SB-11 (0-2')	06/22/22	HET	0	NA	NA	147.3	ſ
LAA3-WP SRA	SB-11	0-2'	SB-11 (0-2')	06/22/22	ICON	NA	223	1	273	
LAA3-WP SRA	SB-12	0-2'	SB-12 (0-2')	06/22/22	HET	0	NA	NA	120.6	
LAA3-WP SRA	SB-12	0-2'	SB-12 (0-2')	06/22/22	ICON	NA	99.6	1	109	Γ
LAA3-EP SRA	SB-01	0-2'	SB-01 (0-2')	06/21/22	HET	0	NA	NA	130.2	Γ
LAA3-EP SRA	SB-1	0-2'	SB-1 (0-2')	06/21/22	ICON	NA	NA	NA	NA	ſ
LAA3-EP SRA	SB-02	0-2'	SB-02 (0-2')	06/21/22	HET	0	NA	NA	104.7	ſ
LAA3-EP SRA	SB-03	0-2'	SB-03 (0-2')	06/21/22	HET	1	NA	NA	231	ſ
LAA3-EP SRA	SB-3	0-2'	SB-3 (0-2')	06/21/22	ICON	NA	219	1	207	ľ
LAA3-EP SRA	SB-04	0-2'	SB-04 (0-2')	06/21/22	HET	1	NA	NA	230	ſ
LAA3-EP SRA	SB-4	0-2'	SB-4 (0-2')	06/21/22	ICON	NA	200	1	186	ſ
LAA3-EP SRA	SB-5R	0-2'	SB-5R (0-2')	9/27/2022	HET	0	NA	NA	80.7	ſ
LAA3-EP SRA	SB-5R	0-2'	SB-5R (0-2')	9/27/2022	ICON	NA	42.9	1	91.8	

Notes:

Results in yellow were not included for maximum, average, and 95% UCLs. Reporting limits are shown for non-detects. 1/2 reporting limit was used to calculated averages.

-	D_Zinc (mg/kg-dry)
	1
	1
	1
	1
	1
	NA
	1
	1
	1
	1
	1
	NA
	1
	1
	1
	1
	1
	1
	1

UCL Statistics for Data Sets with Non-Detects

User Selected Options Date/Time of Computation ProUCL 5.2 10/27/2022 7:02:43 PM From File LAA3-WP and EP SRA_0-2-10.26.2022_Data_DO NOT PRINT.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Arsenic (mg/kg-dry) (laa3-ep sra)

	General Statistics		
Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	2.13	Mean	8.797
Maximum	16.5	Median	7
SD	4.762	Std. Error of Mean	1.587
Coefficient of Variation	0.541	Skewness	0.222

Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.

Normal GOF Test

Shapiro Wilk Test Statistic	0.955	Shapiro Wilk GOF Test		
1% Shapiro Wilk Critical Value	0.764	Data appear Normal at 1% Significance Level		
Lilliefors Test Statistic	0.203	Lilliefors GOF Test		
1% Lilliefors Critical Value	0.316	Data appear Normal at 1% Significance Level		
Data appear Normal at 1% Significance Level				

Note GOF tests may be unreliable for small sample sizes

Ass	uming Norr	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	11.75	95% Adjusted-CLT UCL (Chen-1995)	11.53
		95% Modified-t UCL (Johnson-1978)	11.77
	Gamma (GOF Test	
A-D Test Statistic	0.269	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.726	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.201	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.281	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appear	Gamma Dis	stributed at 5% Significance Level	
Note GOF tests n	n <mark>ay be unr</mark> e	liable for small sample sizes	
	Gamma	Statistics	
k hat (MLE)	3.19	k star (bias corrected MLE)	2.201
Theta hat (MLE)	2.758	Theta star (bias corrected MLE)	3.997
nu hat (MLE)	57.42	nu star (bias corrected)	39.61
MLE Mean (bias corrected)	8.797	MLE Sd (bias corrected)	5.93
		Approximate Chi Square Value (0.05)	26.19
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	23.92
Ass	uming Gam	ma Distribution	
95% Approximate Gamma UCL	13.3	95% Adjusted Gamma UCL	14.57

	Lognormal G	OF Test	
Shapiro Wilk Test Statistic	0.934	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.192	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.252	Data appear Lognormal at 10% Significance Level	
Data appear L	ognormal at	10% Significance Level	
Note GOF tests m	nay be unrelia	able for small sample sizes	
	Lognormal S		
Minimum of Logged Data	0.756	Mean of logged Data	2.01
Maximum of Logged Data	2.803	SD of logged Data	0.657
Δεευτ	ning Lognorn	nal Distribution	
95% H-UCL	16.72	90% Chebyshev (MVUE) UCL	15.05
95% Chebyshev (MVUE) UCL	17.79	97.5% Chebyshev (MVUE) UCL	21.59
99% Chebyshev (MVUE) UCL	29.06		21.00
	20.00		
Nonparamet	ric Distributio	n Free UCL Statistics	
Data appear	to follow a D	iscernible Distribution	
Noncor	matria Distri	aution Free LIOLe	
•		pution Free UCLs	11.00
95% CLT UCL	11.41	95% BCA Bootstrap UCL	11.36
95% Standard Bootstrap UCL	11.3	95% Bootstrap-t UCL	12.11
95% Hall's Bootstrap UCL	11.54	95% Percentile Bootstrap UCL	11.32
90% Chebyshev(Mean, Sd) UCL	13.56	95% Chebyshev(Mean, Sd) UCL	15.72

97.5% Chebyshev(Mean, Sd) UCL 18.71

Suggested UCL to Use

95% Student's-t UCL 11.75

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Arsenic (mg/kg-dry) (laa3-wp sra)

	General Statistics		
Total Number of Observations	10	Number of Distinct Observations	10
Number of Detects	7	Number of Non-Detects	3
Number of Distinct Detects	7	Number of Distinct Non-Detects	3
Minimum Detect	4.88	Minimum Non-Detect	5.49
Maximum Detect	23.4	Maximum Non-Detect	11.74
Variance Detects	43	Percent Non-Detects	30%
Mean Detects	8.779	SD Detects	6.557
Median Detects	6.35	CV Detects	0.747
Skewness Detects	2.468	Kurtosis Detects	6.26
Mean of Logged Detects	2.019	SD of Logged Detects	0.532

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.623	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.73	Detected Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.376	Lilliefors GOF Test
1% Lilliefors Critical Value	0.35	Detected Data Not Normal at 1% Significance Level

Detected Data Not Normal at 1% Significance Level

99% Chebyshev(Mean, Sd) UCL 24.59

Kanlan-Meier (KM) Statistics usin	n Normal (Critical Values and other Nonparametric UCLs	
KM Mean	7.77	KM Standard Error of Mean	1.825
90KM SD	5.327	95% KM (BCA) UCL	11.31
95% KM (t) UCL	11.12	95% KM (Percentile Bootstrap) UCL	11.04
95% KM (z) UCL	10.77	95% KM Bootstrap t UCL	22.04
90% KM Chebyshev UCL	13.25	95% KM Chebyshev UCL	15.73
2	13.25		25.93
97.5% KM Chebyshev UCL	19.17	99% KM Chebyshev UCL	25.95
Gamma GOF 1	ests on De	etected Observations Only	
A-D Test Statistic	0.965	Anderson-Darling GOF Test	
5% A-D Critical Value	0.711	Detected Data Not Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.311	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.313	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data follow App	r. Gamma	Distribution at 5% Significance Level	
		eliable for small sample sizes	
Gamma S	statistics or	n Detected Data Only	
k hat (MLE)	3.42	k star (bias corrected MLE)	2.05
Theta hat (MLE)	2.567	Theta star (bias corrected MLE)	4.283
nu hat (MLE)	47.88	nu star (bias corrected)	28.69
Mean (detects)	8.779		20.05
		sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs	
-		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
	· · · · ·		
	· ·	en the sample size is small.	
-		ay be computed using gamma distribution on KM estimates	7.237
Minimum	2.639 23.4	Mean	
Maximum SD	23.4 5.958	Median CV	5.75
	2.671		0.823
k hat (MLE)	2.071	k star (bias corrected MLE)	1.936 3.738
Theta hat (MLE)	2.71 53.41	Theta star (bias corrected MLE)	3.736 38.72
nu hat (MLE)		nu star (bias corrected)	30.72
Adjusted Level of Significance (β)	0.0267	Adjusted Obj Causes Makes (28,72, 0)	22.62
Approximate Chi Square Value (38.72, α)	25.47 11	Adjusted Chi Square Value (38.72, β)	23.62 11.87
95% Gamma Approximate UCL	11	95% Gamma Adjusted UCL	11.07
Estimates of Ga	mma Para	meters using KM Estimates	
Mean (KM)	7.77	SD (KM)	5.327
Variance (KM)	28.37	SE of Mean (KM)	1.825
k hat (KM)	2.128	k star (KM)	1.556
nu hat (KM)	42.56	nu star (KM)	31.13
theta hat (KM)	3.651	theta star (KM)	4.993
80% gamma percentile (KM)	11.97	90% gamma percentile (KM)	16.05
95% gamma percentile (KM)	19.99	99% gamma percentile (KM)	28.88
Gamma	Kanlan-M	eier (KM) Statistics	
Approximate Chi Square Value (31.13, α)	19.38	Adjusted Chi Square Value (31.13, β)	17.79
95% KM Approximate Gamma UCL	12.48	95% KM Adjusted Gamma UCL	13.6
Lognormal GOF Shapiro Wilk Test Statistic	• Test on D 0.771	Detected Observations Only Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.838	Detected Data Not Lognormal at 10% Significance Lev	el
Lilliefors Test Statistic	0.27	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.27	Detected Data appear Lognormal at 10% Significance Le	vel
		Lognormal at 10% Significance Level	

Note GOF tests may be unreliable for small sample sizes

Lognormal ROS	Statistics Using	Imputed Non-Detects	
Mean in Original Scale	7.625	Mean in Log Scale	1.888
SD in Original Scale	5.686	SD in Log Scale	0.491
95% t UCL (assumes normality of ROS data)	10.92	95% Percentile Bootstrap UCL	11
95% BCA Bootstrap UCL	12.7	95% Bootstrap t UCL	21.01
95% H-UCL (Log ROS)	10.7		
Statistics using KM estimates of	n Logged Data	and Assuming Lognormal Distribution	
KM Mean (logged)	1.917	KM Geo Mean	6.803
KM SD (logged)	0.446	95% Critical H Value (KM-Log)	2.148
KM Standard Error of Mean (logged)	0.154	95% H-UCL (KM -Log)	10.35
KM SD (logged)	0.446	95% Critical H Value (KM-Log)	2.148
KM Standard Error of Mean (logged)	0.154		
	DL/2 Statist	ics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	7.298	Mean in Log Scale	1.798
SD in Original Scale	5.919	SD in Log Scale	0.596
95% t UCL (Assumes normality)	10.73	95% H-Stat UCL	11.53
DL/2 is not a recommended me	thod, provided f	or comparisons and historical reasons	
Nonparamet	ric Distribution	Free UCL Statistics	

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Suggested	UCL to Use
-----------	------------

95% KM Adjusted Gamma UCL 13.6

95% GROS Adjusted Gamma UCL

11.87

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Barium (mg/kg-dry) (laa3-ep sra)

	General Statistics		
Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	328	Mean	1925
Maximum	4510	Median	1489
SD	1672	Std. Error of Mean	557.5
Coefficient of Variation	0.869	Skewness	0.607

Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.

Normal GOF Test

Shapiro Wilk Test Statistic	0.859	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.764	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.215	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.316	Data appear Normal at 1% Significance Level	
Data appear Normal at 1% Significance Level			

Note GOF tests may be unreliable for small sample sizes

Ass	suming Norm	al Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2961	95% Adjusted-CLT UCL (Chen-1995)	2962
		95% Modified-t UCL (Johnson-1978)	2980
	Gamma G	OF Test	
A-D Test Statistic	0.48	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.739	Detected data appear Gamma Distributed at 5% Significance	e Leve
K-S Test Statistic	0.198	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.285	Detected data appear Gamma Distributed at 5% Significance	e Leve
Detected data appear	⁻ Gamma Dist	tributed at 5% Significance Level	
Note GOF tests	may be unrel	able for small sample sizes	
	Gamma S	tatistics	
k hat (MLE)	1.264	k star (bias corrected MLE)	0.9
Theta hat (MLE)	1523	Theta star (bias corrected MLE)	2099
nu hat (MLE)	22.75	nu star (bias corrected)	16.5
MLE Mean (bias corrected)	1925	MLE Sd (bias corrected)	2010
		Approximate Chi Square Value (0.05)	8.3
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	7.1
Ase	suming Gamn	na Distribution	
95% Approximate Gamma UCL	3819	95% Adjusted Gamma UCL	4457
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.876	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.192	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.252	Data appear Lognormal at 10% Significance Level	
	-	10% Significance Level	
Note GOF tests i	may be unreli	able for small sample sizes	
	Lognormal		
Minimum of Logged Data	5.793	Mean of logged Data	7.1
Maximum of Logged Data	8.414	SD of logged Data	1.0
		mal Distribution	10.14
95% H-UCL		90% Chebyshev (MVUE) UCL	
95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	6657
99% Chebyshev (MVUE) UCL	9415		
•		on Free UCL Statistics	
•		Discernible Distribution	
Data appea Nonpar	r to follow a [rametric Distr	Discernible Distribution	2017
Data appea Nonpar 95% CLT UCL	r to follow a rametric Distr 2842	Discernible Distribution ibution Free UCLs 95% BCA Bootstrap UCL	
Data appea Nonpar 95% CLT UCL 95% Standard Bootstrap UCL	r to follow a rametric Distr 2842 2773	Discernible Distribution ibution Free UCLs 95% BCA Bootstrap UCL 95% Bootstrap-t UCL	3175
Data appea Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	r to follow a [rametric Distr 2842 2773 2873	Discernible Distribution ibution Free UCLs 95% BCA Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	3175 2764
Data appea Nonpar 95% CLT UCL 95% Standard Bootstrap UCL	r to follow a E rametric Distr 2842 2773 2873 3597	Discernible Distribution ibution Free UCLs 95% BCA Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	3175 2764 4355

Suggested UCL to Use

95% Student's-t UCL 2961

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Barium (mg/kg-dry) (laa3-wp sra)

	s 0 n 2669 n 1343 n 1134
Minimum 155.7 Mea Maximum 12019 Media SD 3587 Std. Error of Mea Coefficient of Variation 1.344 Skewnes Normal GOF Test Shapiro Wilk Test Statistic 0.702 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.781 Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.283 Lilliefors GOF Test 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level Data appear Approximate Normal at 1% Significance Level Mea Maximum Mea 95% Normal UCL 95% UCLs (Adjusted for Skewness)	n 2669 n 1343 n 1134
Maximum 12019 Media SD 3587 Std. Error of Mea Coefficient of Variation 1.344 Skewnes Coefficient of Variation 1.344 Skewnes Normal GOF Test Shapiro Wilk GOF Test Shapiro Wilk GOF Test Shapiro Wilk Test Statistic 0.702 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.781 Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.283 Lilliefors GOF Test 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level Data appear Approximate Normal at 1% Significance Level Significance Level Sta appear Approximate Normal at 1% Significance Level Significance Level 95% Normal UCL 95% UCLs (Adjusted for Skewness)	n 1343 n 1134
SD 3587 Std. Error of Mean Std. Error of Mean Stewness Coefficient of Variation 1.344 Skewness Normal GOF Test Shapiro Wilk Test Statistic 0.702 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.781 Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.283 Lilliefors GOF Test 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level Data appear Approximate Normal at 1% Significance Level State appear Approximate Normal at 1% Significance Level State appear Approximate Normal Distribution 95% UCLs (Adjusted for Skewness)	n 1134
Coefficient of Variation 1.344 Skewnest Normal GOF Test Shapiro Wilk Test Statistic 0.702 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.781 Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.283 Lilliefors GOF Test 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level Data appear Approximate Normal at 1% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)	
Normal GOF Test Shapiro Wilk Test Statistic 0.702 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.781 Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.283 Lilliefors GOF Test 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level Data appear Approximate Normal at 1% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)	s 2.29
Shapiro Wilk Test Statistic 0.702 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.781 Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.283 Lilliefors GOF Test 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level Data appear Approximate Normal at 1% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)	
1% Shapiro Wilk Critical Value 0.781 Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.283 Lilliefors GOF Test 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level Data appear Approximate Normal at 1% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)	
Lilliefors Test Statistic 0.283 Lilliefors GOF Test 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level Data appear Approximate Normal at 1% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)	
1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level Data appear Approximate Normal at 1% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)	
Data appear Approximate Normal at 1% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)	
Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)	
95% Normal UCL 95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL 4749 95% Adjusted-CLT UCL (Chen-199	
) 5414
95% Modified-t UCL (Johnson-197	,
Gamma GOF Test	
A-D Test Statistic 0.366 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value 0.757 Detected data appear Gamma Distributed at 5% Significa	ince l evel
K-S Test Statistic 0.149 Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value 0.276 Detected data appear Gamma Distributed at 5% Significa	inco I ovol
Detected data appear Gamma Distributed at 5% Significance Level	
Gamma Statistics	
k hat (MLE) 0.747 k star (bias corrected MLE	,
Theta hat (MLE) 3575 Theta star (bias corrected MLE	,
nu hat (MLE) 14.93 nu star (bias corrected	,
MLE Mean (bias corrected) 2669 MLE Sd (bias corrected	,
Approximate Chi Square Value (0.0	,
Adjusted Level of Significance 0.0267 Adjusted Chi Square Value	e 4.34
Assuming Gamma Distribution	
95% Approximate Gamma UCL 6184 95% Adjusted Gamma UC	L 7237
Lognormal GOF Test	
Shapiro Wilk Test Statistic 0.946 Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value 0.869 Data appear Lognormal at 10% Significance Lev	əl
Lilliefors Test Statistic 0.166 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value 0.241 Data appear Lognormal at 10% Significance Lev	əl
Data appear Lognormal at 10% Significance Level	
Lognormal Statistics	a 7.08
Lognormal Statistics	
Lognormal StatisticsMinimum of Logged Data5.048Mean of logged DataMaximum of Logged Data9.394SD of logged Data	
Lognormal Statistics Minimum of Logged Data 5.048 Mean of logged Data Maximum of Logged Data 9.394 SD of logged Data Assuming Lognormal Distribution SD of logged Data	a 1.42
Lognormal Statistics Minimum of Logged Data 5.048 Mean of logged Data Maximum of Logged Data 9.394 SD of logged Data Assuming Lognormal Distribution 95% H-UCL 22417 90% Chebyshev (MVUE) UC	a 1.42 L 6795
Lognormal Statistics Minimum of Logged Data 5.048 Mean of logged Data Maximum of Logged Data 9.394 SD of logged Data Assuming Lognormal Distribution SD of logged Data SD of logged Data	a 1.42 L 6795

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

 95% CLT UCL
 4535

 95% Standard Bootstrap UCL
 4400

 95% Hall's Bootstrap UCL
 11207

 90% Chebyshev(Mean, Sd) UCL
 6072

 97.5% Chebyshev(Mean, Sd) UCL
 9754

 95% BCA Bootstrap UCL
 5517

 95% Bootstrap-t UCL
 6731

 95% Percentile Bootstrap UCL
 4606

 95% Chebyshev(Mean, Sd) UCL
 7614

 99% Chebyshev(Mean, Sd) UCL
 13957

Suggested UCL to Use

95% Student's-t UCL 4749

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cadmium (mg/kg-dry) (laa3-ep sra)

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	1
Number of Detects	7	Number of Non-Detects	1
Number of Distinct Detects	7	Number of Distinct Non-Detects	1
Minimum Detect	0.504	Minimum Non-Detect	0.997
Maximum Detect	1.78	Maximum Non-Detect	0.997
Variance Detects	0.188	Percent Non-Detects	12.5%
Mean Detects	0.835	SD Detects	0.433
Median Detects	0.654	CV Detects	0.518
Skewness Detects	2.244	Kurtosis Detects	5.381
Mean of Logged Detects	-0.264	SD of Logged Detects	0.41

Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.709 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.73 Detected Data Not Normal at 1% Significance Level 1% Lilliefors Test Statistic 0.331 Lilliefors GOF Test 1% Lilliefors Critical Value 0.35 Detected Data appear Normal at 1% Significance Level Detected Data appear Approximate Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs VAl Statistic Science Context Statistics

KM Mean	0.816	KM Standard Error of Mean	0.147
90KM SD	0.381	95% KM (BCA) UCL	1.081
95% KM (t) UCL	1.093	95% KM (Percentile Bootstrap) UCL	1.074
95% KM (z) UCL	1.057	95% KM Bootstrap t UCL	1.505
90% KM Chebyshev UCL	1.255	95% KM Chebyshev UCL	1.454
97.5% KM Chebyshev UCL	1.731	99% KM Chebyshev UCL	2.274

0 0051				
		etected Observations Only		
A-D Test Statistic	0.717	Anderson-Darling GOF Test		
5% A-D Critical Value	0.71	Detected Data Not Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.271	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.313	Detected data appear Gamma Distributed at 5% Significance	e Levei	
		Distribution at 5% Significance Level		
Note GOF tests if	lay be unre	eliable for small sample sizes		
Gamma S	Statistics or	n Detected Data Only		
k hat (MLE)	6.106	k star (bias corrected MLE)	3.585	
Theta hat (MLE)	0.137	Theta star (bias corrected MLE)	0.233	
nu hat (MLE)	85.49	nu star (bias corrected)	50.18	
Mean (detects)	0.835			
		sing Imputed Non-Detects		
-		NDs with many tied observations at multiple DLs		
-		s <1.0, especially when the sample size is small (e.g., <15-20)		
		yield incorrect values of UCLs and BTVs		
-	-	en the sample size is small. In be computed using gamma distribution on KM estimates		
Minimum	0.504	Mean	0.819	
Maximum	1.78	Median	0.68	
SD	0.404	CV	0.493	
k hat (MLE)	6.823	k star (bias corrected MLE)	4.348	
Theta hat (MLE)	0.025	Theta star (bias corrected MLE)	0.188	
nu hat (MLE)	109.2	nu star (bias corrected MLL)	69.56	
Adjusted Level of Significance (β)	0.0195		00.00	
Approximate Chi Square Value (69.56, α)	51.36	Adjusted Chi Square Value (69.56, β)	47.43	
95% Gamma Approximate UCL	1.11	95% Gamma Adjusted UCL	1.202	
		meters using KM Estimates		
Mean (KM)	0.816	SD (KM)	0.381	
Variance (KM)	0.145	SE of Mean (KM)	0.147	
k hat (KM)	4.583	k star (KM)	2.948	
nu hat (KM)	73.33	nu star (KM)	47.17	
theta hat (KM)	0.178	theta star (KM)	0.277	
80% gamma percentile (KM)	1.166	90% gamma percentile (KM)	1.453	
95% gamma percentile (KM)	1.721	99% gamma percentile (KM)	2.302	
Gamma	Kaplan-M	eier (KM) Statistics		
Approximate Chi Square Value (47.17, α)	32.41	Adjusted Chi Square Value (47.17, β)	29.34	
95% KM Approximate Gamma UCL	1.187	95% KM Adjusted Gamma UCL	1.311	
-		etected Observations Only Shapiro Wilk GOF Test		
Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.841 0.838	Detected Data appear Lognormal at 10% Significance Le	a vol	
Lilliefors Test Statistic	0.838	Lilliefors GOF Test	evei	
10% Lilliefors Critical Value	0.244	Detected Data appear Lognormal at 10% Significance Le		
		mal at 10% Significance Level		
	•	eliable for small sample sizes		
•		Using Imputed Non-Detects	o c==	
Mean in Original Scale	0.819	Mean in Log Scale	-0.275	
SD in Original Scale	0.404	SD in Log Scale	0.381	
95% t UCL (assumes normality of ROS data)	1.089	95% Percentile Bootstrap UCL	1.082	
95% BCA Bootstrap UCL	1.167	95% Bootstrap t UCL	1.663	
	1 1 1 6			

95% H-UCL (Log ROS) 1.116

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.281	KM Geo Mean	0.755
KM SD (logged)	0.364	95% Critical H Value (KM-Log)	2.143
KM Standard Error of Mean (logged)	0.141	95% H-UCL (KM -Log)	1.082
KM SD (logged)	0.364	95% Critical H Value (KM-Log)	2.143
KM Standard Error of Mean (logged)	0.141		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transfo	ormed	
Mean in Original Scale	0.793	Mean in Log Scale	-0.318
SD in Original Scale	0.418	SD in Log Scale	0.409
95% t UCL (Assumes normality)	1.074	95% H-Stat UCL	1.114
DI /2 is not a recommended met	hod provided for comparisons and historical reasons		

L/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 1% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.093

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chromium (mg/kg-dry) (laa3-ep sra)

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	1
Minimum	26.1	Mean	314.3
Maximum	800	Median	254
SD	282.3	Std. Error of Mean	99.8
Coefficient of Variation	0.898	Skewness	0.666

Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.

Normal GOF Test

Shapiro Wilk GOF Test

Shapiro Wilk Test Statistic	0.915	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.749	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.162	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.333	Data appear Normal at 1% Significance Level	
Data appear Normal at 1% Significance Level			
Note GOF tests may be unreliable for small sample sizes			

Assuming Normal Distribution

95% Normal UCL

95% Student's-t UCL 503.3

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 503.5 95% Modified-t UCL (Johnson-1978) 507.2

	Gamma GO	F Test		
A-D Test Statistic	0.295	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.735	Detected data appear Gamma Distributed at 5% Significance	e Level	
K-S Test Statistic	0.163	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.301	Detected data appear Gamma Distributed at 5% Significance	e Level	
Detected data appear	Gamma Distril	buted at 5% Significance Level		
Note GOF tests r	nay be unrelial	ble for small sample sizes		
	Gamma Sta	tistics		
k hat (MLE)	1.007	k star (bias corrected MLE)	0.712	
Theta hat (MLE)	312.2	Theta star (bias corrected MLE)	441.1	
nu hat (MLE)	16.1	nu star (bias corrected)	11.4	
MLE Mean (bias corrected)	314.3	MLE Sd (bias corrected)	372.3	
		Approximate Chi Square Value (0.05)	4.834	
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	3.811	
Assuming Gamma Distribution				
95% Approximate Gamma UCL	741.1	95% Adjusted Gamma UCL	940	
Shapiro Wilk Test Statistic	Lognormal GO 0.895	Shapiro Wilk Lognormal GOF Test		
10% Shapiro Wilk Critical Value	0.851	Data appear Lognormal at 10% Significance Level		
Lilliefors Test Statistic	0.19	Lilliefors Lognormal GOF Test		
10% Lilliefors Critical Value	0.265	Data appear Lognormal at 10% Significance Level		
Data appear Lognormal at 10% Significance Level				
Note GOF tests may be unreliable for small sample sizes				
	Lognormal St	atistics		
Minimum of Logged Data	3.262	Mean of logged Data	5.177	
Maximum of Logged Data	6.685	SD of logged Data	1.328	
	ming Lognorm			
95% H-UCL		90% Chebyshev (MVUE) UCL	880.5	
95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	1441	
99% Chebyshev (MVUE) UCL	2081			
Nonparame	tric Distribution	Free UCL Statistics		
Data appea	r to follow a Dis	scernible Distribution		
Nonpar	ametric Distrib	ution Free UCLs		
95% CLT UCL	478.4	95% BCA Bootstrap UCL	504.3	
95% Standard Bootstrap UCL	469.7	95% Bootstrap-t UCL	552.4	
95% Hall's Bootstrap UCL	514.1	95% Percentile Bootstrap UCL	479.9	
90% Chebyshev(Mean, Sd) UCL	613.6	95% Chebyshev(Mean, Sd) UCL	749.2	
97.5% Chebyshev(Mean, Sd) UCL	937.5	99% Chebyshev(Mean, Sd) UCL	1307	

Suggested UCL to Use

95% Student's-t UCL 503.3

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chromium (mg/kg-dry) (laa3-wp sra)

	General S	Statistics	
Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	1
Minimum	20.22	Mean	107.2
Maximum	435	Median	35.5
SD	136	Std. Error of Mean	45.33
Coefficient of Variation	1.268	Skewness	2.126
refer also to ITRC Tech Reg Guide of	n ISM (ITRO	using incremental sampling methodology (ISM) approach, 2 2020 and ITRC 2012) for additional guidance, 1e Chebyshev UCL for small sample sizes (n < 7).	
The Chebyshev UCL of	ten results i	n gross overestimates of the mean.	
Refer to the ProUCL 5.2 Tec	hnical Guide	for a discussion of the Chebyshev UCL.	
	Normal G	OF Test	
Shapiro Wilk Test Statistic	0.704	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.764	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.27	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.316	Data appear Normal at 1% Significance Level	
Data appear Appr	oximate Nor	mal at 1% Significance Level	
Note GOF tests r	nay be unrel	liable for small sample sizes	
Ass	sumina Norm	nal Distribution	
95% Normal UCL	Ū	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	191.5	95% Adjusted-CLT UCL (Chen-1995)	216.1
		95% Modified-t UCL (Johnson-1978)	196.9
	Gamma G	GOF Test	
A-D Test Statistic	0.629	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.743	Detected data appear Gamma Distributed at 5% Significanc	e Level
K-S Test Statistic	0.275	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.287	Detected data appear Gamma Distributed at 5% Significanc	e Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
		iable for small sample sizes	
	Gamma S	Statistics	
k hat (MLE)	1.006	k star (bias corrected MLE)	0.745
Theta hat (MLE)	106.6	Theta star (bias corrected MLE)	144
nu hat (MLE)	18.11	nu star (bias corrected)	13.41
MLE Mean (bias corrected)	107.2	MLE Sd (bias corrected)	124.3
		Approximate Chi Square Value (0.05)	6.168
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	5.17
Acc.		na Distribution	
95% Approximate Gamma UCL	-		278.1
	Lognormal		
.		Shapiro Wilk Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.891		
10% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 10% Significance Level	
10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.859 0.244	Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value	0.859 0.244 0.252	Data appear Lognormal at 10% Significance Level	

Lognormal Statistics

Minimum of Logged Data	3.007	Mean of logged Data	4.102
Maximum of Logged Data 6.075		SD of logged Data	1.086
Assuming Lognormal Distribution			
95% H-UCL	406.8	90% Chebyshev (MVUE) UCL	211.8
95% Chebyshev (MVUE) UCL	262.6	97.5% Chebyshev (MVUE) UCL	333.1
99% Chebyshev (MVUE) UCL	471.6		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	181.8	95% BCA Bootstrap UCL	214.6
95% Standard Bootstrap UCL	178.2	95% Bootstrap-t UCL	363.8
95% Hall's Bootstrap UCL	500.8	95% Percentile Bootstrap UCL	184.1
90% Chebyshev(Mean, Sd) UCL	243.2	95% Chebyshev(Mean, Sd) UCL	304.9
97.5% Chebyshev(Mean, Sd) UCL	390.4	99% Chebyshev(Mean, Sd) UCL	558.3

Suggested UCL to Use

95% Student's-t UCL 191.5

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Lead (mg/kg-dry) (laa3-ep sra)

1%

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	1
Minimum	18.5	Mean	167.2
Maximum	302	Median	179
SD	130.8	Std. Error of Mean	46.23
Coefficient of Variation	0.782	Skewness	-0.0864

Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.

Normal GOF Test

Shapiro Wilk Test Statistic	0.791	Shapiro Wilk GOF Test
% Shapiro Wilk Critical Value	0.749	Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.275	Lilliefors GOF Test
1% Lilliefors Critical Value	0.333	Data appear Normal at 1% Significance Level
Data appear Normal at 1% Significance Level		

Note GOF tests may be unreliable for small sample sizes

	suming Norm	al Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	254.8	95% Adjusted-CLT UCL (Chen-1995)	241
		95% Modified-t UCL (Johnson-1978)	254
	Gamma G	OF Test	
A-D Test Statistic	0.72	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733	Detected data appear Gamma Distributed at 5% Significance	e Lev
K-S Test Statistic	0.301	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.3	Data Not Gamma Distributed at 5% Significance Leve	el
Detected data follow Ap	or. Gamma D	Distribution at 5% Significance Level	
Note GOF tests	may be unrel	iable for small sample sizes	
	Gamma S	Statistics	
k hat (MLE)	1.191	k star (bias corrected MLE)	0.
Theta hat (MLE)	140.4	Theta star (bias corrected MLE)	202
nu hat (MLE)	19.05	nu star (bias corrected)	13
MLE Mean (bias corrected)	167.2	MLE Sd (bias corrected)	183
· · · · · ·		Approximate Chi Square Value (0.05)	6.
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	4
Ass	uming Gamr	na Distribution	
95% Approximate Gamma UCL	365.5	95% Adjusted Gamma UCL	453
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.816	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.851	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.283	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.265	Data Not Lognormal at 10% Significance Level	
Data Not Lo	ognormal at 1	10% Significance Level	
	Lognormal	Statistics	
Minimum of Logged Data	2.918	Mean of logged Data	4.
Maximum of Logged Data	5.71	SD of logged Data	1.
Assu	iming Lognor	mal Distribution	
95% H-UCL	1279	90% Chebyshev (MVUE) UCL	432
95% Chebyshev (MVUE) UCL	542.7	97.5% Chebyshev (MVUE) UCL	696
99% Chebyshev (MVUE) UCL	997.8		
Nonparame	tric Distributi	ion Free UCL Statistics	
Data appea	r to follow a l	Discernible Distribution	
-		ribution Free UCLs	
95% CLT UCL	243.2	95% BCA Bootstrap UCL	235
95% Standard Bootstrap UCL	238.9	95% Bootstrap-t UCL	247
95% Hall's Bootstrap UCL	219.5	95% Percentile Bootstrap UCL	234
90% Chebyshev(Mean, Sd) UCL	305.9	95% Chebyshev(Mean, Sd) UCL	368
7.5% Chebyshev(Mean, Sd) UCL	455.9	99% Chebyshev(Mean, Sd) UCL	627
	Suggested L	JCL to Use	

95% Student's-t UCL 254.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

Lead (mg/kg-dry) (laa3-wp sra)

	General S	Statistics	
Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	1
Minimum	18.8	Mean	125.2
Maximum	707	Median	31
SD	221.8	Std. Error of Mean	73.93
Coefficient of Variation	1.771	Skewness	2.821
Note: Sample size is small (e.g., <10), if data a	re collected	using incremental sampling methodology (ISM) approach,	
refer also to ITRC Tech Reg Guide of	on ISM (ITRC	2020 and ITRC 2012) for additional guidance,	
but note that ITRC may recommend th	e t-UCL or th	e Chebyshev UCL for small sample sizes (n < 7).	
The Chebyshev UCL of	iten results ir	n gross overestimates of the mean.	
Refer to the ProUCL 5.2 Tec	hnical Guide	for a discussion of the Chebyshev UCL.	
	Normal G		
Shapiro Wilk Test Statistic	0.535	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.764	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.395	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.316	Data Not Normal at 1% Significance Level	
	Normal at 15	% Significance Level	
٥	suming Norm	al Distribution	
95% Normal UCL	suming Norm	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	262 7	95% Adjusted-CLT UCL (Chen-1995)	321.1
	LULI	95% Modified-t UCL (Johnson-1978)	274.3
	Gamma G	OF Test	
A-D Test Statistic	1.008	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.752	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.267	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.29	Detected data appear Gamma Distributed at 5% Significanc	e Level
Detected data follow App	or. Gamma D	istribution at 5% Significance Level	
Note GOF tests i	nay be unrel	iable for small sample sizes	
	Gamma S		0 505
k hat (MLE)	0.737	k star (bias corrected MLE)	0.565
Theta hat (MLE)	169.9	Theta star (bias corrected MLE)	221.5
nu hat (MLE)	13.27 125.2	nu star (bias corrected)	10.18 166.5
MLE Mean (bias corrected)	120.2	MLE Sd (bias corrected)	4.053
Adjusted Level of Significance	0.0231	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	3.278
Adjusted Level of Significance	0.0231	Aujusteu Chi Square value	3.270
Ass	uming Gamr	na Distribution	
95% Approximate Gamma UCL	314.5	95% Adjusted Gamma UCL	388.7
		·····	
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.848	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.859	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.244	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.252	Data appear Lognormal at 10% Significance Level	
Data appear Approx	i <mark>mate Logn</mark> o	rmal at 10% Significance Level	
Note GOF tests	may be unrel	iable for small sample sizes	

Lognormal Statistics

Minimum of Logged Data	2.934	Mean of logged Data	4.016
Maximum of Logged Data	6.561	SD of logged Data	1.185
Assu	ming Lognormal Distribution		
95% H-UCL	• •	90% Chebyshev (MVUE) UCL	223
95% Chebyshev (MVUE) UCL	278.8	97.5% Chebyshev (MVUE) UCL	356.1
99% Chebyshev (MVUE) UCL	508		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	246.8	95% BCA Bootstrap UCL	348
95% Standard Bootstrap UCL	240.8	95% Bootstrap-t UCL	736.4
95% Hall's Bootstrap UCL	684.2	95% Percentile Bootstrap UCL	265.3
90% Chebyshev(Mean, Sd) UCL	347	95% Chebyshev(Mean, Sd) UCL	447.5
97.5% Chebyshev(Mean, Sd) UCL	586.9	99% Chebyshev(Mean, Sd) UCL	860.8

Suggested UCL to Use

Recommendation cannot be provided

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Mercury (mg/kg-dry) (laa3-wp sra)

	General Statistics		
Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	1
Number of Detects	6	Number of Non-Detects	3
Number of Distinct Detects	6	Number of Distinct Non-Detects	3
Minimum Detect	0.0371	Minimum Non-Detect	0.101
Maximum Detect	2.7	Maximum Non-Detect	0.162
Variance Detects	1.328	Percent Non-Detects	33.33%
Mean Detects	0.941	SD Detects	1.152
Median Detects	0.386	CV Detects	1.224
Skewness Detects	0.997	Kurtosis Detects	-1.176
Mean of Logged Detects	-1.07	SD of Logged Detects	1.775

Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.

arish, Louisiana			
Norma	al GOF Test	t on Detects Only	
Shapiro Wilk Test Statistic	0.799	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.713	Detected Data appear Normal at 1% Significance Leve	
Lilliefors Test Statistic	0.308	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.373	Detected Data appear Normal at 1% Significance Leve	
Detected Data a	ppear Norm	al at 1% Significance Level	
Note GOF tests n	nay be unre	liable for small sample sizes	
Kaplan Majar (KM) Statistics usin	a Normal C	ritical Values and other Nonperemetric LICLs	
KM Mean	0.644	ritical Values and other Nonparametric UCLs KM Standard Error of Mean	0.349
90KM SD	0.956	95% KM (BCA) UCL	1.233
95% KM (t) UCL	1.293	95% KM (Percentile Bootstrap) UCL	1.235
95% KM (z) UCL	1.233	95% KM Bootstrap t UCL	3.494
	1.692	-	2.166
90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	2.825	95% KM Chebyshev UCL 99% KM Chebyshev UCL	4.119
		tected Observations Only	
A-D Test Statistic	0.332	Anderson-Darling GOF Test	
5% A-D Critical Value	0.729	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.202	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.346	Detected data appear Gamma Distributed at 5% Significance	e Level
		tributed at 5% Significance Level	
Note GOF tests n	nay be unre	liable for small sample sizes	
Gamma S	Statistics on	Detected Data Only	
k hat (MLE)	0.61	k star (bias corrected MLE)	0.416
Theta hat (MLE)	1.542	Theta star (bias corrected MLE)	2.261
nu hat (MLE)	7.326	nu star (bias corrected)	4.996
nu hat (MLE) Mean (detects)	7.326 0.941	nu star (bias corrected)	4.996
Mean (detects)	0.941		4.996
Mean (detects) Gamma ROS	0.941 Statistics us	ing Imputed Non-Detects	4.996
Mean (detects) Gamma ROS GROS may not be used when data se	0.941 Statistics us thas > 50%	ing Imputed Non-Detects NDs with many tied observations at multiple DLs	4.996
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is so	0.941 Statistics us It has > 50% mall such as	ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	4.996
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m	0.941 Statistics us It has > 50% mall such as nethod may	ing Imputed Non-Detects NDs with many tied observations at multiple DLs < 1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs	4.996
Mean (detects) Gamma ROS S GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia	0.941 Statistics us It has > 50% mall such as hethod may j illy true whe	ing Imputed Non-Detects NDs with many tied observations at multiple DLs < 1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small.	4.996
Mean (detects) Gamma ROS S GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an	0.941 Statistics us It has > 50% mall such as hethod may illy true whe ind UCLs may	Sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates	
Mean (detects) Gamma ROS 3 GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum	0.941 Statistics us it has > 50% mall such as nethod may illy true when id UCLs may 0.01	ing Imputed Non-Detects NDs with many tied observations at multiple DLs < 1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small.	0.631
Mean (detects) Gamma ROS 3 GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum	0.941 Statistics us thas > 50% mall such as nethod may illy true when d UCLs may 0.01 2.7	Sing Imputed Non-Detects NDs with many tied observations at multiple DLs <pre>s<1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates Mean Median</pre>	0.631 0.0603
Mean (detects) Gamma ROS 3 GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum	0.941 Statistics us it has > 50% mall such as nethod may illy true when id UCLs may 0.01	Sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates Mean	0.631
Mean (detects) Gamma ROS S GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE)	0.941 Statistics us thas > 50% mall such as nethod may illy true when d UCLs may 0.01 2.7 1.023	ing Imputed Non-Detects NDs with many tied observations at multiple DLs <pre>s<1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)</pre>	0.631 0.0603 1.622
Mean (detects) Gamma ROS S GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.941 Statistics us it has > 50% mall such as nethod may illy true when d UCLs may 0.01 2.7 1.023 0.372 1.694	ing Imputed Non-Detects NDs with many tied observations at multiple DLs <pre>s<1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)</pre>	0.631 0.0603 1.622 0.322 1.957
Mean (detects) Gamma ROS S GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.941 Statistics us it has > 50% mall such as hethod may illy true when d UCLs may 0.01 2.7 1.023 0.372 1.694 6.703	ing Imputed Non-Detects NDs with many tied observations at multiple DLs <pre>s<1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)</pre>	0.631 0.0603 1.622 0.322
Mean (detects) Gamma ROS 3 GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	0.941 Statistics us it has > 50% mall such as nethod may illy true when id UCLs mar 0.01 2.7 1.023 0.372 1.694 6.703 0.0231	ing Imputed Non-Detects NDs with many tied observations at multiple DLs <pre>s<1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates</pre>	0.631 0.0603 1.622 0.322 1.957 5.802
Mean (detects) Gamma ROS S GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.941 Statistics us it has > 50% mall such as hethod may illy true when d UCLs may 0.01 2.7 1.023 0.372 1.694 6.703	ing Imputed Non-Detects NDs with many tied observations at multiple DLs <pre>s<1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)</pre>	0.631 0.0603 1.622 0.322 1.957
Mean (detects) Gamma ROS 3 GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (5.80, α) 95% Gamma Approximate UCL	0.941 Statistics us it has > 50% mall such as hethod may illy true when d UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378	ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (5.80, β) 95% Gamma Adjusted UCL	0.631 0.0603 1.622 0.322 1.957 5.802 1.125
Mean (detects) Gamma ROS S GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (5.80, α) 95% Gamma Approximate UCL	0.941 Statistics us it has > 50% mall such as hethod may illy true when id UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378 mma Parar	ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (5.80, β) 95% Gamma Adjusted UCL	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255
Mean (detects) Gamma ROS S GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (5.80, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM)	0.941 Statistics us it has > 50% mall such as hethod may illy true when id UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378 mma Parar 0.644	ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (5.80, β) 95% Gamma Adjusted UCL	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255 0.956
Mean (detects) Gamma ROS 3 GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (5.80, α) 95% Gamma Approximate UCL Estimates of Game Mean (KM) Variance (KM)	0.941 Statistics us it has > 50% mall such as hethod may illy true when id UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378 mma Parar 0.644 0.915	ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (5.80, β) 95% Gamma Adjusted UCL meters using KM Estimates SD (KM) SE of Mean (KM)	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255 0.956 0.349
Mean (detects) Gamma ROS : GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (5.80, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM)	0.941 Statistics us it has > 50% mall such as hethod may illy true when ind UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378 mma Parar 0.644 0.915 0.453	Sing Imputed Non-Detects NDs with many tied observations at multiple DLs (s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. (y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (5.80, β) 95% Gamma Adjusted UCL meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM)	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255 0.956 0.349 0.376
Mean (detects) Gamma ROS : GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (5.80, α) 95% Gamma Approximate UCL Estimates of Game Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	0.941 Statistics us it has > 50% mall such as hethod may illy true when ind UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378 mma Parar 0.644 0.915 0.453 8.156	Sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (5.80, β) 95% Gamma Adjusted UCL neters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255 0.956 0.349 0.376 6.771
Mean (detects) Gamma ROS 3 GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) Adjusted Level of Significance (B) Approximate Chi Square Value (5.80, a) 95% Gamma Approximate UCL Estimates of Game Mean (KM) Variance (KM) k hat (KM) nu hat (KM) Nu hat (KM) Cambridge Apple Ap	0.941 Statistics us it has > 50% mall such as hethod may illy true when id UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378 mma Parar 0.644 0.915 0.453 8.156 1.421	Sing Imputed Non-Detects NDs with many tied observations at multiple DLs (s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. (y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) Median CV k star (bias corrected MLE) nu star (bias corrected MLE) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM)	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255 0.956 0.349 0.376 6.771 1.712
Mean (detects) Gamma ROS 3 GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) Adjusted Level of Significance (β) Adjusted Level of Significance (β) Approximate Chi Square Value (5.80, α) 95% Gamma Approximate UCL Estimates of Gamma Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM)	0.941 Statistics us it has > 50% mall such as hethod may ; hethod m	ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) SSD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM)	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255 0.956 0.349 0.376 6.771 1.712 1.838
Mean (detects) Gamma ROS 3 GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) Adjusted Level of Significance (B) Approximate Chi Square Value (5.80, a) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM)	0.941 Statistics us it has > 50% mall such as hethod may illy true when id UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378 mma Parar 0.644 0.915 0.453 8.156 1.421	Sing Imputed Non-Detects NDs with many tied observations at multiple DLs (s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. (y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) Median CV k star (bias corrected MLE) nu star (bias corrected MLE) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM)	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255 0.956 0.349 0.376 6.771 1.712
Mean (detects) Gamma ROS : GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (5.80, α) 95% Gamma Approximate UCL Estimates of Ca Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM)	0.941 Statistics us it has > 50% mell such as nethod may ; illy true when ad UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378 mma Parar 0.644 0.915 0.453 8.156 1.421 1.031 2.732	ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) SSD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM)	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255 0.956 0.349 0.376 6.771 1.712 1.838
Mean (detects) Gamma ROS : GROS may not be used when data se GROS may not be used when kstar of detects is si For such situations, GROS m This is especia For gamma distributed detected data, BTVs an Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (5.80, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM)	0.941 Statistics us it has > 50% mell such as nethod may ; illy true when ad UCLs may 0.01 2.7 1.023 0.372 1.694 6.703 0.0231 1.539 2.378 mma Parar 0.644 0.915 0.453 8.156 1.421 1.031 2.732	ing Imputed Non-Detects NDs with many tied observations at multiple DLs \$ <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) SSO (KM) SE of Mean (KM) k star (KM) nu star (KM) 90% gamma percentile (KM) 90% gamma percentile (KM)	0.631 0.0603 1.622 0.322 1.957 5.802 1.125 3.255 0.956 0.349 0.376 6.771 1.712 1.838

-		ected Observations Only	
Shapiro Wilk Test Statistic	0.924	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.826	Detected Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.178	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.298	Detected Data appear Lognormal at 10% Significance Le	evel
		al at 10% Significance Level	
Note GOF tests n	nay be unrelia	able for small sample sizes	
Lognormal ROS	Statistics Us	ing Imputed Non-Detects	
Mean in Original Scale	0.644	Mean in Log Scale	-1.719
SD in Original Scale	1.014	SD in Log Scale	1.708
95% t UCL (assumes normality of ROS data)	1.273	95% Percentile Bootstrap UCL	1.197
95% BCA Bootstrap UCL	1.359	95% Bootstrap t UCL	3.714
95% H-UCL (Log ROS)	15.42		
Statistics using KM estimates of	n Logged Da	ta and Assuming Lognormal Distribution	
KM Mean (logged)	-1.73	KM Geo Mean	0.177
KM SD (logged)	1.626	95% Critical H Value (KM-Log)	4.756
KM Standard Error of Mean (logged)	0.599	95% H-UCL (KM -Log)	10.22
KM SD (logged)	1.626	95% Critical H Value (KM-Log)	4.756
KM Standard Error of Mean (logged)	0.599		
	DL/2 Stat	tietice	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.648	Mean in Log Scale	-1.648
SD in Original Scale	1.012	SD in Log Scale	1.654
95% t UCL (Assumes normality)	1.275	95% H-Stat UCL	12.73
(d for comparisons and historical reasons	12.70
Noncorrect	ria Diatrihutia		
•		n Free UCL Statistics ibuted at 1% Significance Level	
	Suggested U	CL to Use	
95% KM (t) UCL	1.293		
		lata were collected in a random and unbiased manner.	
Please verify the da	ata were colle	ected from random locations.	
		ental or other non-random methods,	
then content of	and a balance and	a sma atha a a laulata 1101 a	

then contact a statistician to correctly calculate UCLs.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Zinc (mg/kg-dry) (laa3-ep sra)

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	1
Minimum	80.7	Mean	157.7
Maximum	231	Median	158.1
SD	62.87	Std. Error of Mean	22.23
Coefficient of Variation	0.399	Skewness	0.00301

Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach,

refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance,

but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7).

The Chebyshev UCL often results in gross overestimates of the mean.

Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.

	Normal GOF Test		
Shapiro Wilk Test Statistic	0.876	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.749	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.175	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.333	Data appear Normal at 1% Significance Level	
	r Normal at 1% Signi		
Note GOF tests r	nay be unreliable for	small sample sizes	
	suming Normal Distrib		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	199.8	95% Adjusted-CLT UCL (Chen-1995)	194.3
		95% Modified-t UCL (Johnson-1978)	199.8
	Gamma GOF Test		
A-D Test Statistic	0.48	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.718 Detec	cted data appear Gamma Distributed at 5% Significand	e Level
K-S Test Statistic	0.214	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.295 Detec	cted data appear Gamma Distributed at 5% Significand	e Level
Detected data appear	Gamma Distributed a	at 5% Significance Level	
Note GOF tests r	may be unreliable for	small sample sizes	
	Gamma Statistics		
k hat (MLE)	6.668	k star (bias corrected MLE)	4.251
Theta hat (MLE)	23.65	Theta star (bias corrected MLE)	37.09
nu hat (MLE)	106.7	nu star (bias corrected)	68.02
MLE Mean (bias corrected)	157.7	MLE Sd (bias corrected)	76.47
		Approximate Chi Square Value (0.05)	50.04
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	46.16
۸ee	uming Gamma Distri	bution	
95% Approximate Gamma UCL	214.3	95% Adjusted Gamma UCL	232.4
	Lognormal GOF Tes		
Shapiro Wilk Test Statistic	0.882	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.851	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.214	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.265	Data appear Lognormal at 10% Significance Level	
	Lognormal at 10% Signary be unreliable for		
	Lognormal Statistic		4 00 4
Minimum of Logged Data	4.391	Mean of logged Data	4.984
Maximum of Logged Data	5.442	SD of logged Data	0.429
Assu	ming Lognormal Dist	ribution	
95% H-UCL	230.1	90% Chebyshev (MVUE) UCL	230.6
95% Chebyshev (MVUE) UCL	263.5	97.5% Chebyshev (MVUE) UCL	309.1
99% Chebyshev (MVUE) UCL	398.6		
•	tric Distribution Free		
Data appea	r to follow a Discernit		
•	ametric Distribution F		
95% CLT UCL	194.2	95% BCA Bootstrap UCL	193.4
95% Standard Bootstrap UCL	192.3	95% Bootstrap-t UCL	198.9
95% Hall's Bootstrap UCL	185.1	95% Percentile Bootstrap UCL	191.8

Suggested UCL to Use

95% Student's-t UCL 199.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ATTACHMENTH HQ INPUT FACTORS CALCULATIONS

November 2022

ATTACHMENT H-1 Summary: Total Mercury Soil to Plant Bioconcentration Factors August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Reference	Geometric Means		
Fernández-Martínez et al., 2015	Geometric Mean Total Mercury Plant BCF	0.02	
Rodriguez et al., 2007	Geometric Mean Total Mercury Plant BCF	0.95	
Hamilton et al., 2008	Geometric Mean Total Mercury Plant BCF	1.02	
Total Geometric Mean Total Mercury Plant BCF			

Note:

BCF=Bioconcentration Factor

References:

Fernández-Martínez, R. et al. 2015. Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253–254, 30–38.

Rodriguez, L. et al. 2007. Capability of Selected Crop Plants for Shoot Mercury Accumulation from Polluted Soils: Phytoremediation Perspectives. Journal of Phytoremediation, 9:1–13, 2007.

Hamilton, M. et al. 2008. Determination and comparison of heavy metals in selected seafood, water, vegetation and sediments by inductively coupled plasma-optical emission spectrometry from an industrialized and pristine waterway in Southwest Louisiana. Microchemical Journal 88 (2008) 52–55.

ATTACHMENT H-2

Total Mercury in Soils and Plants near Cinnabar Mines and Bioconcentration Factor Calculations (Fernández-Martínez et. al., 2015) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Mining area	Sampling Location	Plant species	Soil to Plant BCF
	P1-E1	Crupina vulgaris	0.029
La Soterraña	P3-E4	Typha latifolia	0.014
La Solenana	P3-E5	Phyllitis scolopendrium	0.013
	P3-H6	Dryopteris filix-mas	0.186
Los Rueldos	P8-E7	Calluna vulgaris	0.010
EOS Rueldos	P8-H7	Dryopteris affinis	0.017
		Geometric Mean Total Hg Plant BCF	0.02

Reference:

Fernández-Martínez, R. et al. 2015. Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253–254, 30–38.

ATTACHMENT H-3 Total Mercury in Soils and Plants Bioconcentration Factor Calculations (Rodriguez et al., 2007) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Media: Soil and Vegetation	Total Mercury mg/kg	Soil to Plant BCF
Soil	33.56	
Lupine	30.65	0.91
Lentil	33.25	0.99
Chickpea	31	0.92
Barley	32.53	0.97
Geometric Mean Total Hg Plant BCF		0.95

Reference:

Rodriguez, L. et al. 2007. Capability of Selected Crop Plants for Shoot Mercury Accumulation from Polluted Soils: Phytoremediation Perspectives. Journal of Phytoremediation, 9:1–13, 2007.

ATTACHMENT H-4 Total Mercury in Southwest Louisiana Soils and Plants and Bioconcentration Factor Calculations (Hamilton et. al., 2008) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Sample Location	Total Hg mg/kg	Sample Location	Total Hg mg/kg
Vegetation 63–64, Site 1	6.41	Sediments 75, 78, Site 1	6.2
Vegetation 65–66, Site 2	6.69	Sediments 76, 79, Site 2	6.22
Vegetation 67–68, Site 3	6.36		
Vegetation 69–70, Site 4	6.25		
Vegetation 71–72, Site 5	6.25		
Vegetation 73–74, Site 6	6.14		
Geometric Veg. Mean	6.35	Geometric Sed. Mean	6.21
		Geometric Mean Hg Plant BCF	1.02
		(conc. in veg/conc. in sed.)	1.02

Reference:

Hamilton, M. et al. 2008. Determination and comparison of heavy metals in selected seafood, water, vegetation and sediments by inductively coupled plasma-optical emission spectrometry from an industrialized and pristine waterway in Southwest Louisiana. Microchemical Journal 88 (2008) 52–55.

ATTACHMENT H-5 Summary: Total Mercury Sediment to Benthic Invertebrate Bioconcentration Factors August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Location	Geometric Mean Total Mercury Sed. to Invert. BCF	Reference
St. Lawrence, Canada	0.035	Razavi, 2013
Lavaca, TX	1.1	USFW, 1994
EWL, LA (EWL Site)	0.90	ERM, 2019
EWL, LA (EWL Reference)	2.2	ERM, 2019
St. Lawrence, Cornwall Zooplankton	0.40	Ridal et. al., 2010
St.Lawrence, Cornwall Benthos	0.40	Ridal et al., 2010
Total Mercury Sediment to Invertebrate BCF	0.48	

Note:

BCF=Bioconcentration Factor

References:

Razavi, R. 2013. Ebullition Rates And Mercury Concentrations In St. Lawrence River Sediments And a Benthic Invertebrate. Environmental Toxicology and Chemistry, Vol. 32, No. 4, pp. 857–865.

U.S. Fish And Wildlife Service. 1994. Accumulation Of Mercury In Sediments, Prey, And Shorebirds of Lavaca Bay, Texas, Phase II Report.

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

Ridal, J. et al. 2010. Potential causes of enhanced transfer of mercury to St. Lawrence River Biota: implications for sediment management strategies at Cornwall, Ontario, Canada. Hydrobiologia 647:81–98.

ATTACHMENT H-6

Total Mercury in St. Lawrence Sediments and Benthic Invertebrates and Bioconcentration Factor Calculations (Razavi, 2013) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Media: Invertebrates and Sediments	Mean Total Mercury (ng/g dw)	Bioconcentration Factor (BCF) Total Mercury Sediment to Invertebrates (amphipod total Hg conc. ÷ sediment total Hg conc.)
Amphipods	173	0.035
Sediments	5000	0.035

Reference:

Razavi, R. 2013. Ebullition Rates And Mercury Concentrations In St. Lawrence River Sediments And a Benthic Invertebrate. Environmental Toxicology and Chemistry, Vol. 32, No. 4, pp. 857–865.

ATTACHMENT H-7

Total Mercury in Lavaca Bay, TX. Sediments and Benthic Invertebrates and Bioconcentration Factor Calculations (USFW, 1994) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Matrix / Biota	Mean Total Mercury mg/kg dw	Bioconcentration Factor (BCF) Total Mercury Sediment to Invertebrates (invertebrate total mercury conc.÷ total mercury sediment conc.)
Sediment	0.26	
Mussel	0.27	1.0
Oyster	0.26	1.0
Polychaete	0.20	0.77
Xanthid crab	0.18	0.69
Fiddler crab	0.83	3.2
Geome	tric Mean Total Mercury Invertebrate BCF	1.1

Reference:

U.S. Fish And Wildlife Service. 1994. Accumulation Of Mercury In Sediments, Prey, And Shorebirds of Lavaca Bay, Texas, Phase II Report.

ATTACHMENT H-8 Total Mercury in EWL Sediments and Crabs and Bioconcentration Factor Calculations (ERM, 2019) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Area	Sample ID	Total Mercury Concentration in Crab Tissue	Total Mercury Concentration in Sediment	Total Mercury Sediment to Crab BCF (Conc. in Crab Tissue ÷ Conc. in Sediment)
EWL Site	EWL-T-01A-C	0.055		
EWL Site	EWL-T-01-C	0.055		
EWL Site	EWL-T-02-C	0.047		
EWL Site	EWL-T-03-C	0.063		
EWL Site	EWL-T-04-C	0.043		
EWL Site	EWL-T-05-C	0.050		
EWL Site	EWL-T-06-C	0.055		
EWL Site	EWL-T-07-C	0.046		
EWL Site	EWL-T-08-C	0.049		
EWL Site	EWL-T-09-C	0.046		
EWL Site	EWL-T-10-C	0.058		
EWL Site	EWL-T-11-C	0.047		
EWL Site	EWL-T-12-C	0.042		
EWL Site Ge	ometric Mean	0.050	0.055	0.90
EWL Reference	EWL-TR-01-C	0.045		
EWL Reference	EWL-TR-02-C	0.036		
EWL Reference	EWL-TR-03A-C	0.063		
EWL Reference	EWL-TR-03-C	0.043		
EWL Reference	EWL-TR-04-C	0.057		
EWL Reference	EWL-TR-05-C	0.035		
EWL Reference	EWL-TR-06-C	0.072		
EWL Reference	EWL-TR-07-C	0.038		
EWL Reference	EWL-TR-08-C	0.035		
EWL Reference	EWL-TR-09-C	0.046		
EWL Reference	Geometric Mean	0.046	0.020	2.2

Notes:

Concentrations are in mg/kg wet weight.

Concentrations for crab are for tissue.

Crab sampling was performed in December 2010/January 2011.

Sediment data are from 0-2 feet and collected in 2010 at EWL.

BCF=Bioconcentration Factor

EWL=East White Lake

Reference:

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

ATTACHMENT H-9

Total Mercury in St. Lawrence River Sediments and Benthic Invertebrates and Bioconcentration Factor Calculations (Ridal et al., 2010) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Metrix (Diete		Sample	Location		Total Mercury Bioconcentration
Matrix / Biota	1	2	3	4	Factors (conc. in invert. ÷ conc. in sed.)
Zooplankton (ng/g dw)	502	608	245	111	
Sediment (ng/g dw) Top 10 cm	774	2238	1744	104	Geometric Mean Total Mercury Zooplankton BCF
otal Hg BCF Zooplankton	0.65	0.27	0.14	1.1	0.40
Benthos (ng/g dw)	338	300	666	118	
Sediment (ng/g dw) Top 10 cm	774	2238	1744	104	Geometric Mean Total Mercury Benthos BCF
Total Hg BCF Benthos	0.44	0.13	0.38	1.1	0.40

Note:

BCF=Bioconcentration Factor

Reference:

Ridal, J. et al. 2010. Potential causes of enhanced transfer of mercury to St. Lawrence River Biota: implications for sediment management strategies at Cornwall, Ontario, Canada. Hydrobiologia 647:81–98.

ATTACHMENT H-10 Summary: Total Mercury Sediment to Fish Bioconcentration Factors August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Location	Geometric Mean Total Mercury Sediment to Fish BCF	Reference
White Lake at Abbeville, LA	3.9	LDEQ LEAU database, 2019
Upper Prong Schooner Bayou, LA	3.9	LDEQ LEAU database, 2019
EWL, LA. Site	0.20	ERM, 2019
EWL, LA. Reference	0.51	ERM, 2019
Total Mercury Sediment to Fish BCF	1.1	

References:

LDEQ. 2019. Data taken from the LDEQ's Louisiana Environmental Assessment Utility (LEAU) database. https://waterdata.deq.louisiana.gov/

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

ATTACHMENT H-11 Total Mercury in Fish and Sediments in White Lake and Schooner Bayou as Collected by LDEQ August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Site	LDEQ Sit	e 310: White	Lake at Abb	eville, LA	LDEQ Site	756: Upper l	Prong Schoo	oner Bayou
Date	4/2/1998	7/23/2003	7/12/2004	7/10/2008	8/31/1998	9/30/2002	8/4/2004	6/22/2009
	0.15	0.41	0.06	0.1978	0.08	0.72	0.51	0.0661
	0.05	0.15	0.22	0.6438	0.24	0.21	0.06	0.0577
	0.02	0.4	0.28	0.2286	0.19	0.41	0.2	0.0572
	0.04	0.37	0.3	0.3809	0.35	0.2	0.27	0.0948
	0.03	0.24	0.72	0.2693		0.61	0.08	0.0688
	0.03	0.41	0.04	0.2242		0.5	0.11	0.0543
	0.0001	0.27	0.28	0.2079		0.62	0.24	0.0785
	0.05	0.17	0.47	0.2628		0.27	0.12	0.1467
Fish Tissue	0.07	0.58	0.23	0.1911		0.24	0.44	
Concentration	0.33	0.29	0.44	0.573		0.21	0.09	
	0.02	0.13	0.21	0.2966			0.4	
	0.05	0.17	0.69	0.2683			0.06	
	0.14	0.3		0.2659				
	0.18	0.17		0.2729				
				0.1996				
				0.1778				
				0.2325				
				0.2288				
								•
Geometric Mean Fish Tissue Concentration	0.038	0.264	0.251	0.266	0.189	0.355	0.165	0.074
Sediment Concentration	0.01	0.05895	0.0849	0.0575	0.13	0.05466	0.02558	NA
Geometric Mean Sediment to Fish BCF ^a	3.85	4.47	2.95	4.62	1.45	6.50	6.44	NA
Geometric Mean Sediment to Fish BCF for LDEQ Site		3	.9			3	.9	

Notes:

^aFish Tissue Concentration ÷ Sediment Concentration

Concentrations are in mg/kg.

Data from LDEQ's Louisiana Environmental Assessment Utility (LEAU) database. https://waterdata.deq.louisiana.gov/

ATTACHMENT H-12 Total Mercury in Fish and Sediments and Bioconcentration Factor Calculations (ERM, 2019) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Area	Sample ID	Total Mercury Concentration in Fish Tissue	Total Mercury Concentration in Sediment	Total Mercury Sediment to Fish BCF Conc. in Fish Tissue ÷ Conc. in Sediment
EWL Site	EWL-T-01A-F	NA		
EWL Site	EWL-T-01-F	0.0119		
EWL Site	EWL-T-02-F	0.0105		
EWL Site	EWL-T-03-F	0.0098		
EWL Site	EWL-T-04-F	0.0131		
EWL Site	EWL-T-05-F	0.0117		
EWL Site	EWL-T-06-F	0.0109		
EWL Site	EWL-T-07-F	0.0102		
EWL Site	EWL-T-08-F	0.0097		
EWL Site	EWL-T-09-F	0.0104		
EWL Site	EWL-T-10-F	0.0125		
EWL Site	EWL-T-11-F	0.0114		
EWL Site	EWL-T-12-F	0.0106		
EWL Site Ge	ometric Mean	0.0110	0.0555	0.20

EWL Ref	eference Ge	eometric Mean	0.0105
EWL Refere	rence	EWL-TR-09-F	0.0101
EWL Refere	rence	EWL-TR-08-F	0.0101
EWL Refere	rence	EWL-TR-07-F	0.0098
EWL Refere	rence	EWL-TR-06-F	0.0101
EWL Refere	rence	EWL-TR-05-F	0.0104
EWL Refere	rence	EWL-TR-04-F	0.0116
EWL Refere	rence	EWL-TR-03-F	0.0098
EWL Refere	rence	EWL-TR-03A-F	NA
EWL Refere	rence	EWL-TR-02-F	0.0120
EWL Refere	rence	EWL-TR-01-F	NA

Notes:

Concentrations are in mg/kg wet weight. Concentrations for shad fish are for tissue. Fish sampling was performed in December 2010/January 2011. Sediment data are from 0-2 feet and collected in 2010 at EWL. BCF=Bioconcentration Factor EWL=East White Lake

Reference:

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

ATTACHMENT H-13 Summary: Total Mercury Soil/Sediment Bioavailability Factors August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Location	Geometric Mean Total Mercury Soil/Sed. Bioavailability Factors (conc. in porewater ÷ conc. in sed.)	Reference
Savannah River	0.00009	Xu et al., 2019
Spiked Sediment	0.018	Chibunda et al., 2009
Chloralkalai Plant	0.00002	Chalmers et al., 2013

Geometric Mean 0.00031

References:

Xu, X. et al. 2019. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA), Science of The Total Environment. 668, 261-270.

Chibunda, R. T. et al. 2009. Chronic Toxicity of Mercury (HgCl2) to the Benthic Midge *Chironomus riparius*. Int. J. Environ. Res., 3(3):455-462

Chalmers, A. et al. 2013. Characterization of Mercury Contamination in the Androscoggin River, Coos County, New Hampshire, USGS, USEPA, USDOI

ATTACHMENT H-14

Total Mercury In Savannah River Soil/Sediment/Porewaters and Bioavailabilty Calculations (Xu et al., 2019) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Area	Soil Total Mercury	Soil Methylmercury	MeHg	Total Mercury in Porewater	Total Mercury Soil/Sed. Bioavailability
units	ng/kg dw	ng/g dw	%	ng/L	(Total Hg porewater conc.÷Total Hg sediment conc.)
MB-a	50000	0.9	1.8	6.9	0.00014
MB-b	51000	0.6	1.1	4	0.00008
MB-c	52000	0.6	1.1	4	0.00008
FMC-a	77000	1.2	1.5	7.2	0.00009
FMC-b	76000	1	1.3	4.5	0.00006
FMC-c	58000	1.4	2.5	8.4	0.00014
	Geometric Mear	n Total Mercury S	oil/Sediment Bioa	availability Factor	0.00009

Reference:

Xu, X. et al. 2019. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA), Science of The Total Environment. 668, 261-270.

ATTACHMENT H-15 Total Mercury in Spiked Soil/Sediment/Porewater and Bioavailability Calculations (Chibunda et al., 2009) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Conc. in Sediment mg /Kg dry weight	Conc. in Porewater mg/L	Total Mercury Soil/Sed. Bioavailability Factor (conc. in porewater ÷ conc. in sediment)
0.59	0.00001	0.00002
0.93	0.09	0.09
2.42	0.14	0.06
3.84	0.32	0.08
7.20	0.51	0.07
12.68	0.80	0.06
Geometric Mean Total Merc	ury Soil/Sed. Bioavailability Factor	0.018

Reference:

Chibunda, R. T. et al. 2009. Chronic Toxicity of Mercury (HgCl2) to the Benthic Midge *Chironomus riparius*. Int. J. Environ. Res., 3(3):455-462.

ATTACHMENT H-16

Total Mercury In Soil/Sediment/Porewater near a Chloralkali Plant and Bioavailabilty Calculations (Chalmers et al., 2013) August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field Iberville Parish, Louisiana

Location	Total Mercury Soil/Sediment Concentration mg/kg	Total Mercury Porewater Concentration mg/L	Soil/Sediment Bioavailability Factor		
Sed. Reference 1 Location	0.03	0.0000007	0.000023		
Sed. Downstream	0.114	0.00000172	0.000015		
Sed. Reference 2 Location	0.026	0.000007	0.000027		
Sed. Nearstream Reach	0.117	0.00000132	0.000011		
Sed. Farstream	0.111	0.00000172	0.000015		

Total Geometric Mean Total Mercur	v Soil/Sed. Bioavailabilit	v Factor	0.00002

Note:

Sediment and porewater are median concentrations.

Reference:

Chalmers, A. et al. 2013. Characterization of Mercury Contamination in the Androscoggin River, Coos County, New Hampshire, USGS, USEPA, USDOI.

ATTACHMENTI HQ CALCULATIONS

November 2022

ATTACHMENT I-1. Table 1 Soil HQ Calculations (Average Conc.): HA-4 (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW							
Soil ingestion proportion	0.093	Ps]						
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on ave	erage values	
Proportion of diet, plants	0.71	Рр]						
Proportion of diet, soil inverts	0.29	Pi							
Spatial factor	0.0015	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.00045	AUF							
			Absorbed Fraction (AF) Absorbed Concentration from Mediu and Biota				from Medium		
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Zinc	124	66.1	0.1	0.366	3.201	0.219	6.12	21.9	0.000192
Zinc Sulfide	124	894	0.1	0.366	3.201	0.219	6.12	21.9	0.0000142

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-1. Table 2 Soil HQ Calculations (Average Conc.): HA-4 (0-3'): American Robin

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin										
Parameter	Value	Symbol								
Body weight (kg)	0.0773	BW								
Soil ingestion proportion	0.02	Ps								
Food ingestion Rate (kg/kgBW/d)	0.132	FIR				Calculations I	based on ave	erage values		
Proportion of diet, plants	0.41	Pp						-		
Proportion of diet, soil inverts	0.59	Pi	1							
Spatial factor	0.082	SF								
Temporal factor	0.3	TF								
Area use factor	0.025	AUF								
			Abs	Absorbed Fraction (AF)			Absorbed Concentration from Medium and Biota			
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ	
Zinc	124	66.1	0.1	0.366	3.201	0.0327	2.46	30.9	0.0124	
Zinc Sulfide	124	894	0.1	0.366	3.201	0.0327	2.46	30.9	0.000919	

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-1. Table 3

Soil HQ Calculations (Average Conc.): HA-4 (0-3'): Spotted Sandpiper August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field. Iberville Parish, Louisiana

Spotted Sandpiper							
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps					
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on aver	age values
Proportion of diet, benthic inverts	1	Pbi					
Spatial factor	0.0063	SF]				
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed	Fraction (AF)		oncentration m and Biota	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	Soil/ Sediment	Benthic Inverts	HQ
Zinc	124	66.1	0.1	2.33	0.413	56.6	0.00163
Zinc Sulfide	124	894	0.1	2.33	0.413	56.6	0.000121

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-4.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-1. Table 4 Soil HQ Calculations (Average Conc.): HA-4 (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations	based on ave	rage values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Abso	Absorbed Fraction (AF) Absorbed Concentra and B					
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Zinc	124	66.1	0.1	0.366	2.33	0.0205	1.13	7.22	0.00000456
Zinc Sulfide	124	894	0.1	0.366	2.33	0.0205	1.13	7.22	0.00000337

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-1. Table 5 Soil HQ Calculations (Average Conc.): HA-4 (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret										
Parameter	Value	Symbol								
Body weight (kg)	0.371	BW								
Soil ingestion proportion	0.005	Ps								
Food ingestion Rate (kg/kgBW/d)	0.116	FIR				Calculations	based on ave	rage values		
Proportion of diet, benthic inverts	0.1	Pbi								
Proportion of diet, fish	0.9	Pf								
Spatial factor	0.0001	SF								
Temporal factor	0.3	TF								
Area use factor	0.00003	AUF								
			Abso	Absorbed Fraction (AF)			Absorbed Concentration from Medium and Biota			
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	BCF fish	Soil/ Sediment	Benthic Inverts	Fish	HQ	
Zinc	124	66.1	0.1	2.33	0.138	0.00719	3.35	1.79	0.00000234	
Zinc Sulfide	124	894	0.1	2.33	0.138	0.00719	3.35	1.79	0.00000173	

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-1. Table 6 Soil HQ Calculations (Average Conc.): HA-4 (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Swamp Rabbit								
Parameter	Value	Symbol						
Body weight (kg)	2.118	BW						
Soil ingestion proportion	0.063	Ps						
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on aver	age values	
Proportion of diet, plants	1	Рр						
Spatial factor	0.0063	SF]					
Temporal factor	0.3	TF						
Area use factor	0.0019	AUF						
			Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota					
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	Soil/ Sediment	Plants	HQ	
Zinc	124	75.4	0.1	0.366	0.102	5.9	0.0002	
Zinc Sulfide	124	894	0.1	0.366	0.102	5.9	0.0000127	

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-4.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-1. Table 7 Soil HQ Calculations (Average Conc.): HA-4 (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat									
Parameter	Value	Symbol							
Body weight (kg)	0.0625	BW							
Soil ingestion proportion	0.094	Ps							
Food ingestion Rate (kg/kgBW/d)	0.112	FIR				Calculations	based on ave	erage values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.076	SF							
Temporal factor	0.3	TF							
Area use factor	0.023	AUF							
			Abso	Absorbed Fraction (AF) Absorbed Concentration from Medi and Biota					
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Zinc	124	75.4	0.1	0.366	2.33	0.131	2.54	16.2	0.00571
Zinc Sulfide	124	894	0.1	0.366	2.33	0.131	2.54	16.2	0.000481

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-1. Table 8

Soil HQ Calculations (Average Conc.): HA-4 (0-3'): American Mink

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company

Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Mink											
Parameter	Value	Symbol									
Body weight (kg)	1	BW									
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR					Calculations	based on ave	erage values		
Proportion of diet, mammals	0.22	Pm									
Proportion of diet, benthic inverts	0.64	Pbi									
Proportion of diet, fish	0.14	Pf									
Spatial factor	0.00023	SF									
Temporal factor	0.3	TF									
Area use factor	0.000069	AUF									-
				Absorbed F	raction (AF)		Absorbed	Concentratio	n from Mediu	m and Biota	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF mammals	BCF benthic inverts	BCF fish	Soil/ Sediment	Mammals	Benthic Inverts	Fish	HQ
Zinc	124	75.4	0.1	0.7717	2.33	0.138	0.00849	2.88	25.3	0.328	0.0000261
Zinc Sulfide	124	894	0.1	0.7717	2.33	0.138	0.00849	2.88	25.3	0.328	0.0000022

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-4.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-2. Table 1 Soil HQ Calculations (Maximum Conc.): HA-4 (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on ma	ximum values	
Proportion of diet, plants	0.71	Рр]						
Proportion of diet, soil inverts	0.29	Pi							
Spatial factor	0.0015	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.00045	AUF							
			Absorbed Fraction (AF)			Absorbed Concentration from Medium and Biota			
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Zinc	199	66.1	0.1	0.366	3.201	0.352	9.83	35.1	0.000308
Zinc Sulfide	199	894	0.1	0.366	3.201	0.352	9.83	35.1	0.0000228

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{IR} = HO$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-2. Table 2 Soil HQ Calculations (Maximum Conc.): HA-4 (0-3'): American Robin August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin									
Parameter	Value	Symbol							
Body weight (kg)	0.0773	BW							
Soil ingestion proportion	0.02	Ps							
Food ingestion Rate (kg/kgBW/d)	0.132	FIR				Calculations I	based on ma	ximum values	
Proportion of diet, plants	0.41	Рр]						
Proportion of diet, soil inverts	0.59	Pi							
Spatial factor	0.082	SF							
Temporal factor	0.3	TF]						
Area use factor	0.025	AUF							
			Absorbed Fraction (AF)			Absorbed Concentration from Medium and Biota			
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Zinc	199	66.1	0.1	0.366	3.201	0.0525	3.94	49.6	0.0199
Zinc Sulfide	199	894	0.1	0.366	3.201	0.0525	3.94	49.6	0.00147

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \times P_{s} \times FIR \times AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \times P_{i} \times FIR \times AF_{ai}\right]\right) \times AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-2. Table 3

Soil HQ Calculations (Maximum Conc.): HA-4 (0-3'): Spotted Sandpiper August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Spotted Sandpiper							
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps					
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on max	imum values
Proportion of diet, benthic inverts	1	Pbi					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
	Absorbed	Fraction (AF)	Absorbed Concentration from Medium and Biota				
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	Soil/ Sediment	Benthic Inverts	HQ
Zinc	199	66.1	0.1	2.33	0.663	90.9	0.0026
Zinc Sulfide	199	894	0.1	2.33	0.663	90.9	0.000194

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-4.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-2. Table 4 Soil HQ Calculations (Maximum Conc.): HA-4 (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations	based on ma	ximum values	6
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Zinc	199	66.1	0.1	0.366	2.33	0.0328	1.82	11.6	0.00000733
Zinc Sulfide	199	894	0.1	0.366	2.33	0.0328	1.82	11.6	0.00000542

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HO Llagard Quatient for each to a (
- $HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)$
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-2. Table 5 Soil HQ Calculations (Maximum Conc.): HA-4 (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret									
Parameter	Value	Symbol							
Body weight (kg)	0.371	BW							
Soil ingestion proportion	0.005	Ps							
Food ingestion Rate (kg/kgBW/d)	0.116	FIR]			Calculations	based on max	imum values	
Proportion of diet, benthic inverts	0.1	Pbi							
Proportion of diet, fish	0.9	Pf							
Spatial factor	0.0001	SF]						
Temporal factor	0.3	TF							
Area use factor	0.00003	AUF							
			Abso	orbed Fraction	(AF)	Absorbed C	oncentration and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	BCF fish	Soil/ Sediment	Benthic Inverts	Fish	HQ
Zinc	199	66.1	0.1	2.33	0.138	0.0115	5.38	2.87	0.00000375
Zinc Sulfide	199	894	0.1	2.33	0.138	0.0115	5.38	2.87	0.00000277

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): HA-4 (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on max	imum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed I	Fraction (AF)		oncentration m and Biota	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	Soil/ Sediment	Plants	HQ
Zinc	199	75.4	0.1	0.366	0.163	9.47	0.000241
Zinc Sulfide	199	894	0.1	0.366	0.163	9.47	0.0000204

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-4.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-2. Table 7 Soil HQ Calculations (Maximum Conc.): HA-4 (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat									
Parameter	Value	Symbol							
Body weight (kg)	0.0625	BW							
Soil ingestion proportion	0.094	Ps							
Food ingestion Rate (kg/kgBW/d)	0.112	FIR				Calculations	based on ma	ximum values	5
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.076	SF							
Temporal factor	0.3	TF							
Area use factor	0.023	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Zinc	199	75.4	0.1	0.366	2.33	0.21	4.08	26	0.009
Zinc Sulfide	199	894	0.1	0.366	2.33	0.21	4.08	26	0.000772

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-4.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): HA-4 (0-3'): American Mink

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company

Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Mink											
Parameter	Value	Symbol									
Body weight (kg)	1	BW									
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR					Calculations	based on ma	iximum values	5	
Proportion of diet, mammals	0.22	Pm									
Proportion of diet, benthic inverts	0.64	Pbi									
Proportion of diet, fish	0.14	Pf									
Spatial factor	0.00023	SF									
Temporal factor	0.3	TF									
Area use factor	0.000069	AUF					-				
				Absorbed F	Fraction (AF)		Absorbed	Concentratio	n from Mediu	m and Biota	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF mammals	BCF benthic inverts	BCF fish	Soil/ Sediment	Mammals	Benthic Inverts	Fish	НQ
Zinc	199	75.4	0.1	0.7717	2.33	0.138	0.0136	4.63	40.7	0.527	0.000042
Zinc Sulfide	199	894	0.1	0.7717	2.33	0.138	0.0136	4.63	40.7	0.527	0.00000354

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-4.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-3. Table 1 Soil HQ Calculations (Average Conc.): HA-5 (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on ave	erage values	
Proportion of diet, plants	0.71	Рр							
Proportion of diet, soil inverts	0.29	Pi							
Spatial factor	0.0015	SF							
Temporal factor	0.3	TF							
Area use factor	0.00045	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	1.32	1.47	0.036	0.586	7.708	0.00084	0.104	0.561	0.000204
Cadmium Sulfide	1.32	79	0.036	0.586	7.708	0.00084	0.104	0.561	0.00000379

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): HA-5 (0-3'): American Robin August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin									
Parameter	Value	Symbol							
Body weight (kg)	0.0773	BW]						
Soil ingestion proportion	0.02	Ps							
Food ingestion Rate (kg/kgBW/d)	0.132	FIR]			Calculations	based on ave	rage values	
Proportion of diet, plants	0.41	Рр]						
Proportion of diet, soil inverts	0.59	Pi							
Spatial factor	0.082	SF	1						
Temporal factor	0.3	TF]						
Area use factor	0.025	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
	Average Soil Concentration		Soil bio-		BCF soil	Soil/			
COPEC	(0-3')	TRV	factor	BCF plants	inverts	Sediment	Plants	Soil Inverts	HQ
Cadmium	1.32	1.47	0.036	0.586	7.708	0.000125	0.0419	0.792	0.014
Cadmium Sulfide	1.32	79	0.036	0.586	7.708	0.000125	0.0419	0.792	0.00026

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{IR} = HO$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-3. Table 3 Soil HQ Calculations (Average Conc.): HA-5 (0-3'): Spotted Sandpiper

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company

Grand River Oil & Gas Field, Iberville Parish, Louisiana

Spotted Sandpiper							
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps					
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on aver	age values
Proportion of diet, benthic inverts	1	Pbi					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed	Fraction (AF)		oncentration m and Biota	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	Soil/ Sediment	Benthic Inverts	HQ
Cadmium	1.32	1.47	0.036	0.614	0.00158	0.159	0.000206
Cadmium Sulfide	1.32	79	0.036	0.614	0.00158	0.159	0.00000384

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-5.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-3. Table 4 Soil HQ Calculations (Average Conc.): HA-5 (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations I	based on ave	erage values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	1.32	1.47	0.036	0.586	0.614	0.0000784	0.0193	0.0203	0.000000972
Cadmium Sulfide	1.32	79	0.036	0.586	0.614	0.0000784	0.0193	0.0203	1.81E-08

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): HA-5 (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret									
Parameter	Value	Symbol							
Body weight (kg)	0.371	BW							
Soil ingestion proportion	0.005	Ps							
Food ingestion Rate (kg/kgBW/d)	0.116	FIR				Calculations	based on ave	rage values	
Proportion of diet, benthic inverts	0.1	Pbi							
Proportion of diet, fish	0.9	Pf							
Spatial factor	0.0001	SF							
Temporal factor	0.3	TF							
Area use factor	0.00003	AUF							
			Abs	orbed Fraction	(AF)	Absorbed C	oncentration and Biota	from Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	BCF fish	Soil/ Sediment	Benthic Inverts	Fish	HQ
Cadmium	1.32	1.47	0.036	0.614	0.42	0.0000276	0.0094	0.0579	0.00000137
Cadmium Sulfide	1.32	79	0.036	0.614	0.42	0.0000276	0.0094	0.0579	2.56E-08

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-3. Table 6 Soil HQ Calculations (Average Conc.): HA-5 (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on aver	age values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed I	Fraction (AF)		oncentration m and Biota	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	Soil/ Sediment	Plants	HQ
Cadmium	1.32	0.77	0.036	0.586	0.000389	0.101	0.000249
Cadmium Sulfide	1.32	79	0.036	0.586	0.000389	0.101	0.00000243

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-5.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-3. Table 7 Soil HQ Calculations (Average Conc.): HA-5 (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat									
Parameter	Value	Symbol							
Body weight (kg)	0.0625	BW							
Soil ingestion proportion	0.094	Ps							
Food ingestion Rate (kg/kgBW/d)	0.112	FIR				Calculations I	based on ave	rage values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.076	SF							
Temporal factor	0.3	TF							
Area use factor	0.023	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	1.32	0.77	0.036	0.586	0.614	0.0005	0.0433	0.0454	0.00264
Cadmium Sulfide	1.32	79	0.036	0.586	0.614	0.0005	0.0433	0.0454	0.0000257

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): HA-5 (0-3'): American Mink

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company

Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Mink											
Parameter	Value	Symbol									
Body weight (kg)	1	BW									
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR					Calculations	based on ave	erage values		
Proportion of diet, mammals	0.22	Pm									
Proportion of diet, benthic inverts	0.64	Pbi									
Proportion of diet, fish	0.14	Pf									
Spatial factor	0.00023	SF									
Temporal factor	0.3	TF									
Area use factor	0.000069	AUF									
				Absorbed F	Fraction (AF)		Absorbed	Concentratio	n from Mediu	m and Biota	
	Average Soil Concentration		Soil bio-	BCF	BCF benthic		Soil/		Benthic		
COPEC	(0-3')	TRV	factor	mammals	inverts	BCF fish	Sediment	Mammals	Inverts	Fish	HQ
Cadmium	1.32	0.77	0.036	0.3333	0.614	0.42	0.0000326	0.0133	0.0711	0.0106	0.00000852
Cadmium Sulfide	1.32	79	0.036	0.3333	0.614	0.42	0.0000326	0.0133	0.0711	0.0106	0.00000083

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in HA-5.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-4. Table 1 Soil HQ Calculations (Maximum Conc.): HA-5 (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations I	based on ma	ximum values	
Proportion of diet, plants	0.71	Рр							
Proportion of diet, soil inverts	0.29	Pi							
Spatial factor	0.0015	SF							
Temporal factor	0.3	TF							
Area use factor	0.00045	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	0.85	1.47	0.036	0.586	7.708	0.000541	0.0672	0.361	0.000131
Cadmium Sulfide	0.85	79	0.036	0.586	7.708	0.000541	0.0672	0.361	0.00000244

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-4. Table 2 Soil HQ Calculations (Maximum Conc.): HA-5 (0-3'): American Robin August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin									
Parameter	Value	Symbol							
Body weight (kg)	0.0773	BW]						
Soil ingestion proportion	0.02	Ps]						
Food ingestion Rate (kg/kgBW/d)	0.132	FIR]			Calculations I	based on ma	ximum values	
Proportion of diet, plants	0.41	Рр]						
Proportion of diet, soil inverts	0.59	Pi]						
Spatial factor	0.082	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.025	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	0.85	1.47	0.036	0.586	7.708	0.0000808	0.027	0.51	0.00899
Cadmium Sulfide	0.85	79	0.036	0.586	7.708	0.0000808	0.027	0.51	0.000167

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{IR} = HO$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): HA-5 (0-3'): Spotted Sandpiper August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Spotted Sandpiper							
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps					
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on max	imum values
Proportion of diet, benthic inverts	1	Pbi					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed	Fraction (AF)		oncentration m and Biota	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	Soil/ Sediment	Benthic Inverts	HQ
Cadmium	0.85	1.47	0.036	0.614	0.00102	0.102	0.000132
Cadmium Sulfide	0.85	79	0.036	0.614	0.00102	0.102	0.00000246

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-5.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-4. Table 4 Soil HQ Calculations (Maximum Conc.): HA-5 (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations I	based on ma	ximum values	6
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	0.85	1.47	0.036	0.586	0.614	0.0000505	0.0125	0.013	0.000000626
Cadmium Sulfide	0.85	79	0.036	0.586	0.614	0.0000505	0.0125	0.013	1.16E-08

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-4. Table 5 Soil HQ Calculations (Maximum Conc.): HA-5 (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret									
Parameter	Value	Symbol							
Body weight (kg)	0.371	BW]						
Soil ingestion proportion	0.005	Ps]						
Food ingestion Rate (kg/kgBW/d)	0.116	FIR]			Calculations	based on max	imum values	
Proportion of diet, benthic inverts	0.1	Pbi]						
Proportion of diet, fish	0.9	Pf							
Spatial factor	0.0001	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.00003	AUF							
			Abso	orbed Fraction	(AF)	Absorbed C	oncentration and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio-	BCF benthic	BCF fish	Soil/ Sediment	Benthic	Fish	HQ
			factor	inverts			Inverts		
Cadmium	0.85	1.47	0.036	0.614	0.42	0.0000177	0.00605	0.0373	0.00000885
Cadmium Sulfide	0.85	79	0.036	0.614	0.42	0.0000177	0.00605	0.0373	1.65E-08

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): HA-5 (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on max	imum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed I	Fraction (AF)		oncentration m and Biota	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	Soil/ Sediment	Plants	HQ
Cadmium	0.85	0.77	0.036	0.586	0.000251	0.0648	0.00016
Cadmium Sulfide	0.85	79	0.036	0.586	0.000251	0.0648	0.00000156

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-5.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): HA-5 (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat									
Parameter	Value	Symbol							
Body weight (kg)	0.0625	BW							
Soil ingestion proportion	0.094	Ps							
Food ingestion Rate (kg/kgBW/d)	0.112	FIR				Calculations	based on ma	ximum values	i
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi]						
Spatial factor	0.076	SF							
Temporal factor	0.3	TF							
Area use factor	0.023	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	0.85	0.77	0.036	0.586	0.614	0.000322	0.0279	0.0292	0.0017
Cadmium Sulfide	0.85	79	0.036	0.586	0.614	0.000322	0.0279	0.0292	0.0000166

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-5.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- IQ I langed Quetient for each to a
- $HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)$
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): HA-5 (0-3'): American Mink

August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company

Grand River Oil & Gas Field, Iberville	e Parish, Louisiana										
American Mink											
Parameter	Value	Symbol									
Body weight (kg)	1	BW									
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR	1				Calculations	based on ma	ximum value	S	
Proportion of diet, mammals	0.22	Pm	1								
Proportion of diet, benthic inverts	0.64	Pbi	1								
Proportion of diet, fish	0.14	Pf	1								
Spatial factor	0.00023	SF	1								
Temporal factor	0.3	TF	1								
Area use factor	0.000069	AUF									
				Absorbed F	Fraction (AF)		Absorbed	Concentratio	n from Mediu	m and Biota	
	Maximum Soil										
	Concentration		Soil bio-	BCF	BCF benthic		Soil/		Benthic		
COPEC	(0-3')	TRV	factor	mammals	inverts	BCF fish	Sediment	Mammals	Inverts	Fish	HQ
Cadmium	0.85	0.77	0.036	0.3333	0.614	0.42	0.000021	0.00854	0.0458	0.00685	0.00000549
Cadmium Sulfide	0.85	79	0.036	0.3333	0.614	0.42	0.000021	0.00854	0.0458	0.00685	5.35E-08

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in HA-5.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-06R (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on ave	erage values	
Proportion of diet, plants	0.71	Рр							
Proportion of diet, soil inverts	0.29	Pi							
Spatial factor	0.0015	SF							
Temporal factor	0.3	TF]						
Area use factor	0.00045	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	0.92	1.47	0.036	0.586	7.708	0.000585	0.0727	0.391	0.000142
Cadmium Sulfide	0.92	79	0.036	0.586	7.708	0.000585	0.0727	0.391	0.00000264

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-06R (0-3'): American Robin August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin									
Parameter	Value	Symbol							
Body weight (kg)	0.0773	BW	1						
Soil ingestion proportion	0.02	Ps							
Food ingestion Rate (kg/kgBW/d)	0.132	FIR]			Calculations I	based on ave	erage values	
Proportion of diet, plants	0.41	Рр							
Proportion of diet, soil inverts	0.59	Pi							
Spatial factor	0.082	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.025	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	0.92	1.47	0.036	0.586	7.708	0.0000874	0.0292	0.552	0.00973
Cadmium Sulfide	0.92	79	0.036	0.586	7.708	0.0000874	0.0292	0.552	0.000181

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-06R (0-3'): Spotted Sandpiper August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Spotted Sandpiper							
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps					
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on aver	age values
Proportion of diet, benthic inverts	1	Pbi					
Spatial factor	0.0063	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0019	AUF					
			Absorbed	Fraction (AF)		oncentration m and Biota	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	Soil/ Sediment	Benthic Inverts	HQ
Cadmium	0.92	1.47	0.036	0.614	0.0011	0.111	0.000144
Cadmium Sulfide	0.92	79	0.036	0.614	0.0011	0.111	0.00000268

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-06R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-5. Table 4 Soil HQ Calculations (Average Conc.): SB-06R (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations I	based on ave	rage values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	0.92	1.47	0.036	0.586	0.614	0.0000546	0.0135	0.0141	0.000000677
Cadmium Sulfide	0.92	79	0.036	0.586	0.614	0.0000546	0.0135	0.0141	1.26E-08

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-06R (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret									
Parameter	Value	Symbol							
Body weight (kg)	0.371	BW]						
Soil ingestion proportion	0.005	Ps							
Food ingestion Rate (kg/kgBW/d)	0.116	FIR]			Calculations	based on ave	rage values	
Proportion of diet, benthic inverts	0.1	Pbi							
Proportion of diet, fish	0.9	Pf							
Spatial factor	0.0001	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.00003	AUF							
			Abso	orbed Fraction	(AF)	Absorbed C	oncentration and Biota	from Medium	
	Average Soil Concentration		Soil bio-	BCF benthic		Soil/	Benthic		
COPEC	(0-3')	TRV	factor	inverts	BCF fish	Sediment	Inverts	Fish	HQ
Cadmium	0.92	1.47	0.036	0.614	0.42	0.0000192	0.00655	0.0403	0.00000957
Cadmium Sulfide	0.92	79	0.036	0.614	0.42	0.0000192	0.00655	0.0403	1.78E-08

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-5. Table 6 Soil HQ Calculations (Average Conc.): SB-06R (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on aver	age values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed I	Fraction (AF)		oncentration m and Biota	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	Soil/ Sediment	Plants	HQ
Cadmium	0.92	0.77	0.036	0.586	0.000271	0.0701	0.0002
Cadmium Sulfide	0.92	79	0.036	0.586	0.000271	0.0701	0.00000168

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-06R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-06R (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat										
Parameter	Value	Symbol								
Body weight (kg)	0.0625	BW								
Soil ingestion proportion	0.094	Ps								
Food ingestion Rate (kg/kgBW/d)	0.112	FIR				Calculations	based on ave	rage values		
Proportion of diet, plants	0.5	Рр								
Proportion of diet, benthic inverts	0.5	Pbi]							
Spatial factor	0.076	SF								
Temporal factor	0.3	TF								
Area use factor	0.023	AUF								
			Abso	Absorbed Fraction (AF)			Absorbed Concentration from Medium and Biota			
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ	
Cadmium	0.92	0.77	0.036	0.586	0.614	0.000349	0.0302	0.0316	0.00184	
Cadmium Sulfide	0.92	79	0.036	0.586	0.614	0.000349	0.0302	0.0316	0.0000179	

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-06R (0-3'): American Mink August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Mink	,										
Parameter	Value	Symbol									
Body weight (kg)	1	BW	1								
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR					Calculations	based on ave	erage values		
Proportion of diet, mammals	0.22	Pm									
Proportion of diet, benthic inverts	0.64	Pbi									
Proportion of diet, fish	0.14	Pf									
Spatial factor	0.00023	SF									
Temporal factor	0.3	TF									
Area use factor	0.000069	AUF					-				
				Absorbed F	Fraction (AF)		Absorbed	Concentratio	n from Mediu	m and Biota	
	Average Soil Concentration		Soil bio-	BCF	BCF benthic		Soil/		Benthic		
COPEC		TRV	factor	mammals	inverts	BCF fish	Sediment	Mammals	Inverts	Fish	HQ
Cadmium	(0-3') 0.92	0.77	0.036	0.3333	0.614	0.42	0.0000227	0.00924	0.0495	0.00741	0.00000593
Cadmium Sulfide	0.92	79	0.036	0.3333	0.614	0.42	0.0000227	0.00924	0.0495	0.00741	5.78E-08

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-06R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-06R (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW]						
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on ma	ximum values	
Proportion of diet, plants	0.71	Рр							
Proportion of diet, soil inverts	0.29	Pi							
Spatial factor	0.0015	SF							
Temporal factor	0.3	TF]						
Area use factor	0.00045	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	1.7	1.47	0.036	0.586	7.708	0.00108	0.134	0.722	0.000262
Cadmium Sulfide	1.7	79	0.036	0.586	7.708	0.00108	0.134	0.722	0.00000488

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-06R (0-3'): American Robin August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin									
Parameter	Value	Symbol							
Body weight (kg)	0.0773	BW	1						
Soil ingestion proportion	0.02	Ps							
Food ingestion Rate (kg/kgBW/d)	0.132	FIR]			Calculations	based on ma	ximum values	
Proportion of diet, plants	0.41	Рр]						
Proportion of diet, soil inverts	0.59	Pi							
Spatial factor	0.082	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.025	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	1.7	1.47	0.036	0.586	7.708	0.000162	0.0539	1.02	0.018
Cadmium Sulfide	1.7	79	0.036	0.586	7.708	0.000162	0.0539	1.02	0.000334

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{IR} = HO$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-06R (0-3'): Spotted Sandpiper August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Spotted Sandpiper							
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps					
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on max	imum values
Proportion of diet, benthic inverts	1	Pbi					
Spatial factor	0.0063	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0019	AUF					
			Absorbed	Fraction (AF)		oncentration m and Biota	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	Soil/ Sediment	Benthic Inverts	HQ
Cadmium	1.7	1.47	0.036	0.614	0.00204	0.205	0.0003
Cadmium Sulfide	1.7	79	0.036	0.614	0.00204	0.205	0.00000495

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-06R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-6. Table 4 Soil HQ Calculations (Maximum Conc.): SB-06R (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations	based on ma	ximum values	5
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	1.7	1.47	0.036	0.586	0.614	0.000101	0.0249	0.0261	0.00000125
Cadmium Sulfide	1.7	79	0.036	0.586	0.614	0.000101	0.0249	0.0261	2.33E-08

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-06R (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret									
Parameter	Value	Symbol							
Body weight (kg)	0.371	BW							
Soil ingestion proportion	0.005	Ps							
Food ingestion Rate (kg/kgBW/d)	0.116	FIR				Calculations	based on max	timum values	
Proportion of diet, benthic inverts	0.1	Pbi							
Proportion of diet, fish	0.9	Pf							
Spatial factor	0.0001	SF							
Temporal factor	0.3	TF							
Area use factor	0.00003	AUF							
			Abso	orbed Fraction	(AF)	Absorbed C	oncentration and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	BCF fish	Soil/ Sediment	Benthic Inverts	Fish	HQ
Cadmium	1.7	1.47	0.036	0.614	0.42	0.0000355	0.0121	0.0745	0.00000177
Cadmium Sulfide	1.7	79	0.036	0.614	0.42	0.0000355	0.0121	0.0745	3.29E-08

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-06R (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on max	imum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed I	Fraction (AF)		oncentration m and Biota	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	Soil/ Sediment	Plants	HQ
Cadmium	1.7	0.77	0.036	0.586	0.000501	0.13	0.00032
Cadmium Sulfide	1.7	79	0.036	0.586	0.000501	0.13	0.00000312

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-06R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-06R (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat									
Parameter	Value	Symbol							
Body weight (kg)	0.0625	BW							
Soil ingestion proportion	0.094	Ps							
Food ingestion Rate (kg/kgBW/d)	0.112	FIR				Calculations I	based on max	ximum values	i
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi]						
Spatial factor	0.076	SF							
Temporal factor	0.3	TF							
Area use factor	0.023	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	1.7	0.77	0.036	0.586	0.614	0.000644	0.0558	0.0585	0.003
Cadmium Sulfide	1.7	79	0.036	0.586	0.614	0.000644	0.0558	0.0585	0.0000332

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-06R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-06R (0-3'): American Mink August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field. Iberville Parish. Louisiana

American Mink	,										
Parameter	Value	Symbol									
Body weight (kg)	1	BW	1								
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR					Calculations	based on ma	iximum values	6	
Proportion of diet, mammals	0.22	Pm									
Proportion of diet, benthic inverts	0.64	Pbi									
Proportion of diet, fish	0.14	Pf									
Spatial factor	0.00023	SF									
Temporal factor	0.3	TF									
Area use factor	0.000069	AUF					-				
				Absorbed F	raction (AF)		Absorbed	Concentratio	n from Mediu	m and Biota	
	Maximum Soil Concentration		Soil bio-	BCF	BCF benthic		Soil/		Benthic		
COPEC	(0-3')	TRV	factor	mammals	inverts	BCF fish	Sediment	Mammals	Inverts	Fish	HQ
Cadmium	1.7	0.77	0.036	0.3333	0.614	0.42	0.0000419	0.0171	0.0915	0.0137	0.000011
Cadmium Sulfide	1.7	79	0.036	0.3333	0.614	0.42	0.0000419	0.0171	0.0915	0.0137	0.000000107

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-06R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-07R (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on ave	erage values	
Proportion of diet, plants	0.71	Рр							
Proportion of diet, soil inverts	0.29	Pi							
Spatial factor	0.0015	SF							
Temporal factor	0.3	TF]						
Area use factor	0.00045	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	0.9	1.47	0.036	0.586	7.708	0.000573	0.0711	0.382	0.000139
Cadmium Sulfide	0.9	79	0.036	0.586	7.708	0.000573	0.0711	0.382	0.00000258

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-07R (0-3'): American Robin August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin									
Parameter	Value	Symbol							
Body weight (kg)	0.0773	BW	1						
Soil ingestion proportion	0.02	Ps							
Food ingestion Rate (kg/kgBW/d)	0.132	FIR	1			Calculations I	based on ave	erage values	
Proportion of diet, plants	0.41	Рр]						
Proportion of diet, soil inverts	0.59	Pi							
Spatial factor	0.082	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.025	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	0.9	1.47	0.036	0.586	7.708	0.0000855	0.0285	0.54	0.00952
Cadmium Sulfide	0.9	79	0.036	0.586	7.708	0.0000855	0.0285	0.54	0.000177

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-07R (0-3'): Spotted Sandpiper August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Spotted Sandpiper							
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps					
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on aver	age values
Proportion of diet, benthic inverts	1	Pbi					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed	Fraction (AF)		oncentration m and Biota	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	Soil/ Sediment	Benthic Inverts	HQ
Cadmium	0.9	1.47	0.036	0.614	0.00108	0.108	0.00014
Cadmium Sulfide	0.9	79	0.036	0.614	0.00108	0.108	0.00000261

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-07R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-7. Table 4 Soil HQ Calculations (Average Conc.): SB-07R (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations	based on ave	rage values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	0.9	1.47	0.036	0.586	0.614	0.0000535	0.0132	0.0138	0.000000663
Cadmium Sulfide	0.9	79	0.036	0.586	0.614	0.0000535	0.0132	0.0138	1.23E-08

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-7. Table 5 Soil HQ Calculations (Average Conc.): SB-07R (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret									
Parameter	Value	Symbol							
Body weight (kg)	0.371	BW							
Soil ingestion proportion	0.005	Ps							
Food ingestion Rate (kg/kgBW/d)	0.116	FIR				Calculations	based on avei	rage values	
Proportion of diet, benthic inverts	0.1	Pbi							
Proportion of diet, fish	0.9	Pf							
Spatial factor	0.0001	SF							
Temporal factor	0.3	TF							
Area use factor	0.00003	AUF							
			Abso	orbed Fraction	(AF)	Absorbed C	oncentration f and Biota	from Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	BCF fish	Soil/ Sediment	Benthic Inverts	Fish	HQ
Cadmium	0.9	1.47	0.036	0.614	0.42	0.0000188	0.00641	0.0395	0.00000937
Cadmium Sulfide	0.9	79	0.036	0.614	0.42	0.0000188	0.00641	0.0395	1.74E-08

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-7. Table 6 Soil HQ Calculations (Average Conc.): SB-07R (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company

Grand River Oil & Gas Field, Iberville Parish, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on aver	age values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.0063	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0019	AUF					
			Absorbed I	Fraction (AF)		oncentration m and Biota	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	Soil/ Sediment	Plants	HQ
Cadmium	0.9	0.77	0.036	0.586	0.000265	0.0686	0.0002
Cadmium Sulfide	0.9	79	0.036	0.586	0.000265	0.0686	0.00000165

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-07R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-07R (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat									
Parameter	Value	Symbol							
Body weight (kg)	0.0625	BW							
Soil ingestion proportion	0.094	Ps							
Food ingestion Rate (kg/kgBW/d)	0.112	FIR	1			Calculations	based on ave	rage values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi]						
Spatial factor	0.076	SF							
Temporal factor	0.3	TF							
Area use factor	0.023	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	0.9	0.77	0.036	0.586	0.614	0.000341	0.0295	0.0309	0.0018
Cadmium Sulfide	0.9	79	0.036	0.586	0.614	0.000341	0.0295	0.0309	0.0000175

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-07R (0-3'): American Mink August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field. Iberville Parish. Louisiana

American Mink	,										
Parameter	Value	Symbol									
Body weight (kg)	1	BW									
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR					Calculations	based on ave	erage values		
Proportion of diet, mammals	0.22	Pm									
Proportion of diet, benthic inverts	0.64	Pbi									
Proportion of diet, fish	0.14	Pf									
Spatial factor	0.00023	SF									
Temporal factor	0.3	TF									
Area use factor	0.000069	AUF					-				-
				Absorbed F	Fraction (AF)		Absorbed	Concentratio	n from Mediu	m and Biota	
	Average Soil Concentration		Soil bio-	BCF	BCF benthic		Soil/		Ponthio		
00050		TOV					Soil/	Mananala	Benthic	Field	
COPEC	(0-3')	TRV	factor	mammals	inverts	BCF fish	Sediment	Mammals	Inverts	Fish	HQ
Cadmium	0.9	0.77	0.036	0.3333	0.614	0.42	0.0000222	0.00904	0.0485	0.00725	0.00000581
Cadmium Sulfide	0.9	79	0.036	0.3333	0.614	0.42	0.0000222	0.00904	0.0485	0.00725	5.66E-08

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-07R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-07R (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on ma	ximum values	
Proportion of diet, plants	0.71	Рр							
Proportion of diet, soil inverts	0.29	Pi							
Spatial factor	0.0015	SF							
Temporal factor	0.3	TF							
Area use factor	0.00045	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	1.63	1.47	0.036	0.586	7.708	0.00104	0.129	0.692	0.000252
Cadmium Sulfide	1.63	79	0.036	0.586	7.708	0.00104	0.129	0.692	0.00000468

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-07R (0-3'): American Robin August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin									
Parameter	Value	Symbol							
Body weight (kg)	0.0773	BW	1						
Soil ingestion proportion	0.02	Ps							
Food ingestion Rate (kg/kgBW/d)	0.132	FIR	1			Calculations	based on ma	ximum values	
Proportion of diet, plants	0.41	Рр]						
Proportion of diet, soil inverts	0.59	Pi							
Spatial factor	0.082	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.025	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Cadmium	1.63	1.47	0.036	0.586	7.708	0.000155	0.0517	0.978	0.0172
Cadmium Sulfide	1.63	79	0.036	0.586	7.708	0.000155	0.0517	0.978	0.000321

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-07R (0-3'): Spotted Sandpiper August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Spotted Sandpiper	, ,						
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps					
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on max	imum values
Proportion of diet, benthic inverts	1	Pbi					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed	Fraction (AF)		oncentration m and Biota	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	Soil/ Sediment	Benthic Inverts	HQ
Cadmium	1.63	1.47	0.036	0.614	0.00196	0.196	0.0003
Cadmium Sulfide	1.63	79	0.036	0.614	0.00196	0.196	0.00000474

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-07R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-8. Table 4 Soil HQ Calculations (Maximum Conc.): SB-07R (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations I	based on max	ximum values	5
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	1.63	1.47	0.036	0.586	0.614	0.0000968	0.0239	0.025	0.0000012
Cadmium Sulfide	1.63	79	0.036	0.586	0.614	0.0000968	0.0239	0.025	2.23E-08

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-07R (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret									
Parameter	Value	Symbol							
Body weight (kg)	0.371	BW							
Soil ingestion proportion	0.005	Ps							
Food ingestion Rate (kg/kgBW/d)	0.116	FIR				Calculations	based on max	imum values	
Proportion of diet, benthic inverts	0.1	Pbi							
Proportion of diet, fish	0.9	Pf							
Spatial factor	0.0001	SF							
Temporal factor	0.3	TF							
Area use factor	0.00003	AUF							
			Abso	orbed Fraction	(AF)	Absorbed C	oncentration f and Biota	from Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	BCF fish	Soil/ Sediment	Benthic Inverts	Fish	HQ
Cadmium	1.63	1.47	0.036	0.614	0.42	0.000034	0.0116	0.0715	0.0000017
Cadmium Sulfide	1.63	79	0.036	0.614	0.42	0.000034	0.0116	0.0715	3.16E-08

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-07R (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on max	imum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0063	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0019	AUF					
			Absorbed I	Fraction (AF)		oncentration m and Biota	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	Soil/ Sediment	Plants	HQ
Cadmium	1.63	0.77	0.036	0.586	0.000481	0.124	0.000306
Cadmium Sulfide	1.63	79	0.036	0.586	0.000481	0.124	0.00000298

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-07R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-07R (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat									
Parameter	Value	Symbol							
Body weight (kg)	0.0625	BW							
Soil ingestion proportion	0.094	Ps							
Food ingestion Rate (kg/kgBW/d)	0.112	FIR				Calculations	based on ma	ximum values	i
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.076	SF							
Temporal factor	0.3	TF							
Area use factor	0.023	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF benthic inverts	Soil/ Sediment	Plants	Benthic Inverts	HQ
Cadmium	1.63	0.77	0.036	0.586	0.614	0.000618	0.0535	0.056	0.003
Cadmium Sulfide	1.63	79	0.036	0.586	0.614	0.000618	0.0535	0.056	0.0000318

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-07R.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- $Soil_a$ = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-07R (0-3'): American Mink August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Mink	· · · ·										
Parameter	Value	Symbol									
Body weight (kg)	1	BW									
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR					Calculations	based on ma	iximum values	S	
Proportion of diet, mammals	0.22	Pm									
Proportion of diet, benthic inverts	0.64	Pbi									
Proportion of diet, fish	0.14	Pf									
Spatial factor	0.00023	SF									
Temporal factor	0.3	TF									
Area use factor	0.000069	AUF									
				Absorbed F	Fraction (AF)		Absorbed	Concentratio	n from Mediu	m and Biota	
	Maximum Soil Concentration		Soil bio-	BCF	BCF benthic		Soil/		Benthic		
COPEC	(0-3')	TRV	factor	mammals	inverts	BCF fish	Sediment	Mammals	Inverts	Fish	HQ
Cadmium	1.63	0.77	0.036	0.3333	0.614	0.42	0.0000402	0.0164	0.0878	0.0131	0.0000105
Cadmium Sulfide	1.63	79	0.036	0.3333	0.614	0.42	0.0000402	0.0164	0.0878	0.0131	0.00000102

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-07R.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-9. Table 1 Soil HQ Calculations (Average Conc.): SB-14 (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW							
Soil ingestion proportion	0.093	Ps]						
Food ingestion Rate (kg/kgBW/d)	0.19	FIR]			Calculations b	based on ave	rage values	
Proportion of diet, plants	0.71	Рр]						
Proportion of diet, soil inverts	0.29	Pi]						
Spatial factor	0.0015	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.00045	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Mercury	0.847	3.25	0.00031	0.27	1.693	0.00000464	0.0309	0.079	0.0000152

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-9. Table 2 Soil HQ Calculations (Average Conc.): SB-14 (0-3'): American Robin August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin									
Parameter	Value	Symbol							
Body weight (kg)	0.0773	BW							
Soil ingestion proportion	0.02	Ps							
Food ingestion Rate (kg/kgBW/d)	0.132	FIR				Calculations b	based on ave	rage values	
Proportion of diet, plants	0.41	Рр							
Proportion of diet, soil inverts	0.59	Pi							
Spatial factor	0.082	SF							
Temporal factor	0.3	TF							
Area use factor	0.025	AUF							
			Abs	orbed Fraction	(AF)	Absorbed Co	oncentration and Biota	from Medium	
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Mercury	0.847	3.25	0.00031	0.27	1.693	0.000000693	0.0124	0.112	0.000942

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-14 (0-3'): Spotted Sandpiper August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Spotted Sandpiper							
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on aver	age values
Proportion of diet, benthic inverts	1	Pbi]				
Spatial factor	0.0063	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0019	AUF					
			Absorbed	Fraction (AF)	Absorbed Co from Mediu		
	Average Soil Concentration		Soil bio-	BCF benthic		Benthic	
COPEC	(0-3')	TRV	factor	inverts	Sediment	Inverts	HQ
Mercury	0.847	3.25	0.00031	0.48	0.00000875	0.0797	0.0000464

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-14.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-9. Table 4 Soil HQ Calculations (Average Conc.): SB-14 (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations I	based on ave	rage values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration fr and Biota	rom Medium	
	Average Soil Concentration		Soil bio-		BCF benthic	Soil/		Benthic	
COPEC	(0-3')	TRV	factor	BCF plants	inverts	Sediment	Plants	Inverts	HQ
Mercury	0.847	3.25	0.00031	0.27	0.48	0.000000433	0.00572	0.0102	0.00000176

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

1

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-9. Table 5 Soil HQ Calculations (Average Conc.): SB-14 (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret									
Parameter	Value	Symbol							
Body weight (kg)	0.371	BW							
Soil ingestion proportion	0.005	Ps							
Food ingestion Rate (kg/kgBW/d)	0.116	FIR				Calculations b	based on aver	rage values	
Proportion of diet, benthic inverts	0.1	Pbi]						
Proportion of diet, fish	0.9	Pf]						
Spatial factor	0.0001	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.00003	AUF							
			Abso	orbed Fraction	(AF)	Absorbed C	oncentration and Biota	from Medium	
	Average Soil Concentration		Soil bio-	BCF benthic		Soil/	Benthic		
COPEC	(0-3')	TRV	factor	inverts	BCF fish	Sediment	Inverts	Fish	HQ
Mercury	0.847	3.25	0.00031	0.48	1.1	0.000000152	0.00472	0.0973	0.00000942

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-14 (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Value	Symbol					
2.118	BW					
0.063	Ps]				
0.13	FIR]		Calculations	based on aver	age values
1	Рр					
0.0063	SF]				
0.3	TF]				
0.0019	AUF					
		Absorbed F	Fraction (AF)			
Average Soil Concentration (0-3')	TRV	Soil bio-	BCE plants	Soil/ Sediment	Plants	HQ
						0.0000556
	2.118 0.063 0.13 1 0.0063 0.3 0.0019 Average Soil	2.118 BW 0.063 Ps 0.13 FIR 1 Pp 0.0063 SF 0.3 TF 0.0019 AUF	2.118 BW 0.063 Ps 0.13 FIR 1 Pp 0.0063 SF 0.3 TF 0.0019 AUF Absorbed F Average Soil (0-3') Soil bio- factor	2.118 BW 0.063 Ps 0.13 FIR 1 Pp 0.0063 SF 0.3 TF 0.0019 AUF Average Soil (0-3') Soil bio- TRV Soil bio- factor BCF plants	2.118 BW 0.063 Ps 0.13 FIR 1 Pp 0.0063 SF 0.3 TF 0.0019 AUF Absorbed Fraction (AF) Absorbed Centration (0-3') Soil bio-factor Soil/ BCF plants	2.118 BW 0.063 Ps 0.13 FIR 1 Pp 0.0063 SF 0.3 TF 0.0019 AUF Absorbed Fraction (AF) Absorbed Soil Soil bio- Concentration Soil bio- Soil bio- (0-3') TRV Soil bio- BCF plants Soil/ Plants

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-14.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-9. Table 7 Soil HQ Calculations (Average Conc.): SB-14 (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat									
Parameter	Value	Symbol							
Body weight (kg)	0.0625	BW	1						
Soil ingestion proportion	0.094	Ps							
Food ingestion Rate (kg/kgBW/d)	0.112	FIR]			Calculations b	ased on ave	rage values	
Proportion of diet, plants	0.5	Рр]						
Proportion of diet, benthic inverts	0.5	Pbi]						
Spatial factor	0.076	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.023	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Co	ncentration f and Biota	rom Medium	
	Average Soil Concentration		Soil bio-		BCF benthic	Soil/		Benthic	
COPEC	(0-3')	TRV	factor	BCF plants	inverts	Sediment	Plants	Inverts	HQ
Mercury	0.847	1.01	0.00031	0.27	0.48	0.00000276	0.0128	0.0228	0.000804

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

1

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): SB-14 (0-3'): American Mink August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field. Iberville Parish. Louisiana

American Mink											
Parameter	Value	Symbol									
Body weight (kg)	1	BW									
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR					Calculations	based on ave	erage values		
Proportion of diet, mammals	0.22	Pm									
Proportion of diet, benthic inverts	0.64	Pbi									
Proportion of diet, fish	0.14	Pf									
Spatial factor	0.00023	SF									
Temporal factor	0.3	TF									
Area use factor	0.000069	AUF									
				Absorbed F	Fraction (AF)		Absorbed				
COPEC	Average Soil Concentration (0-3')	TRV	Soil bio- factor	BCF mammals	BCF benthic inverts	BCF fish	Soil/ Sediment	Mammals	Benthic Inverts	Fish	HQ
Mercury	0.847	1.01	0.00031	0.0534	0.48	1.1	0.00000018	0.00136	0.0356	0.0179	0.00000375

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-10. Table 1 Soil HQ Calculations (Maximum Conc.): SB-14 (0-3'): Northern Cardinal August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Northern Cardinal									
Parameter	Value	Symbol							
Body weight (kg)	0.045	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations I	based on max	kimum values	
Proportion of diet, plants	0.71	Рр							
Proportion of diet, soil inverts	0.29	Pi							
Spatial factor	0.0015	SF							
Temporal factor	0.3	TF							
Area use factor	0.00045	AUF							
			Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota				from Medium		
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Mercury	1.47	3.25	0.00031	0.27	1.693	0.00000805	0.0535	0.137	0.0000264

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-10. Table 2 Soil HQ Calculations (Maximum Conc.): SB-14 (0-3'): American Robin August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

American Robin									
Parameter	Value	Symbol							
Body weight (kg)	0.0773	BW							
Soil ingestion proportion	0.02	Ps							
Food ingestion Rate (kg/kgBW/d)	0.132	FIR				Calculations	based on ma	ximum values	
Proportion of diet, plants	0.41	Рр							
Proportion of diet, soil inverts	0.59	Pi							
Spatial factor	0.082	SF							
Temporal factor	0.3	TF							
Area use factor	0.025	AUF							
			Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota				from Medium		
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Mercury	1.47	3.25	0.00031	0.27	1.693	0.0000012	0.0215	0.194	0.00163

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-14 (0-3'): Spotted Sandpiper August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Spotted Sandpiper							
Parameter	Value	Symbol					
Body weight (kg)	0.0425	BW					
Soil ingestion proportion	0.17	Ps					
Food ingestion Rate (kg/kgBW/d)	0.196	FIR			Calculations	based on max	imum values
Proportion of diet, benthic inverts	1	Pbi					
Spatial factor	0.0063	SF					
Temporal factor	0.3	TF					
Area use factor	0.0019	AUF					
			Absorbed	Fraction (AF)	Absorbed Co from Mediu		
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF benthic inverts	Soil/ Sediment	Benthic Inverts	HQ
Mercury	1.47	3.25	0.00031	0.48	0.0000152	0.138	0.0000803

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-14.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-10. Table 4 Soil HQ Calculations (Maximum Conc.): SB-14 (0-3'): Mallard August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Mallard									
Parameter	Value	Symbol							
Body weight (kg)	1.134	BW							
Soil ingestion proportion	0.033	Ps							
Food ingestion Rate (kg/kgBW/d)	0.05	FIR				Calculations b	based on max	kimum values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.00012	SF							
Temporal factor	0.3	TF							
Area use factor	0.000036	AUF							
			Absorbed Fraction (AF) Absorbed Concentration from Medi and Biota			rom Medium			
	Maximum Soil Concentration		Soil bio-		BCF benthic	Soil/		Benthic	
COPEC	(0-3')	TRV	factor	BCF plants	inverts	Sediment	Plants	Inverts	HQ
Mercury	1.47	3.25	0.00031	0.27	0.48	0.00000752	0.00992	0.0176	0.00000305

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-10. Table 5 Soil HQ Calculations (Maximum Conc.): SB-14 (0-3'): Snowy Egret August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Snowy Egret									
Parameter	Value	Symbol							
Body weight (kg)	0.371	BW							
Soil ingestion proportion	0.005	Ps							
Food ingestion Rate (kg/kgBW/d)	0.116	FIR				Calculations b	based on max	imum values	
Proportion of diet, benthic inverts	0.1	Pbi							
Proportion of diet, fish	0.9	Pf							
Spatial factor	0.0001	SF							
Temporal factor	0.3	TF							
Area use factor	0.00003	AUF							
			Absorbed Fraction (AF)			Absorbed Co			
	Maximum Soil Concentration		Soil bio-	BCF benthic		Soil/	Benthic		
COPEC	(0-3')	TRV	factor	inverts	BCF fish	Sediment	Inverts	Fish	HQ
Mercury	1.47	3.25	0.00031	0.48	1.1	0.00000264	0.00818	0.169	0.00000164

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-10. Table 6 Soil HQ Calculations (Maximum Conc.): SB-14 (0-3'): Swamp Rabbit August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR]		Calculations	based on max	imum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0063	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0019	AUF					
			Absorbed I	Fraction (AF)	Absorbed Co from Mediu	oncentration m and Biota	
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF plants	Soil/ Sediment	Plants	HQ
Mercury	1.47	1.01	0.00031	0.27	0.00000373	0.0516	0.0000966

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-14.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ATTACHMENT I-10. Table 7 Soil HQ Calculations (Maximum Conc.): SB-14 (0-3'): Marsh Rice Rat August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field, Iberville Parish, Louisiana

Marsh Rice Rat									
Parameter	Value	Symbol							
Body weight (kg)	0.0625	BW							
Soil ingestion proportion	0.094	Ps							
Food ingestion Rate (kg/kgBW/d)	0.112	FIR				Calculations	based on may	kimum values	
Proportion of diet, plants	0.5	Рр							
Proportion of diet, benthic inverts	0.5	Pbi							
Spatial factor	0.076	SF							
Temporal factor	0.3	TF							
Area use factor	0.023	AUF							
			Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota			rom Medium			
	Maximum Soil Concentration		Soil bio-		BCF benthic	Soil/		Benthic	
COPEC	(0-3')	TRV	factor	BCF plants	inverts	Sediment	Plants	Inverts	HQ
Mercury	1.47	1.01	0.00031	0.27	0.48	0.0000048	0.0222	0.0395	0.00139

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

1

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): SB-14 (0-3'): American Mink August J. Levert, Jr., Family, LLC, et al. v. BP America Production Company Grand River Oil & Gas Field. Iberville Parish. Louisiana

American Mink	,										
Parameter	Value	Symbol									
Body weight (kg)	1	BW									
Soil ingestion proportion	0.005	Ps									
Food ingestion Rate (kg/kgBW/d)	0.137	FIR					Calculations	based on ma	aximum value:	S	
Proportion of diet, mammals	0.22	Pm									
Proportion of diet, benthic inverts	0.64	Pbi									
Proportion of diet, fish	0.14	Pf									
Spatial factor	0.00023	SF									
Temporal factor	0.3	TF									
Area use factor	0.000069	AUF									
				Absorbed F	raction (AF)		Absorbed				
COPEC	Maximum Soil Concentration (0-3')	TRV	Soil bio- factor	BCF mammals	BCF benthic inverts	BCF fish	Soil/ Sediment	Mammals	Benthic Inverts	Fish	HQ
Mercury	1.47	1.01	0.00031	0.0534	0.48	1.1	3.12E-07	0.00237	0.0619	0.031	0.00000651

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in SB-14.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{HQ} = HQ$

TRV

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ERM has over 160 offices across the following countries and territories worldwide

Argentina Australia Belgium Brazil Canada China Colombia France Germany Ghana Guyana Hong Kong India Indonesia Ireland Italy Japan Kazakhstan Kenya Malaysia Mexico Mozambique The Netherlands New Zealand Peru Poland Portugal Puerto Rico Romania Russia Senegal Singapore South Africa South Korea Spain Switzerland Taiwan Tanzania Thailand UAE UK US Vietnam

ERM's Baton Rouge

804 Main Street, Suite A-113 Baton Rouge, Louisiana 70802

T: +1 225 292 3001 F: +1 225 292 3011

www.erm.com

