

Ecological Risk Assessment and Expert Report of Helen R. Connelly, Ph.D.

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

15 March 2022 Project No.: 0526033

The business of sustainability

Signature Page

15 March 2022

Ecological Risk Assessment and Expert Report of Helen R. Connelly, Ph.D.

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

FL LI

Helen Connelly, Ph.D. Toxicologist

Environmental Resources Management 804 Main Street, Suite A-113 Baton Rouge, Louisiana 70802 +1 225 292 3001

© Copyright 2022 by The ERM International Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

CONTENTS

EXEC	UTIVE	SUMMAR	Υ	.V
1.	INTRO	DUCTION		.1
	1.1	Purpose c	f Report and Sources of Information	2
	1.2	-	ons, Areas of Expertise, and Compensation	
2.	LISTIN		NIONS	.3
3.				
5.				
	3.1 3.2	0	l Communities	
	5.2	•		
		3.2.1 3.2.2	Wetlands Croplands	
		3.2.2	Early Successional Communities	
		3.2.3	Waterbodies	
	<u></u>			
	3.3		n Services	
4.			ONS AND OBSERVATIONS	
	4.1	Vegetatio	n Characterization and Assessment	7
		4.1.1	Site Vegetation	7
		4.1.2	Reference Area Vegetation	11
	4.2	Avian Cor	nmunity Characterization and Assessment	12
		4.2.1	Site Avian Community	13
		4.2.2	Reference Area Avian Community	15
	4.3	Non-Aviar	n Fauna Characterization and Assessment	17
		4.3.1	Site Non-Avian Fauna Community	17
		4.3.2	Reference Area Non-Avian Fauna Community	17
	4.4	Habitats in	Areas Proposed for Remediation by ICON	18
	4.5	Ecologica	Observation Summary	19
5.	SCREE	NING-LE	VEL ECOLOGICAL RISK ASSESSMENT (SLERA)	20
	5.1	ERA Step	1	20
		5.1.1	Screening Level Formulation	20
		5.1.2	Effects Evaluation	23
		5.1.3	Calculated Barium Soil Screening Value	24
	5.2	ERA Step	2	27
		5.2.1	Screening Level Exposure Estimates	27
		5.2.2	Screening Level Risk Calculations	33
		5.2.3	Risk Characterization	34
6.	BASEL	INE ECO	LOGICAL RISK ASSESSMENT (BERA)	39
	6.1	ERA Step	3	39
		6.1.1	Mourning Dove (Zenaida macroura)	39
		6.1.2	Red-winged Blackbird (Agelaius phoeniceus)	40
		6.1.3	Common Yellowthroat (Geothlypis trichas)	
		6.1.4	Red-tailed Hawk (Buteo jamaicensis)	41
		6.1.5	Swamp Rabbit (Sylvilagus aquaticus)	
		6.1.6	Raccoon (Procyon lotor)	
		6.1.7	Coyote (Canis latrans)	42

R. CONNELLY, PH.D. Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN

ERA Ste	ер 4	43
6.2.1 6.2.2		
6.2.3		
6.4.1		
ERA Ste		
6.5.1		
ERA Ste	ер 8	46
6.6.1		
ONSE T	O PLAINTIFFS' CLAIMS OF ECOLOGICAL RISK AND ASSESSMEN	ΓOF
RENCES	3	53
	6.2.1 6.2.2 6.2.3 6.2.4 ERA St 6.3.1 ERA St 6.4.1 ERA St 6.5.1 ERA St 6.6.1 6.6.2 Uncerta Summa	 6.2.2 Measurement Endpoints 6.2.3 Study Design 6.2.4 Data Quality Objectives ERA Step 5 6.3.1 Field Sampling Plan Verification ERA Step 6 6.4.1 Analysis of Ecological Exposures and Effects ERA Step 7 6.5.1 Risk Estimation and Characterization ERA Step 8 6.6.1 Risk Management Decision

FIGURES

7.

8.

TABLES APPENDIX A CV APPENDIX B SITE PHOTOGRAPHS APPENDIX C FIELD NOTES APPENDIX D RECAP FORM 18 APPENDIX E FLORA AND FAUNA APPENDIX F BARIUM SOIL SCREENING VALUE APPENDIX G BACKGROUND CALCULATIONS APPENDIX H 95% UCL CALCULATIONS

APPENDIX I HQ INPUT FACTORS CALCULATIONS

APPENDIX J HQ CALCULATIONS

List of Tables

Table 4-1: Plants Associated with Louisiana Freshwater Marsh Natural Communities

Table 4-2: Plants Associated with Louisiana Sweetgum-Water Oak Bottomland Forest Natural Communities

Table 4-3: Louisiana Bird Species of Greatest Conservation Need Observed on Site

Table 5-1: Ecological Screening Values

Table 5-2: Development of Barium Soil Screening Value

Table 5-3: Maximum Reported Concentrations

Table 5-4: Soil Screening Values for Estimation of Potential Ecological Risks

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN R. CONNELLY, PH.D. Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

Table 5-5: Sediment Screening Values for Estimation of Potential Ecological Risks

Table 5-6: COPEC Screening Hazard Quotients using Maximum Soil Concentrations

Table 5-7: Biota at Locations of Maximum Soil Barium

Table 6-1: Soil Exposure Point Concentrations for Preliminary Ecological AOI

Table 6-2: Results (Hazard Quotients) for Preliminary Ecological AOI

Table 1: List of Vegetation Observed at the Property

Table 2: List of Birds Observed at the Site

Table 3: List of Non-Avian Fauna Observed at the Site

Table 4: Soil Analytical Data and Screening (0-4')

Table 5: Toxicity Reference Values (TRVs) for BERA

Table 6: Soil/Sediment Bioavailability Factors for BERA

Table 7: Bioconcentration Factors (BCFs) for Food Items in BERA

Table 8: Species Factors for BERA

Table 9: Exposure Modifying Factors (EMFs) for Receptors in BERA

List of Figures

Figure 4-1: Comparison of wetland classification (top) and growth habit (bottom) between the site (left) and a nearby protected area, Lacassine National Wildlife Refuge (NWR) Units A and B (right)

Figure 4-2: Example of a terrestrial food chain observed on site

Figure 4-3: Comparison of the avian food web between the site (A) and a nearby protected area,

Lacassine National Wildlife Refuge (NWR) Units A, B, and F3 (B)

Figure 1: Site Location

Figure 2: Site Features

Figure 3: Site Habitat

Figure 4: USFWS Wetlands Map

Figure 5A: Vegetation Observation Locations: Site

Figure 5B: Vegetation Observation Locations: Lacassine Wildlife National Refuge

Figure 6: USEPA 8-Step Ecological Risk Assessment Process

Figure 7: Soil Sample Locations

Figure 8: Soil Sample Locations - Areas 2 & 3 Zoom

Figure 9: Soil Sample Locations - Area 4 Zoom

Figure 10: Soil Sample Locations - Area 5 Zoom

Figure 11: Soil Sample Locations - Area 6 Zoom

Figure 12: Soil Sample Locations - Area 8 Zoom

Figure 13: Ecological Conceptual Site Model

Figure 14: Barium Soil Concentrations (0-4')

Figure 15: Barium Soil Concentrations (0-4') - Areas 2 & 3 Zoom

Figure 16: Barium Soil Concentrations (0-4') - Area 4 Zoom

Figure 17: Barium Soil Concentrations (0-4') - Area 5 Zoom

Figure 18: Barium Soil Concentrations (0-4') - Area 6 Zoom

Figure 19: Barium Soil Concentrations (0-4') - Area 8 Zoom

Figure 20: Lead Soil Concentrations (0-4')

Figure 21: Lead Soil Concentrations (0-4') - Areas 2 & 3 Zoom

Figure 22: Lead Soil Concentrations (0-4') - Area 4 Zoom

Figure 23: Lead Soil Concentrations (0-4') - Area 5 Zoom

Figure 24: Lead Soil Concentrations (0-4') - Area 6 Zoom

Figure 25: Lead Soil Concentrations (0-4') - Area 8 Zoom

Figure 26: Mercury Soil Concentrations (0-4')

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN R. CONNELLY, PH.D. Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

Figure 27: Mercury Soil Concentrations (0-4') - Areas 2 & 3 Zoom Figure 28: Mercury Soil Concentrations (0-4') - Area 4 Zoom Figure 29: Mercury Soil Concentrations (0-4') - Area 5 Zoom Figure 30: Mercury Soil Concentrations (0-4') - Area 6 Zoom Figure 31: Mercury Soil Concentrations (0-4') - Area 8 Zoom Figure 32: Sum TPH Fractions Soil Concentrations (0-4') - Area 5 Zoom Figure 33: Area 2 Preliminary AOI Figure 34: Area 4 Preliminary AOI Figure 35: Area 5 Preliminary AOI Figure 36: Area 6 Preliminary AOI Figure 37: Area 8 Preliminary AOI

EXECUTIVE SUMMARY

An ecological risk assessment (ERA) was performed by Dr. Helen Connelly for Areas 1, 2, 4, 5, 6, and 8 (site) within the Henning property (property), located in the Hayes Oil and Gas Field. This ERA has been prepared in accordance with U.S. Environmental Protection Agency (USEPA) and Louisiana Department of Environmental Quality (LDEQ) guidance (e.g. USEPA, 1997, 1998; LDEQ, 2003). The ERA evaluates whether oilfield exploration and production (E&P) operations within the site have damaged the ecology (flora and fauna) on the site. The ERA demonstrates that there are no unacceptable risks to ecological receptors on the site from E&P operations and that remedial action based on ecological risk is not warranted. This conclusion is supported by the following information and evidence:

- Site inspections and evaluations performed in 2019, 2021, and 2022 by Connelly (2022), Angle/Levert/Purdom (2019, 2021, 2022), Holloway/Ritchie (2021), ICON (2019, 2021, 2022), and Coastal Environments, Inc. (CEI; 2021);
- Data from investigations in 2019, 2021, and 2022 of soil and groundwater samples (chemical concentrations), vegetation, and wildlife (ERM, Holloway/Ritchie, ICON, and CEI);
- A Screening-Level Ecological Risk Assessment (SLERA); and
- A site-specific Baseline Ecological Risk Assessment (BERA).

The site supports a variety of aquatic and terrestrial habitats important to the Western Gulf Coastal Plain Ecoregion in which the site is located, including emergent and forested wetlands, croplands, early successional grasslands and scrub-shrub, drainage ditches, ponds, and Bayou Lacassine. The habitats on site are exceptionally diverse, supporting 193 vegetative taxa, with 108 forb/herbs, 40 grasses, and 35 species of woody plants (trees, shrubs) observed, and which are commonly associated with freshwater marsh, bottomland forest, and early successional communities throughout Louisiana.

Site vegetative diversity was compared to a reference location, Management Units A and B of Lacassine National Wildlife Refuge (NWR), 3 miles south of the site. The comparison shows that the site has a community structure of grasses, forbs/herbs, trees and shrubs similar to the NWR, and that the species present on site are typical and representative of the region. This favorable comparison to a protected area is a line of evidence that the ecosystem is healthy and as expected for the region.

The site supports an intact food web, 70 species of birds, and 62 non-avian taxa, including insects, aquatic invertebrates, reptiles, amphibians, fish, and mammals. The site bird population compares favorably to the avian trophic structure at the NWR, and includes 10 birds listed as Species of Greatest Conservation Need (SGCN) by the Louisiana Department of Wildlife and Fisheries (LDWF). Species of all levels of the terrestrial and aquatic food webs are represented on site.

The site is providing services that are expected for mixed habitats in the Western Gulf Coastal Plain Ecoregion. The forested and scrub-shrub area provide ecosystem services including the dissipation of storms, soil stabilization, erosion and flood control, water purification, biological productivity and diversity, carbon sequestration, and provision of habitat. The services provided by the grassy and cropland areas include habitat and diet for wildlife, protection of soil from erosion, sequestration of carbon, nutrient recycling, preservation of genetic diversity, and water purification.

Based on observed vegetation and wildlife, and the site's ecological connectivity to the nearby NWR, the site is providing exceptionally diverse, functioning habitat for flora and fauna, and is a valuable ecosystem within the larger landscape and ecoregion.

Based on the results of the Screening Level Ecological Risk Assessment (SLERA), barium, lead, and mercury were retained as Constituents of Potential Ecological Concern (COPECs) for a more in-depth assessment in a site-specific Baseline Ecological Risk Assessment (BERA). The BERA was completed

using site-specific data and receptor factors for the ecological populations observed and expected on site. The BERA quantitatively confirms that historical E&P activities by defendants on this site do not pose an unacceptable risk to wildlife and the environment.

1. INTRODUCTION

Dr. Helen Connelly of Environmental Resources Management (ERM) has prepared this ecological risk assessment (ERA) pertaining to the Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. matter, in which ERM was retained by Chevron U.S.A. Inc. (Chevron).

The Henning property (property) consists of multiple tracts on both sides of Louisiana Highway 14 totaling approximately 1,262 acres within Sections 16, 17, 18, 19, 20, and 21 of Township 11 South, Range 05W, and Section 24 of Township 11 South, Range 06W in the Hayes Oil and Gas Field, Calcasieu and Jefferson Davis Parishes, Louisiana (Figure 1 and Figure 2). Approximately 29 acres of the property have been used for oil and gas development by Chevron and others (ERM, 2022). The focus of the ERA is Chevron former operational areas (site) within the property. For ease of discussion, nine sampling areas have been designated at the property, with Chevron former operational areas corresponding to sampling areas 1, 2, 4, 5, 6, and 8 (Figure 2). Sampling areas 3 and 7 are associated with E&P activities unrelated to Chevron. Sampling area 9 is approximately 3,500 to 5,000 feet from Area 8 and is not identified as an area of former E&P operations (see ERM Expert Report, 2022).

The site supports a variety of aquatic and terrestrial habitats important to the Western Gulf Coastal Plain Ecoregion, including emergent and forested wetlands, croplands, and early successional grasslands and scrub-shrub. There are a number of shallow ditches traversing the site, and Bayou Lacassine and its associated alluvial forest intersect the easternmost border of the site (Figure 2). The site supports a wide variety of wildlife, including waterfowl, grassland birds, and raptors, terrestrial mammals, such as rabbits and white-tailed deer, and aquatic species such as crawfish and American alligator.

This ERA has been performed to evaluate the claim that oilfield E&P operations by the defendant have damaged the ecology (flora and fauna) on the site and whether remediation is required to protect the ecology. An ERA evaluates the ecological effects of chemical, physical or biological actions on an ecosystem by quantifying adverse effects on individuals, populations, communities, or ecosystems. This ERA has been performed in accordance with USEPA and LDEQ guidance (e.g. USEPA, 1997; LDEQ, 2003).

ERA, per USEPA guidance, begins with a screening level assessment and progresses to a more sitespecific ecological risk assessment, if needed, to estimate if there is unacceptable risk to ecological receptors due to exposure to COPECs in site media.

The conclusions in this ERA are supported by the following data:

- Site inspections and evaluations performed by Connelly (2022), Angle/Levert/Purdom (2019, 2021, 2022), Holloway/Ritchie (2021), ICON (2019, 2021, 2022), and Coastal Environments Inc. (CEI; 2021);
- Data from 2019, 2021, and 2022 investigations of soils, groundwater, wildlife, and vegetation (ERM, ICON, Holloway/Ritchie, and CEI);
- The results of a SLERA of the site, which compares soil COPEC concentrations with ecological screening values (ESVs); and
- The results of a site-specific BERA for the site for COPECs that exceeded screening values in the SLERA.

The purpose of this ERA, which includes a SLERA and a more site-specific BERA, is to determine if 1) additional investigation and studies are needed, 2) remediation is needed, or 3) no further action is required.

1.1 Purpose of Report and Sources of Information

This report documents my opinions regarding the ecological conditions of the site and provides: 1) a review of site background information and data; 2) an ERA; 3) recommendations for a scientifically reliable course of action for the site; and 4) a response to plaintiffs' expert reports.

Fundamental principles of toxicology have been used to evaluate the site and prepare this report. Basic principles of toxicology that govern the evaluation process include: 1) there must be an exposure to elicit a sufficient dose, response, and subsequent risk; and 2) an implemented remedy, if any, should not cause harm to a functioning ecosystem.

Information reviewed to prepare this report, other than the data in this report and the literature cited, include an expert report by Mr. David Angle, Ms. Angela Levert, and Mr. Michael Purdom as well an expert report by Dr. Luther Holloway and Mr. Patrick Ritchie.

Additional information may be reviewed and added to this report, if additional information becomes available.

1.2 Qualifications, Areas of Expertise, and Compensation

Dr. Helen Connelly is a toxicologist and ecological and human health risk assessor. She has a Bachelor of Science degree in geology from Louisiana State University and a Ph.D. from Louisiana State University School of Veterinary Medicine, Department of Physiology, Pharmacology and Toxicology. Dr. Connelly is an adjunct professor at Louisiana State University in the Department of Environmental Science. She has taught graduate and undergraduate classes in environmental science, environmental sampling, conservation biology, ecology, biology, and environmental risk assessment (ERA) at Louisiana State University and Baton Rouge Community College. For almost 20 years, Dr. Connelly has been involved with research and investigation of the effects of oil and gas production and exploration on aquatic and terrestrial life in Louisiana wetlands, lakes, bayous, estuaries, and other water bodies. Her research investigations have been a part of her consulting work and have been focused on ERA of the effects of organic and inorganic compounds, including metals and hydrocarbons associated with oil and gas production and exploration, on vegetation and wildlife. A copy of Dr. Connelly's Curriculum Vitae is provided as Appendix A. ERM's hourly rate for Dr. Connelly is \$248.

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN R. CONNELLY, PH.D. Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

2. LISTING OF OPINIONS

- 1. The data clearly show that the Chevron former operational areas provide habitat for wildlife species and vegetation. The site contains a diverse range of habitats, including emergent freshwater marsh, forested/scrub wetland, croplands, and early successional habitat. During the site investigations, we observed numerous plants, animals, and signs of wildlife, which indicate a fully-functioning mosaic of grassland, marsh, scrub-shrub, and forest ecosystems. There is clear evidence of a healthy ecosystem, and there is no evidence of adverse effects on wildlife or vegetation populations from past E&P activities by Chevron. The site is providing habitat and services that would be damaged or destroyed by unnecessary and intrusive actions, including the remediation proposed by ICON (ICON, 2021).
- The reported concentrations, locations, and forms of constituents (COPECs) in the surface soils of the Henning Management, L.L.C. property in the vicinity of Chevron former operational areas that are of potential ecological concern are not at concentrations or in forms that currently or potentially provide exposures presenting unacceptable risks to ecological receptors or their habitats.
- 3. Site ecosystems are functioning as expected for the region, and there is no evidence of adverse impact to ecosystem health or structure. There is also no evidence to predict that adverse health effects to site ecological species will occur in the future, and no remediation is required to protect site species or habitats.
- Soil was not designated for remediation by ERM (2022; Angle/Levert/Purdom Expert Report), and therefore consideration of the risk posed by a proposed remedy is not necessary for this assessment.
- 5. Plaintiffs' experts' conclusions regarding potential ecological risks to wildlife are not substantiated and were not observed during site investigations.
- 6. Intrusive remedial actions or disturbances such as the plan proposed by the Plaintiffs' experts would damage and cause unjustified harm to this ecosystem. The remediation proposals of the Plaintiffs' experts would not serve to remediate any adverse ecological impacts and would remove acres of flourishing forested and early successional grasslands and scrub-shrub areas.

3. SITE ECOLOGY

The condition, physical structure, and ecology of the site ecosystem was assessed during a site field investigation of vegetation and wildlife performed by Dr. Helen Connelly on January 12, 2022. There is sufficient literature data, field evidence, and soil concentration data (2019, 2021, 2022) to evaluate site ecosystem health.

3.1 Ecoregion

The site is located in the Western Gulf Coastal Plain Ecoregion of Louisiana, which is an area of fertile croplands, just north of the coastal marshes. The original ecosystem in this area is grassy prairies dominated by grasses such as little bluestem (*Schizachyrium scoparium*), big bluestem (*Andropogon gerardii*), yellow Indiangrass (*Sorghastrum nutans*), brownseed paspalum (*Paspalum plicatulum*), and switchgrass (*Panicum virgatum*), as well as gallery forests along waterways (Daigle, 2006; LDEQ, 2014).

Almost all of the coastal prairie grasslands have been converted to cultivated cropland, pasture/hay, crawfish aquaculture, and urban land uses. Soils in this area are poorly drained silt loams and silty clay loams (Daigle, 2006; LDEQ, 2014).

3.2 Ecological Communities

The site contains emergent and forested/shrub wetlands, croplands (rice fields), early successional grasslands and scrub-shrub, and waterbodies (shallow drainage ditches and Bayou Lacassine) (Figure 3). Biota that are expected to occur in these types of ecological habitats is described in Section (3.2), and a discussion of the diversity of biota actually observed at the site during my January 12, 2022 field investigation, as well as other site survey events, is detailed in Section 4.

3.2.1 Wetlands

The U.S. Fish and Wildlife (USFWS) National Wetlands Inventory (NWI) indicates the presence of freshwater emergent and forested/shrub wetlands on site (Figure 4). The emergent wetlands are categorized by the NWI as persistent and semi-permanently flooded, indicating that the wetlands are dominated by species that normally remain standing until the beginning of the next growing season, and that surface water is persistent through the growing season. The forested/shrub wetlands are characterized as semi-permanently flooded needle- and broad-leaved deciduous communities, represented by bald cypress (*Taxodium distichum*) and various species of oak (*Quercus* spp.). Evidence of these wetland communities was observed during the January 2022 site visits, and the composition of the wetland vegetation on site is further characterized in Section 4.1 below.

Wetlands provide important habitat for a range of wildlife and supports a complex pyramid of species across the detrital food chain. At this site and in many wetlands, the detrital food chain begins with aquatic invertebrates, such as crawfish, that consume detritus along with other plant and animal materials such as small fish, worms, plankton, and plants. These aquatic invertebrates then provide sustenance for secondary consumers, such as fish, snakes, frogs, and many species of birds. These species subsequently provide diet for higher trophic level species, such as hawks (*Buteo* spp.) and American alligator (*Alligator mississippiensis*). The presence of this functioning food chain on site is evidence of the ecosystem services currently being provided by site species.

The documentation of different trophic levels at a site is part of the ecological risk assessment process (USEPA, 1997). Further detail regarding the avian and wildlife communities on site is provided in Section 4.2 and 4.3, respectively.

3.2.2 Croplands

A large portion of the site is dominated by active and fallow rice fields. Rice is grown under flooded conditions in small ponds, which offer excellent feeding grounds for a wide range of herbivorous birds, as well as mammals, reptiles, amphibians, and crustaceans (Gosselink, 1979).

Despite regular cultivation activities, a variety of wildlife lives and feeds in rice fields (Gosselink, 1979; Czech and Parsons 2002). In particular, rice fields provide ideal habitat for many species of shorebirds and wading birds, as well as geese and ducks (Dillon, 1958; Gosselink, 1979; Remsen et al., 1991; Foley, 2015). Flourishing detrital and grazing food chains were evidenced by the large volume of omnivorous and herbivorous birds observed in the rice fields on site (Wharton, 1982). A variety of waterfowl, marshbirds, and shorebirds such as Virginia Rail (*Rallus limicola*), King Rail (*Rallus elegans*), and Whitefaced Ibis (*Plegadis chihi*) were observed on site foraging on aquatic invertebrates and plant material.

Photographs of birds utilizing the site rice fields for habitat are provided in Appendix B-3. The site is providing a diet for all trophic levels of the avian food chain, from the Northern Cardinal (*Cardinalis cardinalis*) which are seed eating birds to the Barred Owl (*Strix varia*) which is a bird of prey. The composition and diet breakdown of all bird species documented on site are described in Section 4.2.

3.2.3 Early Successional Communities

The site contains "successional" and scrub-shrub vegetation, which is the vegetation that grows following a change, such as the clearing of cropland. The new vegetation that occurs after soils are cleared or grazed is called successional growth, because the plants are part of a natural "succession" of growth. The succession may proceed through intermediate stages of growth, and then ultimately result in a plant community with a different composition. Successional grasslands and woody scrub-shrub vegetation (shrubs and trees less than 20' tall) are expected in areas where there has been anthropogenic activity such as agriculture, mowing, and grazing.

Early successional plant communities are characterized by vigorously growing grasses, forbs, shrubs, and trees, which make up the grasslands, scrub-scrub and young forests that evolve into mature forest if left undisturbed over a long period of time (NRCS, 2012). Early successional habitats are a result of both natural (e.g., fire, grazing) and anthropogenic (e.g., mowing, crop cultivation) changes to the landscape, and provide excellent food and cover for a wide variety of wildlife (Harper, 2007).

The fruiting grasses, forbs, herbs, and shrubs that dominate these areas of the site constitute a significant food resource for herbivorous birds observed on site such as American Goldfinch (*Spinus tristis*), Mourning Dove (*Zenaida macroura*), and Northern Cardinal (*Cardinalis cardinalis*), whose diets consist primarily of seeds. These herbivorous primary consumers subsequently provide diet for higher trophic level consumers, such as the Peregrine Falcon (*Falco peregrinus*) observed on site that feeds primarily on other birds.

Successional grassland and scrub-shrub habitats also provide important refuge for a range of mammals, including but not limited to rodents, rabbits, feral hogs (*Sus scrofa*), white-tailed deer (*Odocoileus virginianus*), and coyote (*Canis latrans*), all of which have been observed directly or indirectly on site. The presence of higher trophic mammals, such as coyote, provides evidence that its habitat needs (sufficient access to food, shelter, water) are being met on site, and demonstrates that the lower levels of the food chain are present.

The complete list of non-avian wildlife documented on site are discussed in Section 4.3 and listed in Table 3.

3.2.4 Waterbodies

The USFWS NWI indicates the presence of a number of waterbodies on site, including a variety of riverine features, mainly shallow ditches and Bayou Lacassine, as well as three small freshwater ponds. The shallow, linear ditches traverse the site from north to south and east to west, creating boundaries between the different agricultural plots throughout the site. An oxbow meander of Bayou Lacassine intersects the site in the east, where there is a riparian buffer zone consisting of freshwater forested and emergent wetlands.

Based on comparison of site soil concentrations to sediment ecological screening values, concentrations are protective of ecological receptors potentially interacting with sediment. If site soils were to wash into the waterbodies on site (a hypothetical scenario), this route of constituent transport is not estimated to pose ecological risk to the waterbody inhabitants. Soil overland flow into site waterbodies is also insufficient to cause health risk to people consuming fish, as soil concentrations are similar to background or are in poorly bioavailable forms (see Section 5.2.3.1).

Drainage ditches and Bayou Lacassine receive upstream agricultural and urban land use and runoff, therefore the water quality of these features is related to the larger landscape, rather than to oil field operations at the site.

Data do not indicate that E&P related constituents are of ecological or human health concern to the waterbodies on site.

3.2.4.1 Pond and Shallow Ditches

The pond and shallow ditches on site are expected to support aquatic invertebrates and fish that are found in the rice and crawfish ponds in the region, such as crawfish (Family Cambaridae), bluegill (*Lepomis* sp), bullhead (*Ameiurus* sp.), and black bass (*Micropterus salmoides*) (Foley, 2015). The pond and shallow ditches on site support the frogs and snakes that are typical of the rice and crawfish ponds of the region, such as American bullfrog (*Lithobates catesbeianus*) and cottonmouth (*Agkistrodon piscivorous*), observed on site.

3.2.4.2 Bayou Lacassine

Bayou Lacassine and its associated forested and emergent wetlands define the easternmost portion of the site. Bayou Lacassine is a state-jurisdictional waterway that flows southward from the convergence of the East and West Bayou Lacassine tributaries in Jefferson Davis Parish to Grand Lake in Cameron Parish.

3.3 Ecosystem Services

Due to historic activity (e.g. former oil and gas E&P, etc.) on the site and claims by the plaintiffs' expert (CEI, 2021), the site has been evaluated for evidence of services and functions. The site is providing services that are expected for croplands, early successional, wetland, and waterbody habitats (Barbier, 2013). The expected and observed ecological services provided by the emergent and forested wetland habitats on site include: dissipation of storms (trees provide buffering), soil stabilization (roots hold soil in place), erosion and flood control (soils absorb water), water purification (surface water is cleaned via interactions with plants), biological productivity and diversity (habitat produces diverse vegetative biomass), carbon sequestration (carbon stored in abundant vegetation), and provision of habitat (presence of diverse vegetative species). The ecosystem services provided by the early successional grasslands and scrub-shrub areas includes habitat and diet for wildlife, protection of soil from erosion, sequestration of carbon, preservation of genetic diversity (diverse grasses), nutrient recycling, pollinator support, and seed dispersal (USFS, 2022). The waterbodies on site provide additional supporting and

regulating ecosystem services, including breeding grounds and habitat provision for aquatic and semiaquatic species.

The observations documented on site of the expected ecosystem functions and services are a line of evidence supporting the conclusion of no adverse impacts to species or their habitats from Chevron's oil field operations.

4. SITE INSPECTIONS AND OBSERVATIONS

Dr. Helen Connelly performed a site investigation and collected wildlife and vegetation data on January 12, 2022. These data, along with wildlife and vegetation data collected by Mr. Jody Shugart (ERM, March 25-26, 2021, and January 11-13, 2022), Mr. Patrick Ritchie (ERM, March 24, 2021), Mr. Patrick Ritchie (ERM, December 1-3, 2021) and Dr. Luther Holloway (Holloway Environmental Services, Inc. (HES), December 1-3, 2021), Ms. Emily Martin (ERM, January 13, 2022), and Mr. Walker Wilson (CEI, March 24, 26, 2021) were used to prepare the ERA.

The focus of the ERA is the former Chevron operational areas within the Henning property. A discussion of the findings and analyses resulting from the site investigations is included in the following Sections 4.1 through 4.5.

Site and reference area locations investigated during vegetation/wildlife surveys are shown on Figure 5A and Figure 5B, respectively. The site supports croplands, early successional grasslands and scrub-shrub, emergent and forested wetlands, and natural and manmade waterbodies that are providing ecological services to native wildlife species and humans (Figure 3). Photographs taken of habitat, vegetation, and wildlife are included in Appendix B and field notes are in Appendix C. LDEQ's Risk Evaluation/Corrective Action Program (RECAP) Form 18 is included in Appendix D.

4.1 Vegetation Characterization and Assessment

The site supports a variety of terrestrial and aquatic vegetative communities, including croplands (rice fields), early successional grasslands and scrub-shrub, and forested and emergent wetlands. The USFWS NWI indicates the presence of freshwater emergent and forested/shrub wetlands on site, and the presence of these habitats was confirmed during the January 2022 site visit (Figure 4).

4.1.1 Site Vegetation

Vegetation is exceptionally diverse throughout the early successional and wetland habitats on site. Across all surveys (ERM, CEI, HES; 2021-2022), 193 vegetative taxa were observed and recorded on site. This is an exceptionally large number of vegetative species and indicates that soils and conditions are offering a productive and non-toxic setting for ecological habitats. A complete list of vegetative taxa observed on site is included in Table 1. Photographs of the natural communities, vegetation survey areas, and site flora at the site and at the reference area are provided in Appendix B.

4.1.1.1 Wetlands

The natural communities present in the wetland areas on site are best characterized as freshwater marsh and sweetgum-water oak bottomland forest (LDWF, 2009). These areas are dominated by hydrophytic species, or those plants that have adapted to living in aquatic environments.

One hundred and fourteen (114) hydrophytic plants (as classified by the USDA) were observed on site, including 46 obligate wetland species, which almost always occur in wetlands. Examples of obligate tree species observed on site include bald cypress (*Taxodium distichum*), black willow (*Salix nigra*), and water

tupelo (*Nyssa aquatica*). Other hydrophytic species documented on site include forbs and herbs such as alligator weed (*Alternanthera philoxeroides*), broadleaf arrowhead (*Sagittaria latifolia*), butterweed (*Packera glabella*), pickerelweed (*Pontederia cordata*), seven sisters (*Crinum americanum*), smooth beggartick (*Bidens laevis*), and southern cattail (*Typha domingensis*), as well as grasses, including Baldwin's spikerush (*Eleocharis baldwinii*), common rush (*Juncus effusus*), common threesquare (*Schoenoplectus pungens*), giant cutgrass (*Zizaniopsis miliacea*), narrow plumegrass (*Saccharum baldwinii*), and woolly rosette grass (*Dichanthelium scabriusculum*).

The surface waters of the wetlands and waterbodies on site also host a variety of submerged, floating, and rooted aquatic vegetation. Examples of aquatic species observed on site include Carolina mosquitofern (*Azolla caroliniana*), Columbian watermeal (*Wolffia columbiana*), ducklettuce (*Ottelia alismoides*), duckweed (*Lemna* spp.), swamp smartweed (*Polygonum hydropiperoides*), twoheaded water-starwort (*Callitriche heterophylla*), water spangles (*Salvinia minima*), and yellow pond-lily (*Nuphar lutea*), among others. The aquatic vegetation on site serves as an important food resource for waterfowl, provides refuge for fish fry and aquatic invertebrates, and acts as breeding grounds for various amphibians.

Based on the Louisiana Department of Wildlife and Fisheries (LDWF) descriptions, the freshwater emergent and forested wetlands on site are characterized as Freshwater Marsh and Sweetgum-Water Oak Bottomland Forest natural communities. Louisiana's Freshwater Marsh natural communities are dominated by hydrophytic grasses, forbs, and herbs, and are usually categorized by low salinity (usually less than 2 ppt) remarkable plant diversity, and high levels of soil organic matter (LDWF, 2010a). Contrastingly, Sweetgum-Water Oak Bottomland Forest natural communities are defined as alluvial wetlands flanking large river systems dominated by a mixture of broadleaf deciduous, needleleaf deciduous, and evergreen trees and shrubs (LDWF, 2010b). The plants most commonly associated with Louisiana's Freshwater Marsh and Sweetgum-Water Oak Bottomland Forest natural communities are provided in Inset Table 4-1 and Inset Table 4-2, respectively.

Common Name	Scientific Name	Taxa Observed on Site
Alligatorweed	Alternanthera philoxeroides	\checkmark
Herb-of-grace	Bacopa monnieri	\checkmark
Coon's tail	Ceratophyllum demersum	
Flatsedge	Cyperus spp.	\checkmark
Common water hyacinth	Eichhornia crassipes	\checkmark
Spikerush	Eleocharis spp.	\checkmark
Hydrocotyle	Hydrocotyle spp.	\checkmark
Duckweed	Lemna spp.	\checkmark
Watermilfoil	Myriophyllum spp.	
American white waterlily	Nymphaea odorata	
Maidencane	Panicum hemitomon	\checkmark
Green arrow arum	Peltandra virginica	
Common reed	Phragmites communis	
Pickerelweed	Pontederia cordata	\checkmark
Broafleaf arrowhead	Sagittaria lancifolia	\checkmark
Saltmeadow cordgrass	Spartina patens	\checkmark
In the second		

Table 4-1: Plants Associated with Louisiana Freshwater Marsh Natural Communities

15 March 2022 Page 8

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

Common Name	Scientific Name	Taxa Observed on Site
Cattail	Typha spp.	\checkmark
Bladderwort	Utricularia spp.	
Hairypod cowpea	Vigna luteola	
Giant cutgrass	Zizaniopsis miliacea	\checkmark
Total Taxa	20	13

LDWF. 2010a. "Freshwater Marsh." Natural Communities Fact Sheets. Available: <u>https://www.wlf.louisiana.gov/page/natural-communities</u>. Accessed March 2022.

Table 4-2: Plants Associated with Louisiana Sweetgum-Water Oak Bottomland Forest Natural Communities

	Scientifie Norse	Tava Observed on Cite
Common Name	Scientific Name	Taxa Observed on Site
Sweetgum	Liquidambar styraciflua	\checkmark
Sugarberry	Celtis laevigata	\checkmark
American Elm	Ulmus americana	\checkmark
Red Maple	Acer rubrum	\checkmark
Possumhaw	llex decidua	\checkmark
Switchcane	Arundinaria gigantea	\checkmark
Water oak	Quercus nigra	\checkmark
Green ash	Fraxinus pennsylvanica	
Cherrybark oak	Quercus pagoda	\checkmark
Dwarf palmetto	Sabal minor	\checkmark
Green hawthorn	Crataegus viridis	\checkmark
Total Taxa	11	10

LDWF. 2010b. "Bottomland Hardwood Forest." Natural Communities Fact Sheets. Available: <u>https://www.wlf.louisiana.gov/page/natural-communities</u>. Accessed March 2022.

Of the 20 species identified by the LDWF as associated with Freshwater Marsh natural communities in Louisiana, 13 (65%) were observed on site, indicating that the emergent wetlands on site host a similar composition of species to freshwater marshes throughout the state (Inset Table 4-1). The forested wetlands on site are also consistent with regional expectations for bottomland hardwoods, as 10 of 11 (91%) tree and shrub species associated with the Sweetgum-Water Oak Bottomland Forest natural community were also observed on site (Inset Table 4-2).

It should be noted that the site is providing two categories of wetland habitat: marsh and forest. This is evidenced in the exceptional site diversity of more than 100 hydrophytic plant species on site.

The diverse vegetation documented in the freshwater emergent and forested wetlands during the field investigation is a line of evidence that the site is providing a healthy setting for two of Louisiana's important natural wetland communities.

4.1.1.2 Croplands

The active agricultural fields on site are primarily used for the commercial cultivation of rice (*Oryza sativa*). As site investigations occurred in the winter months, the rice fields on site were observed in a fallow state. Photographs of the fallow rice fields are included in Appendix B.

Area 8 is a portion of the site characterized as rice field. Between the March 2021 and January 2022 site visits, 45 unique species were observed in Area 8 (between 4 and 24 species per sampling location within that area). In addition to rice (*Oryza sativa*), the species present in Area 8 include herb-of-grace (*Bacopa monnieri*), sawtooth blackberry (*Rubus argutus*), alligatorweed (*Alternanthera philoxeroides*), delta arrowhead (*Sagittaria platyphylla*), and low spearwort (*Ranunculus pasillus*), among others. The presence and diversity of healthy vegetation in this area is a line of evidence that vegetation is not impacted by past E&P operations, and that rice can be expected to thrive in the area during the growing season.

Vegetative cover in these areas is purposefully limited to allow the land to recover and store organic matter while retaining moisture (Wojtkowski, 2008). Active and fallow rice fields in southwest Louisiana provide one of the largest habitats for migrating birds each year (Molino, 2021). Migrating birds including the Greater White-fronted Goose (*Anser albifrons*) and White Ibis (*Eudocimus albus*) were observed by Dr. Connelly during her site visit. The importance of site rice fields to bird populations is discussed in detail in Section 4.2.

4.1.1.3 Early Successional Communities

The site hosts a number of early successional grasslands and scrub-shrub habitats, defined by the presence of vigorously growing grasses, forbs, shrubs, and trees that have colonized the inactive agricultural fields.

Of the 193 vegetative taxa recorded on site, there were 110 different forb/herbs, 40 grasses, and 35 species of woody plants (trees, shrubs) observed. This level of diversity is among the highest diversity observed in south Louisiana ecosystems, and is strong evidence that the site is providing a healthy soil source for plants that is not negatively impacted by E&P operations. Examples of non-hydrophytic forbs/herbs documented on site include annual yellow sweetclover (*Melilotus indicus*), burclover (*Medicago polymorpha*), Canada goldenrod (*Solidago altissima*), crowpoison (*Nothoscordum bivalve*), dogfennel (*Eupatorium capillifolium*), ebony spleenwort (*Asplenium platyneuron*), Indian strawberry (*Duchesnea indica*), lyreleaf sage (*Salvia lyrata*), and spiny sowthistle (*Sonchus asper*). Terrestrial grasses and trees on site include annual bluegrass (*Poa annua*), Bermuda grass (*Cynodon dactylon*), Indian goosegrass (*Eleusine indica*), Johnsongrass (*Sorghum halepense*), and sugarcane (*Saccharum officinarum*), as well as live oak (*Quercus virginiana*) and white mulberry (*Morus alba*).

These post-agricultural natural communities occur in areas that historically contained coastal prairie. Although remnant Louisiana coastal prairies once covered an estimated 2.5 million acres, they have since been reduced to less than 1% of the original extent and are now restricted to railroad right-of-ways and between highways (LWDF, 2010c). Of the 40 different types of grasses documented in Louisiana's few remaining Coastal Prairie natural communities, 11 (28%) were observed in the grassland and scrub-shrub early successional communities on site. Site grasses and forb/herbs include: broomsedge (*Andropogon* spp.), sedge (*Carex* spp.), flatsedge (*Cyperus* spp.), thoroughworts (*Eupatorium* spp.), spurges (*Euphorbia* spp.), primrose-willow (*Ludwigia* spp.), panic grass (*Panicum* spp.), crowngrass (*Paspalum* spp.), goldenrod (*Solidago* spp.), wire grass (*Spartina* spp.), and dropseeds (*Sporobolus* spp.). These grasses are serving to preserve historic diversity and represent vegetation that was dominant prior to agriculture.

The exceptionally diverse assemblage of vegetation documented in the early successional grasslands and scrub-shrub habitats is a line of evidence that the site is providing a healthy setting for grasses of

historic coastal prairies as well as opportunistic species. The immense benefits of early successional habitat to wildlife and regional biodiversity are highlighted in Sections 4.2 and 4.3 below.

4.1.2 Reference Area Vegetation

Lacassine National Wildlife Refuge is a protected area owned by the USFWS. The refuge is located approximately 3 miles south of the site, and its landscape includes freshwater marshes, forested/shrub wetlands, coastal prairies, and croplands, making it a comparable setting to the site (USFWS, 2011). The 34,724-acre refuge is divided into 15 management units of various size and habitat composition. Units A, B, C, and F3 are managed for cropland, moist soil, and unimpounded marsh, and therefore provide the most appropriate point of comparison for site habitats. Photographs of the vegetation and natural communities observed in the reference area are provided in Appendix B.

During a reference site investigation on February 24, 2022, Mr. Shugart (ERM) identified 39 plant species in Unit A, and 56 plant species in Unit B (Figure 6). Notable species observed in both units include: American black elderberry (*Sambucus nigra*), annual bluegrass (*Poa annua*), birdeye speedwell (*Veronica persica*), black medick (*Medicago lupulina*), bushy bluestem (*Andropogon glomeratus*), Carolina geranium (*Geranium carolinianum*), Eastern baccharis (*Baccharis halimifolia*), hairy buttercup (*Ranunculus sardous*), and Louisiana vetch (*Vicia ludoviciana*). Of the 71 total plant taxa observed at Lacassine NWR (Units A and B), 56 (79%) were also observed on site, indicating strong similarly between the vegetation composition of the site and the nearby protected area. A comparative list of vegetative taxa present at the Lacassine NWR is included as Appendix E-1.

A comparison of the wetland classification and growth habit breakdown of the plant species observed at the site and NWR reference area are shown in Inset Figure 4-1. The results indicate that the proportion of observed wetland species (including obligate wetland, facultative wetland, and facultative species) is nearly identical at the site and at the NWR (site 60%; NWR 59%). The growth habits are also nearly identical, as both the site and NWR are dominated by non-woody vegetation (grasses, forb/herb, and subshrubs) (site 83%; NWR 86%). There is also the same proportion of trees at the site and NWR (15%), which is the expected percentage for a site with limited areas of forested wetlands.

B. Lacassine NWR Units A and B Wetland Classifications A. Site Wetland Classifications 23% 24% Obligate - Facultative Wetland Facultative 2% Facultative Upland . Upland 14% Not Available C. Site Vegetation Growth D. Lacassine NWR Units A and B Vegetation Growth 4% 10% 00% 21% 21% Graminoid = Forb/Herb = Subshrub = Shrub - Tree Vine 55% Not Available 56%

Figure 4-1: Comparison of wetland classification (top) and growth habit (bottom) between the site (left) and a nearby protected area, Lacassine National Wildlife Refuge (NWR) Units A and B (right)

Site and NWR taxa include all those identified during multiple site investigations (ERM, CEI, Holloway and Ritchie, 2021-2022, as described above) and reference area visits (ERM, 2022). In the wetland classification graphs, the hydrophytic wetland species (Obligate, Facultative Wetland, and Facultative) are shown in shades of blue, and non-hydrophytic upland species (Facultative Upland, Upland) are shown in shades of green (USDA, 2012). In the growth habit graphs the mid- and top-story woody vegetation (Tree, Shrub, Subshrub) is shown in shades of blue, and understory herbaceous species (Forb/herb) and grasses (Graminoid) are shown in shades of green. Vines can be either herbaceous or woody and are shown in yellow. Note that some species have multiple growth forms, so community structure percentages add up to greater than 100. Taxa identified to the genus level have a status that is considered "not available" (grey) as species within genera may vary in wetland classification.

These favorable comparisons of the site to a comparable protected area, including similar proportions of wetland and upland species, similar percentages of trees, and similarity in the specific species present demonstrate that the vegetation on site is as expected for early successional habitats, emergent marsh, and forested wetlands. The similarity between the site and the NWR is a line of evidence that the ecosystem is functioning as expected, and that the vegetation at the site is as expected for the region.

4.2 Avian Community Characterization and Assessment

The entirety of the site is contained within the globally designated Coastal Prairie Important Bird Area (IBA) (Appendix E-2). The Coastal Prairie IBA is named after the formerly predominate habitat type, which

once dominated approximately 2.5 million acres of coastal and Cajun prairie (Audubon, 2022a). Today, more than half of the IBA is used for rice and crawfish cultivation, which provides ample food, water, and cover for several categories of birds, including shorebirds, wading birds, waterfowl, and blackbirds. This IBA occurs at the convergence of the Central and Mississippi Flyways, and therefore the site and the IBA play an important role in sustaining habitat for more than 300 species of migratory birds (BirdlLife International, 2022).

4.2.1 Site Avian Community

Seventy species of birds were documented on site across multiple site investigations (ERM, CEI, Holloway and Ritchie, 2021-2022, as described above). A complete list of birds observed on site is included in Table 2. Photographs of site birds are included in Appendix B.

Ten of the bird species observed are listed as Species of Greatest Conservation Need (SGCN) by the LDWF (LDWF, 2020a; Inset Table 4-3). Species listed on the LDWF list of SGCN are selected based on a variety of criterion, including global and state rarity ranks, threats to the population, extent of historical range, percent of habitat remaining, and amount of data available (or ecological knowledge level) (Holcomb et al., 2015). The SCGN species observed on site range in state rarity from S1, or at high risk of extirpation in the state, to S5, very low risk of expiration in the state. The presence of and diversity of SCGN species observed on site is a line of evidence that the ecosystems present are providing a variety of nourishing habitats that sustain biodiversity in the region.

Common Name	Scientific Name	Diet ¹	Global Rank ²	State Rank ³
Bald Eagle	Haliaeetus leucocephalus	Fish	G5	S3
Crested Caracara	Caracara plancus	Omnivore	G5	S1
Eastern Meadowlark	Sturnella magna	Insects	G5	S5
King Rail	Rallus elegans	Aquatic Invertebrates	G4	S3B, S4N
Little Blue Heron	Egretta caerulea	Fish	G5	S3
Mottled Duck	Anas fulvigula	Omnivore	G4	S4
Northern Bobwhite	Colinus virginianus	Plants	G4	S3
Peregrine Falcon	Falco peregrinus	Birds	G4	S3
Sandhill Crane	Antigone canadensis	Omnivore	G5	S2
Sedge Wren	Cistothorus platensis	Insects	G5	S4
Ranks G = Global S = State B = Breeding N = Non-breeding 1 = Critically Imperiled 2 = Imperiled 3 = Vulnerable 4 = Apparently Secure 5 = Secure	 ¹ Diets as listed by The Cornell Lab (2022a) Bird Guide. ² Global ranks are designated by NatureServe (2022). ³ State ranks are determined by the LDWF under Title 56 of the Louisiana Revised Statutes (LDWF, 2021). Sources The Cornell Lab. 2022a. All About Birds: Bird Guide. Available: <u>https://www.allaboutbirds.org/guide/</u>. Accessed March 2022. LDWF. 2020. Louisiana's Animal Species of Greatest Conservation Need (SGCN) – Rare, Threatened, Endangered Animals – 2020. Louisiana Department of Wildlife and Fisheries, Wildlife Diversity Program. NatureServe. 2022. NatureServe Explorer. Available: <u>https://explorer.natureserve.org/</u>. Accessed March 2022.			

Table 4-3: Louisiana Bird Species of Greatest Conservation Need Observed on Site

4.2.1.1 Primary Consumers

Herbivorous birds, which predominately consume plants and plant material (i.e., nuts, seeds, nectar) are categorized as primary consumers. Given their consumption of primary producers (plants), primary consumer species are lower trophic level species, as compared to the secondary and tertiary consumers with omnivorous and carnivorous diets. Examples of primary consumers observed on site include Cedar Waxwing (*Bombycilla cedrorum*), Common Gallinule (*Gallinula galeata*), Greater White-fronted Goose (*Anser albifrons*), Snow Goose (*Anser caerulescens*), Wood Duck (*Aix sponsa*), American Goldfinch (*Spinus tristis*), Brown-headed Cowbird (*Molothrus ater*), Mourning Dove (Zenaida macroura), and Northern Cardinal (*Cardinalis cardinalis*), in addition to the state-vulnerable Northern Bobwhite (*Colinus virginianus*). The abundance and diversity of avian primary consumers on site is a line of evidence indicating that the vegetation present is providing sufficient diet for these populations, and that soils and vegetation are not negatively impacted by E&P operations.

4.2.1.2 Secondary Consumers

Secondary consumers are organisms that consume primary consumers; therefore, their diets may be omnivorous or consist predominately of insects and aquatic invertebrates. Examples of avian secondary consumers observed on site include: American Crow (*Corvus brachyrhynchos*), Blue-gray Gnatcatcher (*Polioptila caerulea*), Carolina Chickadee (Poecile carolinensis), Downy Woodpecker (Dryobates pubescens), Eastern Phoebe (*Sayornis phoebe*), Gray Catbird (*Dumetella carolinensis*), House Wren (Troglodytes aedon), Northern Mockingbird (*Mimus polyglottos*), Red-winged Blackbird (*Agelaius*)

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN R. CONNELLY, PH.D. Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

phoeniceus), Sandhill Crane (Antigone canadensis), and Wilson's Snipe (Gallinago delicata), among others. The 43 secondary consumers observed on site is a line of evidence indicating that the ecosystem is providing sufficient food and habitat resources for multiple species with the same primary diet. For instance, insect populations are sufficient to feed not only the insectivorous Savannah Sparrow (*Passerculus sandwichensis*), but the insectivorous Song Sparrow (*Melospiza melodia*) and Swamp Sparrow (*Melospiza georgiana*) as well.

4.2.1.3 Top Predators

A bird's diet characterizes its trophic level, or position in the food web. Tertiary consumers, or top predators, occupy the highest trophic levels, and have primarily carnivorous diets comprising of carrion (animal carcasses), medium and small mammals, fish, and other birds. Birds of prey observed on site include, Barred Owl (*Strix varia*), Bald Eagle (*Haliaeetus leucocephalus*), Northern Harrier (*Circus hudsonius*), Red-shouldered Hawk (*Buteo lineatus*), American Kestrel (*Falco sparverius*), Cooper's Hawk (*Accipiter cooperii*), Peregrine Falcon (*Falco peregrinus*), and Red-tailed Hawk (*Buteo jamaicensis*), as well as scavengers such as the Black Vulture (*Coragyps atratus*) and Turkey Vulture (*Cathartes aura*). The presence of these top predators with carnivorous diets indicates that the food resources on site are sufficient to support the hunting needs of the top trophic levels. The presence and diversity of top predators is therefore evidence of an intact and functioning food web (Inset Figure 4-2).

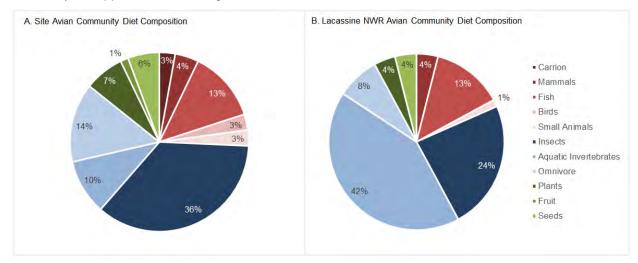
Figure 4-2: Example of a terrestrial food chain observed on site

In this example, the yellow thistle (*Cirsium horridulum*) is the primary producer and the Eastern carpenter bee (*Xylocopa virginica*) is the primary consumer (left). The Gray Catbird (*Dumetella carolinensis*) (center) is an insectivorous secondary consumer, known to eat bees. The top predator in this food chain is the Red-tailed Hawk (*Buteo jamaicensis*) (right), which is a known predator of Gray Catbirds. Various food chains such as this observed on site indicate the health of the ecosystem. Photos by Mr. Jody Shugart (March 2021; January 2022).

The complete list of the generalized diets of the birds observed on site is included in Table 2. A discussion of the trophic breakdown of the site bird community is provided in context with the reference area in Section 4.2.2.

4.2.2 Reference Area Avian Community

The cropland, moist soil, and unimpounded marsh habitats found in Units A, B, C, and F3 of Lacassine NWR provide similar bird habitat to those present on site and therefore provide an appropriate reference for bird communities expected to occur in the region (USFWS, 2011).


During a reference site investigation on February 24, 2022, Mr. Shugart (ERM) identified 37 birds in the cropland, moist soil, and impounded marsh areas of the refuge (15 species in Unit A and 26 species in Unit B). The USFWS (2011) Lacassine NWR Wildlife Refuge Habitat Management Plan also provides a list of 45 refuge species with moist soil, unimpounded freshwater marsh, and agricultural habitat needs. A

complete list of the 76 bird species using the refuge habitats that are similar to the site is included in Appendix E-3.

The trophic breakdown of the site avian community was compared to the avian communities found at similar habitats at Lacassine NWR. Of the 76 bird species associated with croplands, moist soil areas, and unimpounded marsh habitats at the reference area, 33 (42%) were also observed on site (Appendix E-3). Given that bird abundance at these properties is highly dependent on migratory birds (i.e., species richness fluxes throughout the year), and recreational hunting was observed on site during the January 2022 surveys, this is a favorable comparison of species richness.

The trophic structure of the avian population at the site is similar to the trophic structure at the reference area (Inset Figure 4-3). At the site and Lacassine NWR, between 18-26% of birds are tertiary consumers (carnivorous and piscivorous), which is expected for bird populations in southern Louisiana. The birds of prey on site also represent a wider array of carnivorous diet-types compared to the reference area, as the site supports higher trophic level species that consume carrion, mammals, fish, birds, and small animals, while the reference area is limited to birds that eat carrion, fish, and birds. The presence of species with diverse carnivorous and piscivorous diets is a line of evidence demonstrating that the ecosystem is functioning such that lower trophic levels are providing sufficient food resources for the large population (26% of total) of higher trophic level birds that require a high calorie diet.

In addition, at both sites, the majority of species (60-74%) are secondary consumers, with diets consisting of insect, aquatic invertebrate, or mixed (omnivorous) food sources. The proportion of primary consumers, or herbivorous species, is also similar between the site (14%) and the reference area (8%). The greater percentage of herbivorous and insectivorous birds on site is likely a result of the site's unique mosaic of early successional wetland and upland microhabitats that provide a good source of vegetation diet for birds and insects. The overall similarity between the diversity of bird populations on site and the reference area is a line of evidence that the site's ecosystem is functioning as expected for the region, and sufficiently to support a diverse range of avian diets.

Figure 4-3: Comparison of the avian food web between the site (A) and a nearby protected area, Lacassine National Wildlife Refuge (NWR) Units A, B, and F3 (B)

Site bird species include those identified during multiple site investigations (ERM, CEI, HES, 2021-2022, as described above). Reference area bird species include those observed during the February 2022 reference area survey (Mr. Jody Shugart, ERM) and those species listed as dependent on moist soil, unimpounded marsh, and agricultural habitats in the Lacassine National Wildlife Refuge Habitat Management Plan (USFWS, 2011). Primary consumers, or herbivores, are shown in green. Secondary consumers, including insectivores, aquatic invertebrate consumers, and omnivores are shown in blue. Scavengers and top predators are shown in shades of red and orange.

4.3 Non-Avian Fauna Characterization and Assessment

4.3.1 Site Non-Avian Fauna Community

A total of 62 non-avian taxa were observed by across multiple site investigations (ERM, CEI, HES, 2021-2022, as described above). Herbivorous primary consumers observed on site include pollinating insects (European honey bee [*Apis mellifera*], blue dasher [*Pachydiplax longipennis*], pearl crescent [*Phyciodes tharos*], monarch butterfly [*Danaus plexippus*], and red admiral [*Vanessa atalanta*]), snails (Ramshorn snail [Class Gastropoda] and Apple snail [*Promacea maculata*]), beetles (Order Cleoptera), and ants (Family Formicidae), as well as grazing mammals such as nutria (*Myocastor coypus*), swamp rabbit (*Sylvilagus aquaticus*), and white-tailed deer (*Odocoileus virginianus*). The diverse range of herbivorous species present on site is evidence that the diverse vegetation is providing an abundant diet (plant material, berries, seeds, nectar) for a variety of primary consumers.

In addition, the monarch butterfly is Species of Greatest Conservation Need in Louisiana (LDWF, 2020a), and a candidate for federal listing under the Endangered Species Act. The presence of the monarch on site indicates that the habitats are playing an important role in maintaining the biodiversity of the region and are supporting the continued existence of an at-risk population of pollinators.

Secondary consumers observed on site include aquatic invertebrates (digger crawfish [*Creaserinus fodiens*], devil crawfish [*Lacunicambarus diogenes*], red swamp crawfish [*Procambarus clarki*], and grass shrimp [*Palaemonetes* sp.]) and terrestrial invertebrates (eastern pondhawk [*Erythemis simplicicollis*], wolf spider [Family Lycosidae], and crickets [Superfamily Grylloidea]), as well as a variety of reptiles and amphibians. Six species of frog were observed on site, including Blanchard's cricket frog (*Acris blanchardi*), green tree frog (*Hyla cinerea*), squirrel tree frog (*Hyla squirrella*), American bullfrog (*Lithobates catesbeianus*), green frog (*Lithobates clamitans*), and leopard frog (*Lithobates sphenocephalus utricularius*), as well as green anole (*Anolis carolinensis*), eastern mud turtle (*Kinosternon subrubrum*), and common five-lined skink (*Plestiodon fasciatus*). The diversity of insectivorous secondary consumers on site is a line of evidence that the insect populations are sufficiently abundant (and supported by the diverse vegetation) to provide sustenance for a variety of wildlife with similar diets.

In addition to the birds of prey described in Section 4.2, tertiary consumers on site include a variety of snakes (cottonmouth [*Agkistrodon piscivorus*], western rat snake [*Pantherophis obsoletus*], and western ribbon snake [*Thamnophis proximus*]), two omnivorous mammals (Virginia opossum [*Didelphis virginiana*] and feral hog (*Sus scrofa*)], and two apex predators (American alligator [*Alligator mississippiensis*] and coyote [*Canis latrans*]). The presence of terrestrial and aquatic top predators on site indicates that both the terrestrial and aquatic food webs are intact and functioning to provide sufficient food resources for those species that require a high calorie diet.

All trophic levels of the terrestrial and aquatic food webs (primary to apex) were directly observed on site, which is a line of evidence supporting good ecosystem health (USEPA, 1997). A complete list of non-avian fauna observed on site is provided in Table 3.

4.3.2 Reference Area Non-Avian Fauna Community

The Lacassine National Wildlife Refuge Comprehensive Conservation Plan provides a list of species that have been observed on the NWR (USFWS, 2007). Of these species listed for the NWR, seven mammals (Virginia opossum, nine-banded armadillo, coyote, raccoon, white-tailed deer, nutria, and swamp rabbit), and ten reptiles and amphibians (America alligator, green anole, five-lined skink, eastern mud turtle, western ribbon snake, rat snake, cottonmouth, green treefrog, American bullfrog, and squirrel tree frog) have also been observed on site (ERM, CEI, HES, 2021-2022). These mammals, reptiles, and amphibians observed on site represent the feeding groups (herbivores, omnivores, and carnivores) and

several important keystone species, such as the coyote and alligator, that are also present at the NWR. This is a line of evidence that the site is functioning as expected for the region, by providing habitat for important wildlife also found in the nearby protected NWR.

The habitats on site and between the site and the reference area are recognized by the U.S. EPA as known ecological hubs and corridors under the National Ecological Framework (NEF) (USEPA, 2022a; Appendix E-4). The NEF is a Geographic Information Systems based model that identifies ecological hubs, corridors, and auxiliary connections to demonstrate the connectivity of natural landscapes throughout the contiguous United States (USEPA, 2022b). Given the close proximity of the site to the refuge (approximately 3 miles), and the presence of an NEF corridor and auxiliary connections between the two locations, it is possible that the species on site with larger daily home ranges (alligators, coyotes, birds) travel to and from the refuge for foraging, resting, and denning during their lifetimes. The habitats and natural communities on site therefore enhance the ecological connectivity of the region, thus adding increased habitat area, increased opportunity for colonization, greater habitat accessibility, and increased niche diversity (NRCS, 1999). The function of the site as a wildlife corridor is an important reason to preserve the diversity present and not to disrupt the habitat with unnecessary remediation.

Photo documentation of vegetation, birds, and other wildlife observed on site and in the reference area is provided in Appendix B.

4.4 Habitats in Areas Proposed for Remediation by ICON

Mr. Greg Miller and Mr. Wayne Prejean authored a report dated September 30, 2021, titled *Expert Report* and *Restoration Plan for the Landowners Henning Management, LLC v Chevron USA, Inc et al; Docket No.* 73318; 31st JDC; Division "C", Jefferson Davis Parish LA, Hayes Oil Field, Calcasieu and Jefferson Davis Parish, LA.

Per the Miller/Prejean report, ICON is proposing to remove approximately 16.4 acres of forest, grassland, scrub-shrub habitat, croplands, and soils to a depth of up to 16 feet. These excavation activities proposed by ICON are ecologically unnecessary and unreasonable for a site that is thriving and supporting more than 130 different species of wildlife and producing an exceptional number (193) of unique vegetative species.

ICON's planned excavation and removal of the treed areas on site is unnecessarily destructive of functioning forested and scrub-shrub ecosystems. These areas with trees and shrubs, planned for removal by ICON, provide important refuge for documented site wildlife such as deer and coyote. The site, which is part of the Western Gulf Coastal Plain Ecoregion, has soils that are very well suited for agriculture. Due to the expansion of agriculture across this region, the forests that remain are fragmented and reduced in size. The areas of the site that remain forested support important natural communities with intact food webs. ICON's planned excavation unnecessarily destroys these functioning forested and scrub-shrub ecosystems, and would remove native trees and shrubs, such as red maple, common persimmon, live oak, American black elderberry, and dogwood. These trees are home to birds such as the Red-bellied Woodpecker, Mourning Dove, and American Goldfinch that would lose their homes and habitat due to ICON's planned removal of trees.

The ICON proposed excavation and removal of grasslands and scrub-shrub habitat, to a depth of up to 16 feet, would destroy unique and valuable early successional ecosystems. These early successional habitats on site are exceptionally diverse, with 108 different forb/herbs, including wildflowers such as buttercup, clovers, goldenrod, and sowthistle, and 40 different grasses, such as annual bluegrass, bushy bluestem, rushes, and sedges. To explain how exceptional this level of diversity is, a comparison can be made to the diversity of the original Louisiana prairie grasslands ecosystems, which are now almost completely gone, due to the prevalence of agriculture. Prairie grasslands in Louisiana, historically, had

up to 186 different grass and herbaceous plant species (MacRoberts et al., 2003). The presence at the site of 148 grasses, forbs, and herbs, as compared to historical diversity of 186 species in prairie grasslands, is exceptionally diverse, and represents that the site is serving as an active location of plant genetic diversity preservation. In addition to grassland species on site, there 35 tree species on site, making the total vegetation count an impressive and unusually diverse number of species (193 total species).

The vegetation on site is dense and provides important refuge for mammals with fidelity to grasslands, such as rabbits and rodents, and for birds that are Species of Greatest Conservation Need (10 species, LDWF, 2020a; Table 2). The Eastern Meadowlark, which is one of the special status birds, has fidelity to grasslands and has been documented in four areas on site (Area 1, Area 4, Area 5, and Area 6) (Hull et al., 2019). Site early successional habitats that are currently providing habitat for at-risk bird populations and grassland mammals would be destroyed by the unnecessary and wasteful removal of soils, as planned by ICON.

The excavation of grasses and soils, as proposed by ICON, is environmentally destructive. The silt and loam soils in the region and at the site are uniquely suited to growing grasses and rice, as the entire plains area was formerly grasslands before it was converted to cropland. The grassland in the ICON proposed excavation areas has soils that are uniquely suited to growing grasses and rice. The ICON proposal of excavating the loam and silt soils and replacing them with other soils of different structures will make the site area less productive and will at the same time destroy the soil structure of areas that ICON uses for soil procurement.

ERM has proposed no active remediation of soil or groundwater, and instead has proposed additional work to remove oilfield debris and further delineation of the shallow groundwater. These potential actions, although not required for ecological reasons, are for 29-B and RECAP human health compliance (see Section 10 of the ERM Expert Report). The ERM plan, if performed carefully and with regard for the ecology, should be minimally invasive, of short time duration, and should not cause undue damage to the functioning of the forested, scrub-shrub, and grassland ecosystems on site.

4.5 Ecological Observation Summary

The lines of evidence presented in this ERA show that the natural communities and food webs on site are functioning as expected for the region, including the areas proposed for remediation by ICON. Vegetation observed at the site is expected for the region based on the characterization of natural communities and comparison to similar habitats in a nearby protected area, Lacassine NWR (LDWF, 2010a; LDWF, 2010b). The avian community trophic structure is also as expected for the region, with the expected percentages of insectivores, omnivores, herbivores, and top predators. Numerous birds of prey and apex predators that depend on a sufficient diet of mammals, fish, and birds were observed on site, indicating that the top of the food chain is supported by the lower levels of the food chain. No indicators of effects from salt, metals, hydrocarbons, or other evidence of toxicity were observed in the vegetation in the area planned by ICON for remediation. Based on these findings and all lines of field evidence, the aquatic and terrestrial ecosystems on site are functioning as diverse and productive habitat and there is no evidence that remediation is required for ecological reasons.

Based on analysis of field observations and data, ecological populations on the site do not show evidence of adverse impact by oil and gas E&P activities. The site is exceptionally biologically diverse and functioning as expected for the region.

5. SCREENING-LEVEL ECOLOGICAL RISK ASSESSMENT (SLERA)

5.1 ERA Step 1

This ERA includes a SLERA and a BERA. The SLERA includes Steps 1 and 2 from USEPA (1997) guidance: 1) screening-level problem formulation and ecological effects evaluation, and 2) preliminary exposure estimates and risk calculations. The site-specific BERA includes Steps 3-8 from USEPA (1997) guidance. The SLERA (Section 3) and BERA (Section 4) processes, which are the USEPA eight step process for ERA, are described in the following sections and shown on Figure 6.

5.1.1 Screening Level Formulation

The screening-level portions of an ERA (Step 1 and Step 2) are problem formulation and ecological effects evaluation. At the end of Step 2, the decision is made whether: 1) risks are negligible or 2) to proceed to a site-specific BERA.

This SLERA focuses on potential chemical stressors in soils on the site. Soil concentrations are also evaluated in the ERA as sediments to address potential transient inundation events. Soil data are presented in Table 4 and sample locations are presented on Figures 7 through 12. It is appropriate to focus on soils as the primary pathway of concern for site wildlife (USEPA, 1997). There is no current exposure pathway at the site for contact with groundwater for wildlife or other animals. Groundwater is not in communication with surface water at the site (Section 3.5.2 of ERM (Angle/Levert/Purdom) Expert Report, 2022). Surface water ingestion is a minor pathway in mammals and birds as compared to soil, and is not included in the quantitative risk assessment. Surface water concentrations for samples collected at 2' and 13' in the pond in sampling area 2 are less than LDEQ numeric criteria for chronic aquatic life (assuming hardness between $100 - 400 \text{ mg/L CaCO}_3$) and LDEQ numeric criteria for the applicable subsegment (#050601).

Considered in the problem formulation portion of the screening assessment are information on the environmental setting, known contaminants, fate and transport mechanisms on site, ecotoxicity of potential contaminants, likely categories of receptors, complete exposure pathways, and identification of endpoints. Information gathered for Step 1 of the SLERA is discussed in the following Sections 4.1.1.1 through 4.1.2.

5.1.1.1 Environmental Setting

Chevron former operational areas (sampling areas 1, 2, 4, 5, 6, and 8) are located within natural and agricultural environments (Figure 2). Area 8 is currently used for agriculture (rice farming), while areas 2, 4, and 5 appear to have historical agricultural activities (potentially rice and sugarcane farming). Former E&P operational areas in area 6 appear to be surrounded by a levee, separating them from the adjacent drainage ditch.

The property is intersected by drainage ditches throughout, including sampling areas, and Bayou Lacassine in the eastern portion (Figure 2). There is a pond within sampling area 2 created by a well blowout in 1941. The drainage ditches are shallow (generally a few feet deep), while the pond in sampling area 2 is approximately 15 feet deep. Bayou Lacassine is approximately 10 feet deep. Shallow groundwater at the site is not connected to these surface water features.

The site lies within LDEQ Drainage Basin Subsegment #050601 Lacassine Bayou - From headwaters to Grand Lake. This subsegment supports primary and secondary contact recreation, fish and wildlife propagation, and agriculture.

The site is situated within the FEMA 100-year flood hazard area. Soils underlying the site and in the region comprise of Allemands muck, Arat Mucky silt, Midland silty clay loam, Edgerly loam, Crowley-Vidrine complex, and Mowata-Vidrine complex.

Current land uses of the site are industrial (former E&P), agricultural, and recreational hunting. Surrounding the site within the property and beyond, land use includes agriculture and E&P activities. There was historical residential use in a small portion of the Henning property, not in the areas of Chevron former operations. Land uses in the surrounding area are similar, including E&P activity, agriculture, and rural residential.

For additional details regarding the environmental setting and land uses discussed above, refer to the ERM Expert Report (2022; Angle/Levert/Purdom).

Plaintiffs have alleged that historical E&P activities have left soil and groundwater contamination on the site that are a health risk or a potential health risk to ecological species. The claim made by the plaintiffs is that constituents have been left on the site in concentrations that could affect ecological populations. This portion of the ERA is a quantitative hazard quotient (HQ) evaluation of the chemical concentrations in soils to determine if risk to the wildlife population is expected.

5.1.1.2 Contaminant Fate and Transport

The primary transport mechanisms possible on site are surface runoff and erosion (soil). The effects of these mechanical actions are assessed in this ERA through chemical analyses of soils and surveys of vegetation and wildlife populations.

5.1.1.3 Ecotoxicity of COPECs

Ecotoxicity of COPECs on the site has been investigated beginning with collecting soil samples (Table 4). The COPECs screened in this level of assessment are arsenic, barium, cadmium, chromium, lead, selenium, silver, strontium, mercury, zinc, and TPH. The potential for these COPECs to cause adverse effects to survival, growth, or reproduction in ecological receptors only exists if the COPECs are: 1) present and bioavailable in toxic concentrations, 2) a complete exposure pathway exists, and 3) exposure occurs.

For the screening portion of this ERA, soils were compared to conservative (protective) USEPA Eco-SSL soil values (USEPA, 2005a, 2005b, 2005c, 2005d, 2005e, 2006, 2007b, 2007c, 2008), NOAA Screening Quick Reference Tables (SQuiRT) Freshwater Threshold Effects Concentration (TEC) and Probable Effects Concentration (PEC) sediment screening values (Buchman, 2008) and a calculated barium soil screening value. These screening values are protective of mammals, birds, invertebrates, and plants. Although sediments have not been observed on site, sediment screening values have been included in the assessment to account for the possibility that sediments could be present in the future. It should be noted that screening values are used to ensure that risk is not overlooked and that all potential constituents that may contribute to risk are evaluated.

5.1.1.4 Potential Receptors and Routes of Exposure

The receptors selected to represent communities or populations on the site are ones that represent the species that are present or could potentially be present in the habitat of interest. The representative receptors and routes of exposure used to estimate risk are ones for which there is sufficient ecotoxicity information available. Exposure is assessed via ingestion of COPECs through exposure to soil/sediment and diet. This exposure pathway (soil/sediment) and exposure route (ingestion) is supported as appropriate for ERA per USEPA guidance (1997). The receptors used in this risk assessment are described in the following sections.

Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

5.1.1.5 Wildlife (Vertebrates)

Wildlife includes four classes of vertebrates in their natural habitats: amphibians, reptiles, birds and mammals. Because these vertebrates are not domesticated, they are included in the general category of wildlife.

Vertebrate wildlife are consumers that can be assessed through estimates of COPEC doses in their diets. Wildlife are exposed to COPECs via ingestion of other organisms, soil/sediment, or water. Other pathways of wildlife COPEC exposure include dermal and inhalation. Generally, wildlife is protected by their fur or feathers from excessive dermal exposure to COPECs, therefore the dermal pathway is not included in the risk assessment. The inhalation pathway is also not included in the risk assessment, as no volatile compounds were analyzed in soils 0-3' bgs, and volatile compounds are unlikely to be present due to weathering, and if present, are expected to rapidly dissipate in ambient conditions. Therefore, this risk assessment is focused on the ingestion pathway, per USEPA guidance (1997).

Specific wildlife species, based on their feeding behaviors have been selected to be evaluated as representatives of larger wildlife communities. Mammals and birds are used as the representative wildlife species, because more toxicity data is available for these vertebrates, as compared to reptiles, fish, and amphibians.

This BERA is focused on birds and mammals associated with a terrestrial (soil-based) food web.

5.1.1.6 Invertebrates

The invertebrate population exists in and on soils and sediments. Invertebrate populations include organisms such as worms, crustaceans, gastropods, arthropods, and mollusks. These organisms function in the ecosystem to digest and degrade other biologic matter and to provide a diet for larger invertebrates and vertebrates. Because they are in direct contact with soils and sediments due to their lifestyles, they are dietary sources of COPECs to higher vertebrates. The BERA is focused on invertebrates associated with soils.

5.1.1.7 Nektonic Aquatic Species

Nektonic aquatic species are larger swimming vertebrates such as fish, alligators, and snakes. These categories of nektonic species are assessed qualitatively in the ERA by direct and indirect field observations. For example, direct observations include observations of the American alligator (*Alligator mississippiensis*), cottonmouth (*Agkistrodon piscivorus*), and least killifish (*Heterandria formosa*) at the site. Examples of indirect observations of nektonic aquatic species include observations of predators, such as fish-eating birds on the site indicate that surface water features on the site provides fish as diet. Examples of fish-eating birds seen on the site include the Great Egret (*Ardea alba*), Little Blue Heron (*Egretta caerulea*), and Belted Kingfisher (*Magaceryle alcyon*). Similarly, the presence of birds on the site that eat aquatic invertebrates indicates that the surface water is of sufficient quality to provide diet to these birds. Examples of invertebrate-eating birds seen on the site include White Ibis (*Eudocimus albus*), Greater Yellowlegs (*Tringa melanoleuca*), King Rail (*Rallus elegans*), and Wilson's Snipe (*Gallinago delicate*).

Site soil constituents did not exceed sediment ecological screening values. Therefore, site soil concentrations are considered protective of nektonic species and their wildlife predators, and further evaluation is not necessary.

5.1.1.8 Plants

Plant communities hosting a variety graminoids (grasses), forbs, herbs, vines, shrubs, and trees are present in great diversity on the site. The plants are primary producers and form the base of the food

chain by converting the sun's energy to the carbohydrate energy that other invertebrates and vertebrates use. In this risk assessment, the plant population has been assessed through a vegetation survey at locations of maximum constituent concentrations in site soils and adjacent areas throughout the site (Section 4.1).

5.1.1.9 Exposure Pathways and Conceptual Site Model

A Conceptual Site Model (CSM) has been developed to evaluate potential ecological exposure pathways at the site (Figure 13). A CSM (USEPA, 1997) addresses: (1) the environmental setting and COPECs at the site; (2) COPEC fate and transport mechanisms; (3) mechanisms of ecotoxicity and likely categories of ecological receptors; (4) complete exposure pathways; and (5) selection of endpoints to screen for ecological risk.

The potentially complete exposure pathways at the site are through shallow surface soil. The biologically active zone of soils at the site are from ground surface to three feet deep (LDEQ, 2003). To be inclusive of 0-3' data, soil samples collected in the 0-2' and 2-4' depth intervals were included in the evaluation. The depth of 0-3' includes the effective root zone of trees on the site of up to 10 inches (Holloway and Ritchie, 2022) and the recommended sampling depth biologically active zone for terrestrial species of 25-30 cm (USEPA, 2015).

5.1.2 Effects Evaluation

Following the screening level problem formulation is a preliminary evaluation of ecological effects. Ecological effects are estimated using thresholds values for soil and sediment that are referred to as ESVs. ESVs are COPEC concentrations that are estimated to pose no risk of adverse effects to exposed wildlife. The screening level values are not used as predictors of the occurrence of ecotoxicity, but rather to protectively include all potential COPECs in the risk assessment.

The ESVs used in the SLERA are based on peer reviewed publications of field studies or laboratory studies in which no adverse effects were observed. The ESV is therefore based on the highest observed exposure concentration that does not produce adverse effects. This "no observed adverse effect level" is referred to as the NOAEL. ESVs can also be based on a LOAEL, which is the lowest observed adverse effect level shown to produce adverse effects (reduced growth, impaired reproduction, increased mortality) in a receptor species. Therefore, the ESV is a dose or a concentration at or below which risk is not expected to occur.

The fact that an ESV is exceeded does not indicate the need for remediation or that there is ecological risk. ESVs are not site-specific and are intended to be overly protective. When ESVs are exceeded, a more specific ecological risk analysis can be performed. A concentration that exceeds a soil screening level (SSL) does not identify that there is risk or that there are soil concentrations that require remediation. Screening is the process of identifying and defining areas, contaminants, and conditions that do not require further attention. When COPEC concentrations fall below screening values, no further action is needed. When COPEC concentrations exceed ESVs, further evaluation is valuable, but the need for remediation is not assumed.

For the initial screening assessment in this ERA, conservative (protective) screening thresholds for soils such as USEPA SSLs (USEPA, 2005a, 2005b, 2005c, 2005d, 2005e, 2006, 2007b, 2007c, 2008; USEPA Eco-SSLs) for COPECs present in soil are used. The USEPA Eco-SSL for barium is based on bioavailable forms of barium, and not a low bioavailability form such as barium sulfate, which is the form of barium typically present at legacy oil and gas E&P sites and confirmed to be the form present at this site (see Section 5.2.3.1). A more appropriate barium soil screening value was calculated for the site using barium sulfate data (see Section 5.1.2.1 below). Additionally, NOAA freshwater sediment TECs and PECs (Buchman, 2008) were used to screen COPECs in soil due to the presence of hydrophytic

vegetation and episodic standing water at the Site. The limitations of the use of screening values has been discussed by the National Research Council (2003). The screening values used for this ERA are based on ecotoxicity studies of plants, birds, invertebrates, and mammals (Inset Table 5-1).

Constituent	Eco-SSL Avian USEPA	Eco-SSL Mammal USEPA	Eco-SSL Invertebrate USEPA	Eco-SSL Plant USEPA	Calculated Soil Screening Value	TEC NOAA	PEC NOAA
Arsenic	43	46	N/S	18	N/S	9.79	33
Barium	N/S	2000	330	N/S	2424	N/S	N/S
Cadmium	0.77	0.36	140	32	N/S	0.99	4.98
Chromium	26	34	N/S	N/S	N/S	43.4	111
Lead	11	56	1700	120	N/S	35.8	128
Mercury	N/S	N/S	N/S	N/S	N/S	0.18	1.06
Selenium	1.2	0.63	4.1	0.52	N/S	N/S	N/S
Silver	4.2	14	N/S	560	N/S	N/S	N/S
Strontium	N/S	N/S	N/S	N/S	N/S	N/S	N/S
Zinc	46	79	120	160	N/S	121	459

Table 5-1: Ecological Screening Values

Notes:

Concentrations are in mg/kg-dry.

The Soil ESV is the lowest of the Eco-SSLs. For barium, the Soil ESV is the calculated soil screening value. The Sediment ESVs are freshwater sediment TEC and PEC.

5.1.3 Calculated Barium Soil Screening Value

The form (compound) of barium in site soils is barium sulfate. X-ray diffraction analyses (XRD) demonstrate that barium sulfate is the only form of barium in site soils (Appendix J, ERM Expert Report, 2022). Barium sulfate is of very low toxicity in aquatic and terrestrial soils and sediments.

I have calculated a barium sulfate soil screening value for delineating AOIs at this site, because screening values for barium sulfate are not available from USEPA, LDEQ, and LDNR. The screening value calculated for the site is based on toxicity to invertebrates and plants, which are the ecological receptors that are primarily in direct contact with soils. There is sufficient information in the scientific literature to calculate an invertebrate and plant screening value based on barium sulfate and direct contact with soil, whereas the information in the scientific literature for mammals and birds and this pathway of exposure is limited. Barium sulfate risk to mammals and birds is calculated based on ingestion (including soil ingestion) as the primary route of exposure (USEPA, 1997). Barium soil screening value data and calculations are shown in Appendix F.

5.1.3.1 Literature Review

To calculate the screening value, I performed a literature review and identified seven scientific studies that report invertebrate and/or plant effects associated with barium sulfate in soil. These scientific studies are specific to barium sulfate, rather than other more soluble forms of barium that have different toxicities. The studies identified are shown in Appendix F (Lamb et al., 2103; ESG, 2003; Simini et al., 2002; Kuperman et al., 2007; Kuperman et al., 2002; Honarvar, 1975; and Miller et al., 1980).

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN R. CONNELLY, PH.D. Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

In the seven barium sulfate studies (literature review), there are 19 no observed effects concentrations (NOEC) and 7 lowest observed effects concentrations (LOEC) reported that I used to develop the soil screening value. A NOEC is defined as the highest tested concentration in a laboratory or field toxicity test at which no statistically or biologically significant adverse effects are observed. A LOEC is the lowest value at which an adverse effect is observed. NOECs and LOECs for the health effects of reproduction, growth, and survival in plants and invertebrates were included in developing the screening value (USEPA, 1997). The seven studies also report effects concentrations (NOECs and LOECs) that were not used in developing the screening value, however the 19 NOECs and 7 LOECs are the highest or the lowest, respectively, for each health effect studied, making these NOECs and LOECs the most conservative choices for developing the screening value. Both NOECs and LOECs are reported in ecological risk assessment (AOI delineation) is appropriate.

5.1.3.2 Barium Analytical Methods

The studies we evaluated to develop the barium site soil screening value include three types of barium concentrations: 1) "nominal" barium sulfate concentrations, which are the result of intentionally mixing known amounts of barium sulfate and soil in the lab, in order to achieve a specific soil concentration for toxicity testing, 2) "total barium" concentrations, which result from analyzing the amount of barium that can be extracted from a sample using concentrated and heated acid, or from analyzing a sample using a mineralogic analysis, such as XRF, and 3) "barium" concentrations that are the result of acid extraction and analysis similar to the USEPA method 3050/6010 used in LDEQ investigations. Generally, "nominal" or "total barium" are larger concentrations than "barium" concentrations, however, the differences in reported concentrations from these methods are related to the analytical method, rather than the amount of barium in the sample. For the calculation of this soil screening value, "barium" concentrations are used. "Barium" concentration data (as defined here) are the type of data previously used by ERM to develop a sediment barium screening value (ERM, 2019) and are the type of data used by LDEQ (RECAP, 2003). There are sufficient "barium" NOECs and LOECs to calculate a soil barium screening value. All NOEC and LOEC data in the literature review, including all data from "total barium" and "nominal" studies, support that barium sulfate in soil is of very low toxicity to soil invertebrates and to plants.

5.1.3.3 "Nominal" Data: Barium Sulfate Toxicity

To understand the very low toxicity of barium sulfate to soil invertebrates and plants, all NOECs and LOECs ("nominal", "total barium", and "barium") from the literature search were evaluated. In the three studies that report "nominal" barium sulfate concentrations (ESG, 2003; Honavar, 1975; Miller et al., 1980), barium sulfate is shown to be of extremely low toxicity to soil invertebrates, such as insects and earthworms, and the reported no effect to survival (NOEC) value is 1,000,000 mg/kg dw barium sulfate (no effect due to exposure to 100% barium sulfate). For plants, such as clovers, grasses, green beans, and corn, the no effects to growth and survival (NOEC) value is an average of 297,777 mg/kg dw barium sulfate. This represents no effect to plants at higher concentrations than are encountered at the site, or at legacy sites, generally. In summary, invertebrates and plants exposed to large amounts of nominally measured barium sulfate in soil, in a laboratory setting, are not predicted to have adverse effects to growth and survival. "Nominally" measured barium sulfate toxicity data are shown in Tables F-3 and F-4, Appendix F.

5.1.3.4 "Total Barium" Data: Barium Sulfate Toxicity

NOECs and LOECs based on "total barium" concentrations from the literature review demonstrate no effects to growth, reproduction, and survival (invertebrates) in "total barium" concentrations up to 29,200

mg/kg dw barium in soil. The "total barium" no effects average is 10,900 mg/kg dw barium in soil for worms and insects, however this is likely a low estimate for no effects. That is, higher concentrations likely would also cause no effects. For most of these studies, the highest concentrations tested in each experiment (e.g., 10,000 – 29,200 mg/kg dw) did not cause adverse effects. The actual no effects value may be higher, if higher concentrations had been tested.

In some instances, there are "total barium" LOEC values that are lower than NOEC values (Simini et al., 2002; Kuperman et al., 2007). This is due to there being multiple types of tests performed and species used, which results in some variation, but this is not a source of concern. The authors of these specific studies (Simini et al., 2002; Kuperman et al., 2007) reported in their paper that they found barium sulfate to be so non-toxic, including in the LOECs mentioned here, that they elected to shift their study to soluble forms of barium, rather than barium sulfate, and calculated a USEPA toxicity value for soluble barium (which is not the form of barium at the site). In summary, barium sulfate, measured as "total barium" is of very low toxicity, and is supportive of the ultimate barium soil screening value calculated using "barium" NOECs and LOECs. "Total barium" toxicity data are shown in Tables F-5 and F-6, Appendix F.

5.1.3.5 "Barium" Data: Barium Sulfate Toxicity

The barium soil screening value developed for the site was calculated using "barium" NOEC data for invertebrates (earthworms) and plants (ryegrass). These "barium" data used are the result of the same type of analytical methods that we have used previously to develop a barium sediment screening value (2197 mg/kg dw barium in sediment, ERM, 2019). That is, the sediment barium screening value of 2,197 mg/kg dw and the calculated soil screening value (2,424 mg/kg dw) developed for this site are both based on barium data that are the result of similar barium extraction and analysis laboratory methodology.

As explained, barium analytical results vary widely, depending on the extraction method and analytical equipment used, therefore, it is important that the analytical methods used to develop a screening value are similar to the analytical methods used to analyze barium in site soils. For this reason, the "barium" NOECs are used to calculate the site soil screening value, because the "barium" NOEC studies use similar acid digestion and inductively coupled plasma (ICP) analysis (Lamb et al., 2013; ESG, 2003), as used by ERM (3050/6010) to analyze site data, in accordance with RECAP requirements. Therefore, the "barium" NOECs are the most appropriate data for calculating a barium soil screening value.

5.1.3.6 Barium Soil Screening Value: Calculation

There are 3 "barium" invertebrate NOECs and one "barium" plant NOEC identified in the literature review of barium sulfate toxicity in soil. The four NOEC values are similar, which lends confidence to the results: 2033, 3377, 2080, 1910 (all mg/kg dw barium in soil). The three invertebrate NOECs of 2033, 3377, 2080 (mg/kg dw) are for no adverse effects to earthworm growth and survival (Lamb et al., 2013; ESG, 2003), and the plant NOEC of 1,910 mg/kg dw is for no adverse effect to ryegrass growth (ESG, 2003). There is a plant LOEC from Lamb et al. (2013) that is a lower value than the plant NOEC, but it is not included, as this plant study uniformly produced effects at all concentrations, other than the control, indicating interference from other factors. The authors (Lamb et al., 2013) identified that their results are not in agreement with other barium plant studies.

To calculate the barium soil screening value for the site, the three invertebrate NOECs (2033 mg/kg dw, 3377 mg/kg dw, 2080 mg/kg dw) were used to calculate an average (2,493 mg/kg dw), a geometric mean (2,424 mg/kg dw) and a median (2,080 mg/kg dw). These three values were compared to the plant NOEC of 1,910 mg/kg dw, and the invertebrate values were selected for use, based on being similar to the plant value, and based on having more data to support them. The geometric mean value of 2,424 mg/kg dw was selected as the soil screening value, as this represents the most commonly used measure of central tendency for toxicity values (USEPA, 2005a). See Inset Table 5-2 below for calculations.

The value of 2,424 mg/kg dw barium in soil has been used in this ecological risk assessment to delineate preliminary AOIs. Values above 2,424 mg/kg dw do not represent toxicity, but are further evaluated in the ERA.

Data for the barium screening value of 2,424 mg/kg dw are shown on Tables F-1 and F-2 in Appendix F.

Barium Sulfate Invertebrate NOEC	Reference		Barium Sulfate Plant NOEC	Reference
2,033	Lamb et al., 2013		1,910	ESG International, 2003
3,377	Lamb et al., 2013			
2,080	ESG International, 2003			
2,424	Geometric Mean Inverteb	rat	e NOEC	
2,493	Average Invertebrate NOE	С		
2,080	Median Invertebrate NOEC			

Table 5-2: Development of Barium Soil Screening Value

5.2 ERA Step 2

5.2.1 Screening Level Exposure Estimates

The exposure assumptions used in the SLERA are intentionally overprotective. In the SLERA, receptors are assumed to be exposed to the maximum COPEC concentrations detected in soil samples and that the home range of ecological receptors is 100% on the site, rather than elsewhere. All COPECs are assumed to be 100% bioavailable to receptors. The receptor diets are assumed to be 100% comprised of the most contaminated food source. By making these overly protective assumptions, the exposure estimates are skewed towards over-predicting risk in the SLERA. The SLERA evaluation identifies COPECs that require no further investigation and identifies COPECs that should be carried forward into the BERA.

Soil concentrations are reported to depths 78 feet below ground surface (bgs). Per LDEQ RECAP (2003), soil results (0-3 feet bgs) are included in the ERA. For this ERA, maximum soil COPEC concentrations from the 0-4 feet bgs for each area (1, 2, 4, 5, 6, and 8) have been used (Inset Table 5-3), in order to be inclusive of the 0-3' depth. Areas 3, 7, and 9 do not include former Chevron operations and are not assessed in this report. Soil concentrations for all areas (1 through 9) are summarized on Table 4 and are shown on Figures 14 through 31 for reference. See Section 5.1.1.9 for discussion of sampling depth.

Detected soil metal concentrations on site are generally within the range of typical soil concentrations in Louisiana in unimpacted soils (USGS, Smith et al., 2013; Appendix G and Table 4) or are of low solubility and low bioavailability.

Maximum soil concentrations were compared to soil ESVs and background (Inset Table 5-4). The following constituents exceeded soil comparison values:

- Area 2: barium;
- Area 4: barium, lead, and mercury. Maximum lead concentration of 54.5 mg/kg-dry at H-16 (0-2) was not confirmed by the split sample result of 11.2 mg/kg-dry. Maximum mercury concentration of 0.157 mg/kg-dry at H-16 (0-2) is marginally greater than the background comparison value of 0.11 mg/kgdry. Both lead and mercury are within the range of Louisiana background concentrations (Smith et al., 2013; USGS);

- Area 5: barium;
- Area 6: barium, lead, and mercury. Split sample results of lead and mercury at locations of maximum concentrations did not confirm the concentrations, lead at H-28 (0-2) of 14.5 mg/kg-dry (ERM) and 54.2 mg/kg-dry (ICON), and mercury at H-24 (0-2) of 0.32 mg/kg-dry (ERM) and <0.101 mg/kg-dry (ICON). Both lead and mercury are within the range of Louisiana background concentrations (Smith et al., 2013; USGS); and</p>
- Area 8: barium.

Maximum soil concentrations were also compared to sediment TECs and PECs (Inset Table 5-5). Site soil concentrations were below both TEC and PEC, indicating that site soil concentrations are protective of aquatic life and their wildlife predators.

Constituent	Maximum Reported Concentration (mg/kg-dry)	Location (Depth feet bgs)	Sample Date	
Area 1				
Arsenic	3.58	H-25 (0-2)	4/7/2021	
Barium	389	H-26 (0-2)	4/8/2021	
Cadmium	ND	-	-	
Chromium	9.63	H-26 (0-2)	4/8/2021	
Lead	12.6	H-25 (0-2)	4/7/2021	
Mercury	ND	-	-	
Selenium	ND	-	-	
Silver	ND	-	-	
Strontium	21.9	H-26 (0-2)	4/8/2021	
Zinc	13.3	H-26 (0-2)	4/8/2021	
Area 2				
Arsenic	5.89	H-11 (0-2)	11/12/2019	
Barium	2740	H-11 (0-2)	11/12/2019	
Cadmium	ND	-	-	
Chromium	10.1	H-12 (0-2)	11/13/2019	
Lead	32.4	H-11 (0-2)	11/12/2019	
Mercury	ND	-	-	
Selenium	ND	-	-	
Silver	ND	-	-	
Strontium	110	H-11 (0-2)	11/12/2019	
Zinc	121	H-11 (0-2)	11/12/2019	
Area 4				
Arsenic	9.46	H-8 (0-2)	11/5/2019	
Barium	7000	H-8 (0-2)	11/5/2019	
Cadmium	ND	-	-	
Chromium	19.7	H-16 (0-2)	11/20/2019	
Lead	54.5	H-16 (0-2)	11/20/2019	

Table 5-3: Maximum Reported Concentrations

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN R. CONNELLY, PH.D.

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

Constituent	Maximum Reported Concentration (mg/kg-dry)	Location (Depth feet bgs)	Sample Date
Mercury	0.157	H-16 (0-2)	11/20/2019
Selenium	ND	-	-
Silver	ND	-	-
Strontium	148	H-16 (0-2)	11/20/2019
Zinc	98.6	H-16 (0-2)	11/20/2019
Area 5			
Arsenic	7.33	H-18 (0-4)	11/21/2019
Barium	6390	H-18 (0-4)	11/21/2019
Cadmium	ND	-	-
Chromium	24.8	H-18 (0-4)	11/21/2019
Lead	34	H-19 (0-2)	11/22/2019
Mercury	ND	-	-
Selenium	ND	-	-
Silver	ND	-	-
Strontium	124	H-18 (0-4)	11/21/2019
Zinc	30.2	H-18 (0-4)	11/21/2019
Area 6			
Arsenic	3.81	H-28 (0-2)	4/12/2021
Barium	7410	H-24NE (0-2)	1/11/2022
Cadmium	0.538	H-28 (0-2)	4/12/2021
Chromium	63.4	H-28 (0-2)	4/12/2021
Lead	54.2	H-28 (0-2)	4/12/2021
Mercury	0.32	H-24 (0-2)	4/6/2021
Selenium	ND	-	-
Silver	ND	-	-
Strontium	278	H-28 (0-2)	4/12/2021
Zinc	67.4	H-28 (0-2)	4/12/2021
Area 8			
Arsenic	7.65	H-4 (0-2)	11/4/2019
Barium	7290	H-4E2 (0-2)	1/10/2022
Cadmium	ND	-	-
Chromium	12	H-3 (0-2)	10/31/2019
Lead	14.6	H-3 (0-2)	10/31/2019
Mercury	ND	-	-
Selenium	ND	-	-
Silver	ND	-	-
Strontium	39.2	H-4 (0-2)	11/4/2019
Zinc	19.1	H-3 (0-2)	10/31/2019

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

Table 5-4: Soil Screening Values for Estimation of Potential Ecological Risks

	Soil Ecological	Background	Screening	Screening Comparison			
Constituent	Screening Value	USGS	Soil Concentration [Maximum Value]	Soil Screening Exceedance [Y/N]			
Area 1							
Arsenic	18	12 ^a	3.58	N			
Barium	2424	775	389	N			
Cadmium	0.36	0.8	ND	Ν			
Chromium	26	84	9.63	Ν			
Lead	11	44	12.6	Ν			
Mercury	N/S	0.11	ND	Ν			
Selenium	0.52	1.0	ND	Ν			
Silver	4.2	ND	ND	Ν			
Strontium	N/S	203	21.9	Ν			
Zinc	46	140	13.3	Ν			
Area 2							
Arsenic	18	12 ^a	5.89	N			
Barium	2424	775	2740	Y			
Cadmium	0.36	0.8	ND	Ν			
Chromium	26	84	10.1	Ν			
Lead	11	44	32.4	Ν			
Mercury	N/S	0.11	ND	Ν			
Selenium	0.52	1.0	ND	Ν			
Silver	4.2	ND	ND	Ν			
Strontium	N/S	203	110	Ν			
Zinc	46	140	121	Ν			
Area 4							
Arsenic	18	12 ^a	9.46	Ν			
Barium	2424	775	7000	Y			
Cadmium	0.36	0.8	ND	Ν			
Chromium	26	84	19.7	Ν			
Lead	11	44	54.5	Y			
Mercury	N/S	0.11	0.157	Y			
Selenium	0.52	1.0	ND	Ν			
Silver	4.2	ND	ND	Ν			
Strontium	N/S	203	148	Ν			
Zinc	46	140	98.6	Ν			
Area 5							
Arsenic	18	12 ^a	7.33	Ν			
Barium	2424	775	6390	Y			
Cadmium	0.36	0.8	ND	Ν			

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN R. CONNELLY, PH.D. Henning Management 1 | C. v. Chevron U.S.A. Inc. et al. Haves Oil &

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

	Soil Ecological	Background	Screening (Screening Comparison			
Constituent	Screening Value	USGS	Soil Concentration [Maximum Value]	Soil Screening Exceedance [Y/N]			
Chromium	26	84	24.8	Ν			
Lead	11	44	34	Ν			
Mercury	N/S	0.11	ND	Ν			
Selenium	0.52	1.0	ND	Ν			
Silver	4.2	ND	ND	Ν			
Strontium	N/S	203	124	Ν			
Zinc	46	140	30.2	Ν			
Area 6							
Arsenic	18	12 ^a	3.81	Ν			
Barium	2424	775	7410	Y			
Cadmium	0.36	0.8	0.538	Ν			
Chromium	26	84	63.4	Ν			
Lead	11	44	54.2	Y			
Mercury	N/S	0.11	0.32	Y			
Selenium	0.52	1.0	ND	Ν			
Silver	4.2	ND	ND	Ν			
Strontium	N/S	203	278	Y			
Zinc	46	140	67.4	Ν			
Area 8							
Arsenic	18	12 ^a	7.65	Ν			
Barium	2424	775	7290	Y			
Cadmium	0.36	0.8	ND	Ν			
Chromium	26	84	12	Ν			
Lead	11	44	14.6	Ν			
Mercury	N/S	0.11	ND	Ν			
Selenium	0.52	1.0	ND	Ν			
Silver	4.2	ND	ND	Ν			
Strontium	N/S	203	39.2	Ν			
Zinc	46	140	19.1	Ν			

Notes:

Concentrations are in mg/kg-dry.

Soil Ecological Screening Value is the lowest of the USEPA Eco-SSLs.

Background, USGS: Background Data for Louisiana, 95% Upper Tolerance Limit, United States Geological Survey. There are no Eco-SSLs or other reliable ecological screening values for strontium, and strontium is not further assessed.

^a Arsenic value is LDEQ-approved background for Louisiana.

Table 5-5: Sediment Screening Values for Estimation of Potential Ecological Risks

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN R. CONNELLY, PH.D.

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

	ΝΟΑΑ	NOAA	Screening	Screening Comparison			
Constituent	TEC	PEC	Soil Concentration [Maximum Value]	Soil Screening Exceedance [Y/N]			
Area 1							
Arsenic	9.79	33	3.58	Ν			
Barium	N/S	N/S	389	Ν			
Cadmium	0.99	4.98	ND	Ν			
Chromium	43.4	111	9.63	Ν			
Lead	35.8	128	12.6	Ν			
Mercury	0.18	1.06	ND	Ν			
Selenium	N/S	N/S	ND	Ν			
Silver	N/S	N/S	ND	Ν			
Strontium	N/S	N/S	21.9	Ν			
Zinc	121	459	13.3	Ν			
Area 2							
Arsenic	9.79	33	5.89	Ν			
Barium	N/S	N/S	2740	Ν			
Cadmium	0.99	4.98	ND	Ν			
Chromium	43.4	111	10.1	Ν			
Lead	35.8	128	32.4	Ν			
Mercury	0.18	1.06	ND	Ν			
Selenium	N/S	N/S	ND	Ν			
Silver	N/S	N/S	ND	Ν			
Strontium	N/S	N/S	110	Ν			
Zinc	121	459	121	Ν			
Area 4							
Arsenic	9.79	33	9.46	Ν			
Barium	N/S	N/S	7000	Ν			
Cadmium	0.99	4.98	ND	Ν			
Chromium	43.4	111	19.7	Ν			
Lead	35.8	128	54.5	Ν			
Mercury	0.18	1.06	0.157	Ν			
Selenium	N/S	N/S	ND	Ν			
Silver	N/S	N/S	ND	Ν			
Strontium	N/S	N/S	148	Ν			
Zinc	121	459	98.6	Ν			
Area 5							
Arsenic	9.79	33	7.33	N			
Barium	N/S	N/S	6390	Ν			
Cadmium	0.99	4.98	ND	Ν			
Chromium	43.4	111	24.8	Ν			

ECOLOGICAL RISK ASSESSMENT AND EXPERT REPORT OF HELEN R. CONNELLY, PH.D. Henging Management J.J. C. y. Chevron J.J.S.A. Inc., et al., Haves Oil &

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

	ΝΟΑΑ	NOAA	Screening	Comparison	
Constituent	TEC	PEC	Soil Concentration [Maximum Value]	Soil Screening Exceedance [Y/N]	
Lead	35.8	128	34	Ν	
Mercury	0.18	1.06	ND	Ν	
Selenium	N/S	N/S	ND	Ν	
Silver	N/S	N/S	ND	Ν	
Strontium	N/S	N/S	124	Ν	
Zinc	121	459	30.2	Ν	
Area 6					
Arsenic	9.79	33	3.81	Ν	
Barium	N/S	N/S	7410	Ν	
Cadmium	0.99	4.98	0.538	Ν	
Chromium	43.4	111	63.4	Ν	
Lead	35.8	128	54.2	Ν	
Mercury	0.18	1.06	0.32	Ν	
Selenium	N/S	N/S	ND	Ν	
Silver	N/S	N/S	ND	Ν	
Strontium	N/S	N/S	278	Ν	
Zinc	121	459	67.4	Ν	
Area 8					
Arsenic	9.79	33	7.65	Ν	
Barium	N/S	N/S	7290	Ν	
Cadmium	0.99	4.98	ND	Ν	
Chromium	43.4	111	12	Ν	
Lead	35.8	128	14.6	Ν	
Mercury	0.18	1.06	ND	Ν	
Selenium	N/S	N/S	ND	Ν	
Silver	N/S	N/S	ND	Ν	
Strontium	N/S	N/S	39.2	Ν	
Zinc	121	459	19.1	Ν	

Notes:

Concentrations are in mg/kg-dry.

Sediment Ecological Screening Values are the NOAA TEC and NOAA PEC.

5.2.2 Screening Level Risk Calculations

The HQ is used to estimate risk in the SLERA (USEPA, 1997). The HQ is estimated by comparing ESVs to exposure concentrations. The HQ is defined as the estimated environmental concentration (EEC) divided by the ESV:

HQ = EEC / ESV

The EEC is the maximum dry weight concentration detected in soil in mg COPEC/kg soil. The ESV represents the concentration below which no risk is predicted. For HQ values that exceed 1.0, the

potential for adverse effects to a receptor cannot immediately be ruled out. For HQs equal to or less than 1.0, the potential for risks due to that COPEC can be considered minor and are dropped from further consideration. An HQ >1.0 does not mean that unacceptable ecological risks exist or that any remediation is needed, only that further analyses, such as a site-specific BERA, are needed.

The screening level HQs calculated by comparison of maximum soil concentrations to screening values are presented in Inset Table 5-6. At this level of the screening assessment, 3 metals in soil have HQ values greater than 1.0, and are carried forward into the BERA: barium, lead, and mercury.

Table 5-6: COPEC Screening Hazard Quotients using Maximum Soil	
Concentrations	

Constituent	Soil Concentration [Maximum Value] (mg/kg dry)	Location (depth feet bgs)	Lowest Ecological Screening Value (mg/kg dry)	Screening Hazard Quotient (HQ) [Based on Lowest ESV]	
Area 2					
Barium	2740	H-11 (0-2)	2424	1.1	
Area 4					
Barium	7000	H-8 (0-2)	2424	2.9	
Lead	54.5	H-16 (0-2)	11	5	
Mercury	0.157	H-16 (0-2)	NA	NA	
Area 5					
Barium	6390	H-18 (0-4)	2424	2.6	
Area 6					
Barium	7410	H-24NE (0-2)	2424	3.1	
Lead	54.2	H-28 (0-2)	11	4.9	
Mercury	0.32	H-24 (0-2)	NA	NA	
Area 8					
Barium	7290	H-4E2 (0-2)	2424	3.0	

Note:

Mercury is retained for BERA due to exceedance of Louisiana soil background (0.11 mg/kg, USGS).

5.2.3 Risk Characterization

Risk characterization combines data for exposures and effects into a statement about risk. If screening values are not exceeded, no risk exists due to COPEC exposures on the site, and if screening values are exceeded, a more detailed and focused site-specific ecological risk analysis can be initiated. The term site-specific refers to data that is collected from the site to characterize the environmental conditions present. Examples of site-specific data collected by ERM for this ERA include soil chemical concentration data, barium speciation data, site vegetation species counts, root zone studies, ecosystem services assessments, and recorded observations of site wildlife. These site-specific data support the conclusions made in the BERA.

An important part of risk characterization is based on COPEC bioavailability. Factors controlling bioavailability of COPECs in soils are discussed in the following sections.

5.2.3.1 Metals

Uptake of metals from soils to plants and animals is limited by natural soil components that bind metals and limit metal solubility and availability. Metal bioavailability at the site is limited because metals preferentially remain adsorbed to the organic carbon and iron and manganese oxides that are naturally present in silt and loam soils of the region. Metals that are bound to soils are unavailable for uptake and absorption by plants and animals, and are therefore of limited toxicity (Langmuir, 1997; Lytle, 1968; Stumm, 1996; USDA, 1988; USDA, 2003; Zhong, 2014; USEPA, 2007a; USDOD, 2003).

Lead and mercury in site soils have been measured by SPLP analysis to be very low concentrations (Table 4), which is an important line of evidence for low toxicity of site soils. SPLP analysis was performed on the soil resample at the highest lead concentration (H-16, 0-2') and highest mercury concentration (H-24, 0-2') to determine if lead and mercury compounds present are available for uptake. SPLP analysis involves mixing and agitating site soil with water over an 18-hour period. After 18 hours, the water will contain any metals that can solubilize from the soil. The SPLP analysis resulted in a very low lead concentration of 0.0147 mg/L (resample of H-16 (0-2')) and no detected concentration of mercury (resample of H-24 (0-2')). Because only the soluble metals in soils are assumed to be available to ecological species, the low and non-detect SPLP metal results support the lack of bioavailability and toxicity of site metals in soils.

A discussion of metals bioavailability for arsenic, barium, lead, and mercury (metals in the BERA) follows in the next few paragraphs.

Barium

Barium concentrations measured in site soils are 36.6 - 7,410 mg/kg-dry, 0-3'. A discussion of barium in soils and ecotoxicity is presented in this section.

Barium speciation in other areas of E&P activities throughout Louisiana has demonstrated that the soil barium compound associated with oil and gas E&P operations is barium sulfate (barite), which is of low toxicity and of low bioavailability. Based on this experience, and laboratory analysis of barium compounds in site soils at resample locations of H-8 (H-8R 0-2') and H-28 (H-28R 0-2') by X-Ray Diffraction (XRD) and energy dispersive x-ray spectrometry (EDX) performed by Core Mineralogy, Inc. (see Appendix J of the ERM Expert Report (2022; Angle/Levert/Purdom)), barium in site soils is documented to be barium sulfate (barite), and is evaluated in this ERA based on the toxicity of barite.

The presence of elevated barium sulfate/barite in soils in locations of E&P operations is due to the fact that barium sulfate/barite can be a product of produced waters and/or a component of the drilling muds that are used in E&P operations. Barite is very poorly soluble in water and is of very low toxicity to mammals, birds, soil invertebrates, aquatic invertebrates, and plants (Khangarot and Das, 2009; Boyd and Abel, 1966; Brown and Brown, 2014; Silverman and Tell, 2010; Kubiak and Forbes, 2012). Barium sulfate is of low bioavailability in soil (Engdahl et al., 2008; Cappuyns, 2018; USGS, 2002; Environment International Ltd., 2010; Kuperman et al., 2006). LDEQ (2003) recognizes the differences in toxicity between barium sulfate and other forms of barium (RECAP, pg. 82). Therefore, analysis beyond the screening level in this ERA incorporates the laboratory demonstration that barium is in a form of limited toxicity (barium sulfate).

Areas on site with elevated barium were selected for vegetation observations, as a "worst case" scenario investigation, in order to assess if there are impacts due to barium. The 7 vegetation and wildlife survey locations on site, with elevated barium concentrations (area of former operations), are supporting expected vegetation and are providing habitat for wildlife, per our observations (see Table 5-7 below and Figure 5A). These areas where barium was measured include various habitats such as fallow rice fields, swamps, and other treed and wetland areas. Barium is the primary COPEC in these areas, and other site

COPECs are similar in concentration to unimpacted soils throughout Louisiana. Therefore, as barium is the primary COPEC of concern in locations of elevated barium, it is apparent that barium has not adversely affected vegetative diversity and composition. The barium concentrations in the vegetation survey locations range from 1270 – 7080 mg/kg dw barium.

The vegetative species counts at site survey locations (13-38) are similar to those documented at Bayou Lacassine (an area of no E&P operations) just east of the site (30 species). Vegetative species counts are not related to barium concentrations (see Table 5-7 below), and elevated barium is not correlated to reduced vegetative diversity or affected community structure. For example, trees make up 12 - 20% of the vegetative communities at site locations with elevated barium, which is similar to reference locations at Lacassine Bayou and the NWR (10 - 31% trees). There is no reduction in plant species diversity at locations of maximum barium concentration. For example, at location H-28 (barium concentration of 7, 080 mg/kg dw) there are 25 vegetative species, of which 20% are trees, which compares favorably to reference areas with 30-56 species, 10-31\% trees. The NWR reference locations have higher vegetation species counts (39-56) than site locations, as they were not assessed as 30' radius circle areas, as the site locations were, but as observations made over a linear distance of more than a mile.

Evidence of wildlife at site locations with elevated barium also supports the lack of impact due to barium. Birds of prey such as the Red-shouldered Hawk (*Buteo lineatus*), American Kestrel (*Falco sparverius*), Peregrine Falcon (*Falco peregrinus*), and Red-tailed Hawk (*Buteo jamaicensis*), were observed at 6 of the 7 site locations of maximum barium concentration (1,270 – 7,080 mg/kg dw barium), which indicates that small animals, mammals, and other birds are available for these avian predators with high calorie diets, and barium is not inhibiting the presence and survival of avian predators and prey.

In summary, there is no evidence that barium is impacting vegetation or wildlife at the site, even in areas of elevated concentrations. Table 5-7 below presents soil barium concentrations and associated biota data.

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al., Hayes Oil & Gas Field, Calcasieu and Jefferson Davis Parish, Louisiana

Vegetation Sample Location ^{1,2}	Maximum Barium Concentration (mg/kg dw)	Habitat Type	Species Count	% Trees	Birds of Prey Observed
Bayou Lacassine	NA	Bayou/BLH	30	31%	Red-shouldered Hawk (<i>Buteo lineatus</i>)
					Peregrine Falcon (<i>Falco peregrinus</i>)
Unit A	NA	Moist soil*	39	10%	
Unit B	NA	Moist soil*, cropland, emergent marsh	56	18%	Red-tailed Hawk (Buteo jamaicensis)
H-15 (7-L)	1,270	Scrub- shrub	13	15%	Red-tailed Hawk (Buteo jamaicensis)
H-11 (12- A)	2,740	Emergent wetland	36	14%	Red-shouldered Hawk (Buteo lineatus)
H-24 (5-B)	4,180	Scrub- shrub	37	14%	
H-16 (7-A)	4,390	Scrub- shrub	15	13%	Red-shouldered Hawk (<i>Buteo lineatus</i>) Red-tailed Hawk <i>(Buteo jamaicensis)</i>
H-4 (1-A)	4,540	Fallow rice field	38	0%	American Kestrel (<i>Falco sparverius</i>) Peregrine Falcon (<i>Falco peregrinus</i>),
H-8	7,000	Scrub- shrub	17	12%	Red-shouldered Hawk (Buteo lineatus)
H-28 (5-A)	7,080	Forested wetland**	25	20%	Red-shouldered Hawk (Buteo lineatus)

Table 5-7: Biota at Locations of Maximum Soil Barium

Notes:

1. The vegetation at the Bayou Lacassine, H-15, H-11, H-24, H-16, H-4, H-8, H-28was documented for each location within a circle of 30' radius (see Figure 5A).

2. The vegetation in Unit A and Unit B was documented along a linear distance of approximately one mile (see Figure 5B) at Lacassine National Wildlife Refuge.

*Vegetation is managed to encourage annual plant production (USFWS, 2011).

**Chinese tallow swamp.

BLH = Bottomland hardwood forest; forested wetland

Lead

Lead concentrations in site soils (6.86 – 54.5 mg/kg-dry) are similar to soils throughout Louisiana in unimpacted soils (5-91 mg/kg-dry, Smith et al., 2013). SPLP analysis in sample H-16R 0-2 (resample of the maximum lead concentration) demonstrates that lead compounds are very poorly soluble, as total lead was detected in the SPLP leachate water at low concentration (0.0147 mg/L). Therefore, due to demonstrated low solubility and low bioavailability, lead is not predicted to be a source of ecotoxicity at the site.

Mercury

Mercury in site soils are low in concentration or non-detect (ND-0.32 mg/kg-dry), which is similar to unimpacted soils throughout Louisiana (ND-6.24 mg/kg-dry, Smith et al., 2013). Mercury was not detected in the SPLP analysis (Hg SPLP < 0.0002) at location H-24R (0-2'), which is a resample of the location of maximum mercury measured in soil at 0.32 mg/kg-dry. Therefore, due to demonstrated low solubility and low bioavailability, mercury is not predicted to be a source of ecotoxicity at the site.

5.2.3.2 Total Petroleum Hydrocarbons

TPH concentrations in site soils are below levels of ecological concern, per review of the scientific literature, and do not present ecological risk at the site. TPH concentrations are not further evaluated beyond the screening level. A discussion of TPH in site soil follows.

Only three soil samples (0-2') were analyzed for TPH fractions, located in Area 5 (Table 4, Figure 32). No samples were analyzed for TPH mixtures (TPH-O or TPH-D) in any of the areas for the 0-3' interval range. Of these three samples, total TPH fractions were non-detect in one sample (H-1R 0-2') and less than 5 mg/kg-dry (sum of aliphatic and aromatic fractions) in the other two samples (H-1E of 4.34 mg/kg-dry and H-1SE of 2.99 mg-kg-dry). Measured site TPH of less than 5 mg/kg-dry is similar to hydrocarbon concentrations in unimpacted soils.

Per literature review, weathered TPH in soils are of low toxicity and have been shown to be non-toxic to birds, mammals, and invertebrates in soil concentrations ranging from 3,000 – 16,000 mg/kg (Pattee and Franson, 1982; Zhou et al., 2019; and Berger et al., 2016). Measured hydrocarbons in surface soils in Area 5 (ND – 4.34 mg/kg-dry) are weathered and degraded and are well below ecological levels of concern for weathered TPH in soil. Additionally, TPH do not have detectable concentrations of aromatic hydrocarbons in the 0-3' interval, which also supports a weathered and non-toxic characterization of site hydrocarbons. The measured concentrations of TPH in site soils are below levels of ecological concern and are not presenting ecological risk to the site ecosystem.

In addition to the measured TPH soil concentrations being below levels of concern, the field evidence of thriving vegetation in the location where TPH was measured supports the absence of adverse effects due to TPH. At location H-1, 38 grasses, forbs, vines, shrubs, and herbaceous species of vegetation were observed, with no denuded areas or vegetation that was not thriving. Wildlife taxa, including ten bird species, were observed. The line of evidence of healthy vegetation in the area where TPH was measured, supports the conclusion of no effects to the ecosystem due to TPH in soil.

Based on low TPH soil concentrations that are below literature values of concern for weathered TPH, as well as thriving vegetation growing throughout the site, TPH are not affecting the ecology of the site and are not further assessed beyond the screening level of assessment.

6. BASELINE ECOLOGICAL RISK ASSESSMENT (BERA)

6.1 ERA Step 3

Based on the results from Step 2 of the USEPA (1997) ERA process, the following COPECs on the site exceed conservative screening values and are further investigated in the BERA: barium, lead, and mercury.

At the conclusion of Step 2, a Scientific Management Decision is made to either proceed to a site-specific BERA or to end the risk assessment at the screening level (USEPA, 1997). Based on the screening results, the Scientific Management Decision at the conclusion of Step 2 is to proceed to a site-specific BERA.

The BERA is a site-specific ecological evaluation based on the chemical forms of constituents present, the concentrations of COPECs, the ecotoxicity of chemical species, and complete exposure pathways. The BERA assesses potential toxicological impacts to ecological populations using indicator or surrogate species.

In the BERA, site-specific data is evaluated. The bioavailability of COPECs is evaluated along with fate and transport, potential for bioconcentration, bioaccumulation, and biomagnification in the food chain. Indicator species are selected to assess ecotoxicity of COPECs. To select appropriate indicator species, trophic level relationships and the physical structure of the habitat are considered. The toxicity endpoints used in this stage of the risk assessment are values based on mortality, reproduction, or growth.

In order to assess toxicity via ingestion exposure in a variety of animal populations, several indicator species are required. The following factors are considered in the species selection process: 1) ecological relevance to site, 2) vulnerability to exposures, 3) sensitivity to toxic effects of COPECs, 4) social and economic importance, 5) protected species status, and 6) availability of species-specific toxicological information.

The following avian and mammalian indicator species were selected for the site-specific BERA: 1) Mourning Dove, 2) Red-winged Blackbird, 3) Common Yellowthroat, 3) Red-tailed Hawk, 4) Swamp Rabbit, 6) Raccoon and 7) Coyote. The following sections discuss the lifestyle of these species.

6.1.1 Mourning Dove (Zenaida macroura)

The Mourning Dove is a widespread partially migratory bird species that is endemic from the Southern Provinces of Canada in North America all the way to southern Central America. However, it is primarily a residential bird species in the lower latitudes of North America and can be found in rural, suburban, and urban landscapes. The Mourning Dove prefers open habitats such as open woodlands and edges between forest and prairie and not deep forested areas.

The Mourning Dove has a typically grayish-blue to grayish-brown body with black-bordered white tips on its wing and tail feathers. Black spots are present on the wing and back feathers with one black spot or streak behind and below the eye. Additionally, the bill of a Mourning Dove is black and their legs and feet are a dull red color. Males (26.5-34 centimeters and 96-170 grams) are larger and slightly more colorful than females (22.5-31 centimeters and 86-156 grams), having a more bluish crown and nape as well as a paler rosier breast.

The Mourning Dove diet consists of 99% seeds from cultivated plants such as sunflowers, corn, wheat, grain sorghum, various millets, buckwheat, barley, and peanuts and wild plants such as grasses, spurges, crotons, goosefoots, saltbushes, ragweeds, pokeweeds, poppies, amaranths, smartweeds, hemp, purslanes, and pines. The Mourning Dove forages almost exclusively on the ground, using its beak to expose seeds found under litter. During the breeding and nesting season, the Mourning Dove will feed in

pairs while late summer through autumn they will feed in larger flocks. The Mourning Dove's home range is extensive between their feeding sites and their nesting sites which can be as much as 1 to 8 kilometers apart.

Due to their adaptability, Mourning Dove nests on the ground, shrubs, trees, and ledges. The average clutch size for a Mourning Dove is two eggs with the fledging season occurring primarily in summer from May through August, although in the southern latitudes can occur year-round. The Mourning Dove's expected lifespan is about 1 year for adult birds (The Cornell Lab of Ornithology, 2020).

The Mourning Dove was observed at the site.

6.1.2 Red-winged Blackbird (Agelaius phoeniceus)

The Red-winged Blackbird is a widespread species that is observed from southern Alaska and Central Canada down to Costa Rica in Central America. The majority of the United States, including Louisiana, and Central America have year-round residents as well as migratory visitors from northern populations. The predominant habitats of the Red-winged Blackbird include large freshwater marshes and prairies. The Red-winged Blackbird prefers to breed in open wetland (freshwater marsh, saltwater marsh, and rice paddies) and upland (sedge meadows, alfalfa fields and old fields) environments. In contrast, the Red-winged Blackbird prefers to roost in the denser cover of those habitats as well as deciduous thickets, coniferous stands, cane brakes, and sugarcane fields. Often, the Red-winged Blackbird will flock and roost amongst other bird species during the non-breeding season.

The Red-winged Blackbird is sexually dimorphic with the males exhibiting glossy black with red and yellow at the shoulders while the females are brown with dark stripes on undersides. Although similar in size (15-25 centimeters), the male Red-winged Blackbird (45-75 grams) is approximately 50% larger than the female (30-50 grams) with more elaborate plumage for attracting mates.

Red-winged Blackbirds are generalized feeders, consuming a higher proportion of animal matter during breeding season and plants during non-breeding season. Preferred diet items include seeds, corn, rice, dragonflies, damselflies, butterflies, moths, and true flies. However, the red-winged blackbird consumes almost any plant matter and a variety of animal matter such as arachnids, snails, frogs, fledging birds, eggs, carrion, and worms. The primary methods of feeding for the Red-winged Blackbird include foraging on difference substrates such as vegetation, bare ground, floating mats of vegetation, logs and tree trunks as well as gaping to expose insects hiding in vegetation or under rocks. The Red-winged Blackbird will feed during the day and roost at night which can range between 14-80 kilometers between roost site and feeding site.

Breeding season is from early spring to mid-summer. Male Red-winged Blackbirds are territorial and establish defined boundaries that range from 1,625 square meters in marshes and 2,895 square meters in uplands. The majority of foraging and breeding occur within their territories; however, they will forage in loose aggregations outside their territories during the breeding season. The Red-winged Blackbird is polygamous with up to 15 females breeding with one male. Nests are woven using plants materials and located in or near marshland or moist, grassy areas above water level. Average lifespan is 2.14 years in the wild (The Cornell Lab of Ornithology, 2020).

The red-winged blackbird was observed at the site.

6.1.3 Common Yellowthroat (Geothlypis trichas)

The Common Yellowthroat is a widespread migratory warbler songbird species that is endemic to all of North America including Canada as well as Central America. In the lower latitudes of the United States

and Mexico, the Common Yellowthroat is a year-round resident. Common Yellowthroat habitats include wetlands, marshes, prairies, and thickets, with a preference for denser and shrubbier environments.

The Common Yellowthroat has an olive head, wings, and tail with a bright yellow chin, throat, and upperbelly and whitish under-belly. Males will have a black mask on their face that usually begins on the forehead then extends past the eyes to continue partly down the neck. Males and females' length and mass are similar (11-13 centimeters and approximately 10 grams) with the males only being slightly heavier and longer in length.

A Common Yellowthroat's diet consists primarily of spiders and insects such as flies, beetles, ants, termites, bees, wasps, grasshoppers, and various larvae that are present on the ground or in the lower-height vegetation.

Common Yellowthroats exhibit territoriality with territory sizes ranging from 0.2-2.9 hectares, however; this behavior is relaxed during nesting, and fledgling season. During mating season, the Common Yellowthroat are a monogamous species with courtship behavior initiated once the female arrives in the male territory. The average clutch size for a Common Yellowthroat is four to six with up to two broods. There is little data on expected life span for the Common Yellowthroat. The oldest recorded banded bird was approximately 11.5 years old (The Cornell Lab of Ornithology, 2020).

The Common Yellowthroat was observed at the site.

6.1.4 Red-tailed Hawk (Buteo jamaicensis)

The Red-tailed Hawk is a widespread soaring-hawk species that is endemic in the Southern Provinces of Canada and the United States, and year-round residents in southern latitudes of the United States. The primary habitats of the Red-tailed Hawk include woodlands, wetlands, pastures, prairies, and some deserts. The Red-tailed Hawk is able to adapt to rural, suburban, and urban landscapes.

The physical appearance of a Red-tailed Hawk can vary across North America but typically has the brickred color on its tail feathers with variations of brown on its wings, neck, and head, pale underbelly, and yellow legs and feet. Males (46 cm and 1 kilograms) are approximately 20% larger than females.

The Red-tailed Hawk is carnivorous and will hunt for small- to medium-sized prey in open fields, forest edges, and most open areas. The preferred hunting method of a Red-tailed Hawk is to start from an elevated perch location usually near woodland edges to pursue prey such as mice, shrews, voles, rabbits, squirrels as well as birds, lizards, snakes, and large insects.

Breeding hawks select wooded or semi-wooded areas where they can build their nests close to tree tops or, if trees are scarce, then high up on rock pinnacles, ledges or even man-made structures. The Red-tailed Hawk is territorial year-round where its home range can be few hundred to 1,500 hectares. Red-tailed Hawks breed once per year during mid-February to mid-May with a clutch size of one to three eggs. The Red-tailed Hawk reaches sexual maturity at two years of age and has a life span up to 18 years (USEPA, 1993).

The Red-Tailed Hawk was observed at the site.

6.1.5 Swamp Rabbit (Sylvilagus aquaticus)

Swamp rabbits, also known as cane-cutters, are found in marshy lowlands along the Gulf coast from South Carolina to Texas.

Swamp rabbits often feed at dusk, eating emergent aquatic vegetation and succulent herbaceous vegetation, such as grasses, sedges, and cane. Swamp rabbits breed year round on the Gulf coast and nests are often constructed underneath brush or fences (Wilson and Ruff, 1999).

Swamp rabbits are hunted in Louisiana. Specific population surveys are not conducted for either rabbit species native to Louisiana; however, the Louisiana Department of Wildlife's Louisiana Big and Small Game Harvest Survey for 2019-2020 reported that 12,300 rabbit hunters harvested 71,800 rabbits (LDWF, 2020b).

The Swamp Rabbit was observed at the site.

6.1.6 Raccoon (Procyon lotor)

Raccoons are nocturnal omnivores found throughout North America. They have a black mask appearance across their eyes, a pointed snout, and a bushy ringed tail. Raccoons can be grey, reddish brown, or beige. Their front paws look like human hands and they are dexterous in using their paws to collect and manipulate food. Raccoons can eat insects, eggs, small mammals, fruit, berries, seeds, frogs, crayfish, fish, and mollusks. However, they adapt to the available diet. Raccoons often rinse their food in water prior to eating.

Raccoons weigh about six to seven kilograms (about 6-15 pounds) depending on food availability, with males being generally larger than females. Raccoon body length ranges from ~600 to 950 mm (two to three feet, including tail). Their front legs are shorter than their hind legs, producing a hunched appearance when walking or running. Raccoons can swim and climb. They prefer forested habitat near water, but adapt to many habitats. The lifespan of raccoons in the wild is approximately two to five years (Chow et al., 2005; Goldman, 1950; Hamilton, 1936; Schuttler et al., 2015).

The Raccoon was observed at the site.

6.1.7 Coyote (Canis latrans)

The Coyote is a widespread and extremely adaptable species that is found as far north as Canada, the entire United States, and as far south as Panama in Central America. The primary habitats of the Coyote include forests, grasslands, deserts, and swamps as well as able to adapt to agricultural, suburban, and urban landscapes.

The Coyote has a grayish brown to a yellowish gray upper coat and a whitish under-belly and throat with reddish brown forelegs, muzzle, and feet. Coyotes usually have black-tipped guard hairs on its back, a black nose, and a bottle-shaped tail with a black tip. Males are larger than females with an average mass of 7-21 kilograms and 75-100 centimeters long.

A Coyote's diet mainly consists of small mammals such as rabbits, squirrels, and mice. Additionally, their versatility enables them to feed on birds, snakes, large insects, and carrion as well. During the fall and winter months, the Coyote is known to get a significant portion of its diet from fruits and vegetables such as leaves of balsam fir and white cedar, sarsaparilla, strawberry, and apple. Coyotes are nocturnal predators that can hunt individually or form hunting partnerships to hunt prey such as deer and can travel as much as 4 kilometers during a night's hunt.

Coyotes breed typically once a year from January to March with gestation lasting 60 to 63 days. Litter size ranges from 1 to 19 pups (average is 6 pups). Pups are born and remain in a den until approximately 28 days after birth for protection from predators and competitors. Coyotes will often enlarge burrows from other animals to make their den. The adults will hunt and defend their territory up to 19 kilometers in diameter along fixed routes and trails. Coyotes become adults and sexually mature at 12 months of age with an average lifespan in the wild of 14.5 years.

The Coyote was observed at the site.

6.2 ERA Step 4

6.2.1 Work Plan and Sampling Plan

For assessing wildlife receptor exposures, available soil concentration data and vegetation and wildlife survey data (ERM, 2021, 2022; ICON, 2019, 2021, 2022) for the site were used. Chemical exposure point concentrations were estimated; chemical environmental fate and transport mechanisms were determined; potentially exposed populations were identified; and ingestion exposure routes were identified.

Under RECAP, an area of investigation (AOI) can be used to evaluate exposure to ecological species in the exposure assessment. Preliminary AOIs for ERA purposes were developed to accurately estimate and evaluate ecological exposures (e.g. through concentration averaging) across a distinct relevant exposure area having similar habitat. Barium is the most widely distributed COPEC at the Site. As such, preliminary AOIs for Areas 4, 5, 6, and 8 were developed and delineated based on the barium screening value of 2424 mg/kg dry weight. Figures 33 through 37 show the preliminary AOIs and delineation boundaries for Areas 2, 4, 5, 6, and 8. There are 2 preliminary AOIs each for Areas 2 and 4, and one preliminary AOI each for Areas 5, 6, and 8.

Preliminary AOIs were not developed for Areas 1, 2, 7, and 9. Concentrations in Areas 1 and 2 are less than ecological screening values and soil background, and not evaluated further. Areas 7 and 9 do not include former Chevron operations, and therefore are not assessed in this report.

For a site-specific BERA, exposure estimates can be based on the 95% UCL of the arithmetic mean of concentrations or average concentrations (USEPA 1997; LDEQ 2003). For this BERA, the 95% UCL of the arithmetic mean was used to estimate the exposure concentration for each COPEC (where sufficient data points are available), and the average concentration was also calculated for comparison and reference (Appendix H). Exposure estimates used in the site-specific BERA are presented below and the maximum value is also shown for each COPEC for comparison (Inset Table 6-1).

Prelim AOI	Constituent	95% Upper Confidence Limit (UCL) Concentration	Average Concentration	Maximum Concentration
Area 2 1	Barium	NA	NA	2740
Area 2 2	Barium	NA	1493	2670
	Barium	3437	2537	7000
Area 4 1	Lead	NA	27.2	54.5
	Mercury	NA	0.12	0.157
Area 4 2	Barium	NA	2176	3130
Area 5	Barium	4425	3084	6390
	Barium	4597	3785	7410
Area 6	Lead	NA	29.4	54.2
	Mercury	NA	0.123	0.32
Area 8	Barium	4699	3767	7290

Table 6-1: Soil Exposure Point Concentrations for Preliminary Ecological AOI

Note:

Concentrations are in mg/kg-dry.

6.2.2 *Measurement Endpoints*

Measurement endpoints for the BERA are Toxicity Reference Values (TRVs). TRVs are estimated to be safe doses for the wildlife being assessed. TRVs are generally based on studies that use the most toxic form of the element being assessed. Therefore, the BERA is a conservative evaluation, due to the fact that the metal compounds present in high moisture, high organic south Louisiana settings are generally less toxic than the metal compounds that the TRVs are based on (Table 5). TRVs are based are mortality, growth, and reproduction effects (USEPA, 2007a).

6.2.3 Study Design

The BERA uses more realistic input values and assumptions than are used in the SLERA. The following sections describe some of the assumptions used in the BERA, as compared to the SLERA.

Bioavailability and Bioaccumulation: Bioavailability of soil contaminants is assumed to be 100 percent in the SLERA. In the BERA, more accurate bioavailability has been estimated from a review of the scientific literature (Table 6 and Table 7).

Dietary composition: In the SLERA, the assumption is made that a species' diet is entirely comprised of the most contaminated food type available. In the BERA, the diet composition of the receptor is based on scientific research and specifically, the diet composition of animals native to Louisiana is used when that information is available (Table 8).

Area-use factor: The assumption used for home range in the SLERA is that an animal's home range is only in the area of contaminated soil and that the animal spends 100 percent of its time in the contaminated area. The area use factor in the BERA more accurately represents the actual percentage of an animal's home range that may be affected and the percentage of time that the receptor would spend in the contaminated area, by incorporating home range and time estimates in the calculations (Table 9).

Life stage: The SLERA uses toxicity data from the most sensitive life stage of the receptor population. For example, if an animal is the most sensitive to a toxin in its juvenile stage of life, then data from the juvenile life stage is used for the SLERA. In the BERA, data from an average receptor age is used to estimate risk. It is an overestimation of risk to assume that the entire population at the site is at the most sensitive life stage.

Body weight and food ingestion rates: The BERA uses the body weights and food ingestion rates from the primary scientific literature to accurately estimate risk at the site. Body weights from studies of Louisiana animals are used when available (Table 8).

Toxicity Values: For the SLERA, toxicity is estimated for entire classifications of receptors (example: vertebrates, invertebrates) by comparing soil concentrations to screening values that are calculated to be over-inclusive. The screening values are designed to "not miss" the possibility of risk being present. For the BERA, TRVs are used for calculating risk. TRVs are species specific, and are used to calculate a more accurate risk estimate for a representative receptor population.

6.2.4 Data Quality Objectives

Data Quality Objectives are important to the acquisition of reliable data for quantitative risk assessment. Risk-based decisions must be based on data of known quality which meet LDEQ RECAP and USEPA requirements. The data for this risk assessment were determined to be usable for risk assessment.

The soil data collected and discussed in this report were collected by ERM (2021, 2022), and ICON (2019, 2021, 2022). The chemical analyses of metals, and TPH fractions in soil were performed by Element Materials Technology Lafayette (Element) in Lafayette, Louisiana, Pace Analytical Gulf Coast (Pace) in Baton Rouge, Louisiana, and Waypoint Analytical Louisiana, Inc. (Waypoint) in Marrero,

Louisiana. Element, Pace, and Waypoint are LDEQ LELAP certified laboratories. All qualified data have been included in this risk assessment. The metals data were generated using USEPA SW-846 methods, while TPH fraction data were generated using TPH MADEP VPH and TPH MADEP EPH methods. ERM's metals and TPH fraction data meet the definition of definitive data per RECAP guidelines. Samples were appropriately collected and identified in the field by sample identification number, and date and time of collection. Sample quantitation limits were reviewed and found to be acceptable for ERA.

6.3 ERA Step 5

6.3.1 Field Sampling Plan Verification

In Step 5, efforts are made to determine that the field sampling plan is appropriate for site conditions. That is, the sampling methods and equipment planned should be effective for the media and populations on the site. Past experience with working in similar Louisiana habitats was used to determine the sampling efforts needed.

6.4 ERA Step 6

6.4.1 Analysis of Ecological Exposures and Effects

A review of the available sampling data (ERM, 2021, 2022; ICON, 2019, 2021, 2022) identified that sufficient data are available to estimate ecological risk at the site. Site-specific data from this step replace assumptions made during the screening-level analysis in Steps 1 and 2.

6.5 ERA Step 7

6.5.1 Risk Estimation and Characterization

Risk Characterization includes two major steps: risk estimation and risk description. In the risk estimation step of the BERA, risk is estimated and the uncertainties associated with risk assessment methods are evaluated. All input assumptions to the risk estimate are documented.

Potential exposures and ecological effects were evaluated for COPECs and receptors at the site. The equation used for calculating potential risk (HQs) for COPECs in the site-specific BERA for the site is as follows (USEPA 2005a):

 $\frac{\left(\left[\text{Soil x Ps x FIR x AFas}\right] + \left[\sum_{i}^{N}\text{Bi x Pi x FIR x AFai}\right]\right) \text{x AUF}}{\text{TRV}} = \text{HQ}$

HQ	=	Hazard Quotient for analyte/COPEC (unitless)
Soil	=	Concentration of analyte/COPEC in soil (mg/kg dry weight)
Ν	=	Number of different biota types in diet (food types)
Bi	=	Analyte/COPEC in biota type (i) (mg/kg dry weight)
Pi	=	Proportion of biota type (i) in diet
FIR	=	Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
AF_{ai}	=	Absorbed fraction of analyte/COPEC from biota type (i)
AF_{as}	=	Absorbed fraction of analyte/COPEC from soil (s)
TRV	=	Toxicity Reference Value, based on estimated no adverse effect dose (mg/kg BW/day)
		for the surrogate species
Ps	=	Soil ingestion as a proportion of diet
AUF	=	Area use factor (spatial factor, SF x temporal factor, TF)

Appendices I and J include all of the HQ calculations, analyses, and input values used to calculate risk estimates.

A summary of the results of the risk assessment and a discussion of uncertainties is included in Sections 5.6 and 5.7.

6.6 ERA Step 8

6.6.1 Risk Management Decision

Results of the BERA are provided in summary form for the ecological preliminary AOIs (Inset Table 6-2). The results of this BERA can be used to support decisions regarding any remediation needed for the ecological preliminary AOIs. The damage caused by any remedy must be considered and weighed against the need for that remedy (USEPA, 1997).

Table 6-2: Results (Hazard Quotients) for Preliminary Ecological AOI

			Soi	I Hazard Quotier	its (HQs)			
Prelim			Avian Rece	otor Species		Mam	malian Receptor	Species
AOI	COPEC	Mourning Dove	Red-winged Blackbird	Common Yellowthroat	Red-tailed Hawk	Swamp Rabbit	Raccoon	Coyote
95% UCL a	s Exposure	Concentration		_			_	_
Area 4 1	Barium	0.000000488	0.0117	0.0122	0.0000394	0.0000171	0.000000457	0.0000000464
Area 5	Barium	0.000000630	0.0150	0.0157	0.00000510	0.0000220	0.00000586	0.0000000598
Area 6	Barium	0.000000654	0.0156	0.0163	0.00000527	0.0000228	0.000000610	0.0000000621
Area 8	Barium	0.00000228	0.0159	0.0321	0.0000186	0.0000809	0.00000208	0.0000000220
Average Co	ncentration	as Exposure Conce	entration					
Area 2 2	Barium	0.0000000179	0.00101	0.000439	0.000000142	0.00000643	0.000000162	0.00000000166
Area 4 1	Barium	0.00000036	0.00861	0.00900	0.00000291	0.0000126	0.00000336	0.0000000343
Area 4 1	Lead	0.00000123	0.116	0.105	0.0000237	0.00134	0.0000152	0.000000818
Area 4 1	Mercury	0.000000184	0.00165	0.00146	0.000000296	0.000188	0.00000172	0.0000000127
Area 4 2	Barium	0.0000000260	0.00147	0.000639	0.00000207	0.00000936	0.000000236	0.00000000242
Area 5	Barium	0.0000000440	0.0105	0.0109	0.00000354	0.0000153	0.000000409	0.0000000417
Area 6	Barium	0.000000539	0.0129	0.0134	0.00000434	0.0000188	0.000000502	0.0000000512
Area 6	Lead	0.00000133	0.125	0.112	0.0000256	0.00145	0.0000164	0.000000885
Area 6	Mercury	0.000000189	0.00168	0.00150	0.000000303	0.000192	0.00000176	0.0000000131
Area 8	Barium	0.000000183	0.0128	0.0257	0.0000149	0.0000648	0.00000167	0.000000177
Maximum C	oncentration	n as Exposure Cond	centration					
Area 2 1	Barium	0.0000000327	0.00186	0.000804	0.00000260	0.00000118	0.000000297	0.00000000305
Area 2 2	Barium	0.0000000319	0.00181	0.000783	0.00000254	0.00000115	0.000000290	0.00000000297
Area 4 1	Barium	0.000000996	0.0238	0.0249	0.0000804	0.0000348	0.000000927	0.0000000945
Area 4 1	Lead	0.00000246	0.232	0.208	0.0000475	0.00269	0.0000304	0.000000164
Area 4 1	Mercury	0.000000241	0.00216	0.00192	0.000000387	0.000246	0.00000224	0.00000002
Area 4 2	Barium	0.0000000375	0.00213	0.000918	0.00000298	0.00000135	0.000000340	0.00000000348
Area 5	Barium	0.000000910	0.0217	0.0227	0.00000733	0.0000317	0.00000848	0.0000000863
Area 6	Barium	0.000000105	0.0251	0.0263	0.00000850	0.0000368	0.000000983	0.0000000100
Area 6	Lead	0.00000245	0.230	0.207	0.0000472	0.00267	0.0000303	0.000000163
Area 6	Mercury	0.0000000491	0.00439	0.00390	0.000000788	0.000499	0.00000457	0.0000000340
Area 8	Barium	0.00000353	0.0248	0.0498	0.0000289	0.000126	0.00000323	0.000000342
		1		1		1	1	1

Note:

The appropriate exposure concentration for a BERA is the 95% UCL of the arithmetic mean of concentrations or average concentrations (USEPA 1997; LDEQ 2003). The maximum concentration is a hypothetical exposure concentration and shown for completeness.

The calculated HQs, based on 95% UCL and average exposure concentrations in soil, are low for all receptors, and all HQs are less than 1.0. Therefore, based on the multiple lines of field evidence demonstrating expected biological diversity for the region, and low HQ values, there is currently no risk identified and no potential for risk to the ecological receptors on the site. There is no need for remediation

15 March 2022 Page 47

or for further investigation. See Appendix J for HQ calculations using 95% UCL and average exposure concentrations.

In addition to all calculated risk for all receptors being below the benchmark of 1.0, based on 95% UCL and average soil concentrations, all calculated risk values for maximum concentrations in all soils are also below the benchmark of 1.0 (see Appendix J).

No adverse effects to receptors in soil (0-3') are predicted for the site.

6.6.2 Future Land Use

6.6.2.1 Soil

Site soil concentrations are acceptable for future agricultural use, including plant-based farming. Soil concentrations (average and 95% UCL, 0-3') are protective of crop growth, as they do not exceed screening values for plant health (Eco-SSLs), or are of low toxicity to plants (see Appendix F).

The average concentrations of COPECs in soil within the root depth of crops (< 10 inches, Holloway and Ritchie, 2022) are within the range of Louisiana background soil concentrations (Smith et al., 2013), or are of low bioavailability to crops (see Appendix I, Table 1). Therefore, these soils are not associated with adverse effects to humans consuming crops.

Site soils are acceptable for the potential future use of crawfish production. Soil concentrations measured within the typical depth of crawfish ponds (0-3' bgs or less) are not associated with adverse health effects to shellfish such as crawfish or to humans who consume shellfish (Finerty et al., 1990, ERM, 2019).

6.6.2.2 Groundwater

The 31 monitoring wells on Site are installed in the shallow water-bearing zone, classified as Class 3A groundwater based on analysis of slug test results. Monitoring wells were screened in a discontinuous confining unit zone, and multiple wells (MW-7, MW-9, MW-9D, MW-11, H-25, H-26, and H-27) went dry during purging and sampling. The zone is not a viable or desirable water supply for irrigation or other purposes (ERM (Angle/Levert/Purdom), 2022). Deeper groundwater for irrigation is available from the Chicot Aquifer (ERM (Angle/Levert/Purdom), 2022). Therefore, groundwater in the shallow water-bearing zone was not evaluated for hypothetical future use for crop, crawfish, or livestock irrigation.

There are no existing registered drinking or irrigation wells screened in the shallow water-bearing unit on site (ERM (Angle/Levert/Purdom), 2022).

6.7 Uncertainty Evaluation

The uncertainty evaluation is an assessment of the qualitative and quantitative methods used in ERA and the measure of confidence in the risk estimates produced from the ERA. The uncertainty analysis is a required portion of USEPA ecological risk assessment. There are three basic categories of uncertainty: 1) conceptual model uncertainty; 2) natural variation and parameter error; and 3) model error.

Parameter error in general is unavoidable, because all members of a population, all soil present, all habitat features cannot be sampled. If all members of a population could be sampled, the true parameter distribution could be known. However, only a few members of the population can be sampled, leaving uncertainty concerning the true parameter value distribution. We have reduced this uncertainty for soil concentrations by sampling the E&P operational areas, biasing the results towards over estimation of risk.

The uncertainty associated with the conceptual model is related to potentially underestimating the number of routes of exposure. This is counterbalanced by using very conservative screening values to estimate

the toxicity of the routes of exposure that are assessed, so this is judged to be a small source of uncertainty.

The initial constituent list is a source of uncertainty. All chemicals present cannot be measured and analyzed. We have addressed this uncertainty by measuring and analyzing the chemicals that have historically been associated with oil and gas production sites and that are required by the LDNR and LDEQ for E&P sites. Uncertainty can arise from making estimates of toxicity based on limited data. We have limited this uncertainty by using conservative estimates of toxicity from the primary scientific literature. There is uncertainty in chemical monitoring data and in dose models. We have addressed this uncertainty by analyzing data at qualified labs, certified to do the analyses. The uncertainty in the dose model is based on limiting the model to ingestion. There are other forms of exposure, but they are minor compared to ingestion, so this portion of uncertainty is judged to be low.

The uncertainty due to environmental variability, which arises from true heterogeneity in the environment and receptors, will be inherent in any calculation. There is uncertainty that could potentially be reduced by additional study, but in the instance of this assessment, there is no indication, based on the collected data and multiple lines of evidence, that further assessment is required. For this reason, that portion of uncertainty is judged to be low.

The effect of the uncertainties in the BERA results in overestimation of risk.

6.8 Summary and Conclusions

The BERA developed for the site was conducted in accordance with LDEQ (LDEQ 2003) and USEPA (USEPA 1997 and 1998) guidance. ERAs evaluate ecological effects caused by human activities or stressors. The term "stressor" is used here to describe any chemical, physical, or biological entity that can induce adverse effects on individuals, populations, communities, or ecosystems. Thus, the ERA process must be flexible while providing a logical and scientific structure to accommodate a broad array of stressors (USEPA, 1998).

USEPA guidance uses a tiered approach (Figure 6) to determine if site COPECs present an unacceptable risk to ecological receptors. The SLERA focused on potential chemical stressors associated with the site (i.e. in surface soils). The SLERA for the site conservatively estimated potential risks by comparing maximum detected COPEC concentrations to conservatively-derived ecotoxicity screening values. Per USEPA guidance, site-specific information can be developed and used to accomplish more accurate risk assessment. For the site, this was accomplished by proceeding with Steps 3-8 of the USEPA ERA process and production of a BERA that is specific for this site.

The conclusions presented in this ERA are based on: 1) data from investigations conducted in 2021 and 2022 of the wildlife and vegetation, and measurements of COPECs in soils in 2019, 2020, and 2021; 2) site inspections; 3) a SLERA; and 4) a site-specific BERA. The multiple lines of evidence including expected biodiversity in plant and avian populations, functioning terrestrial food chains, hazard quotients below the benchmark of 1.0, and no evidence of damage to wildlife or habitats, demonstrate that there are no unacceptable risks to ecological receptors at the site

The data, analyses, and lines of evidence presented in the site-specific BERA demonstrate that there are no actual or potential ecological risks for the biological populations at the site.

7. RESPONSE TO PLAINTIFFS' CLAIMS OF ECOLOGICAL RISK AND ASSESSMENT OF NEED FOR REMEDIATION

Miller, Gregory W. and W. Prejean. 2021. Expert Report and Restoration Plan for the Landowners, Henning Management, LLC v Chevron USA, Inc et al; Docket No. 73318; 31st JDC; Division "C", Jefferson Davis Parish, LA, Hayes Oil Field, Calcasieu and Jefferson Davis Parish, LA (September 30, 2021).

The ICON report (Miller and Prejean 2020) contains a proposal by Mr. Miller and Mr. Prejean to restore soil to "baseline soil remediation goals", also referred to as "background". Mr. Miller and Mr. Prejean did not perform an ecological risk assessment.

Mr. Miller and Mr. Prejean's proposal to remediate soil based on a potential exceedance of a calculated background value using data from three soil borings is not supported by any data that remediation would benefit ecological species that are currently using the habitat. The calculated background values presented by Mr. Miller and Mr. Prejean are not related to ecological risk and have not been demonstrated to be more protective of ecological populations than the existing soils that are currently on site and supporting wildlife and vegetation. A decision to remediate, following exceedance of a background value, is not part of the USEPA (1997) ecological risk assessment process. If screening levels are exceeded in steps 1 and 2 of an ERA, the decision can be made to further investigate, but the EPA process does not prescribe remediation without risk assessment.

Mr. Miller and Mr. Prejean propose restoration of soil to a maximum depth of approximately 16 feet below ground surface. Removing soils in depths up to 16 feet is not beneficial in a setting that is currently supporting 193 vegetative taxa, 62 non-avian taxa, and 70 species of birds, including 10 birds listed by LDWF as Species of Greatest Conservation Need. The Miller/Prejean planned removal would destroy approximately 16.4 acres of forest, grassland, scrub-shrub habitat, and croplands that currently serve as habitat for birds, mammals, reptiles, fish, invertebrates, and other plants. The Miller/Prejean plan would not protect habitats and biodiversity. The habitats on site are functioning and the removal of 16.4 acres, for no improvement to the setting, is wasteful and imprudent from an ecological perspective.

Mr. Miller and Mr. Prejean suggest residual salt-related impact to plants from the 1941 blowout event, such as killing of crops and vegetation [p.8], and scarring by SN 25340 [p.9] and #2 tank battery and pit north of #6 well, north of #7 well pad [p.9], and on the levee by #2 well [p.10]. These observations are based on case history for Watkins v Gulf Refining Co. (20 So. 2d 273 La. 1944), and review of aerial photographs from 1981 and earlier (over 40 years ago). Based on the site inspection performed in January 2022 by myself and analysis of soil and vegetation data collected by ERM and others, vegetation and crops in the vicinity of Chevron former operational areas are not adversely impacted by salt. Saltscarring and denuded areas were not observed in Chevron former operational areas during my site inspection. To the contrary, vegetation was dense, or in the case of the sampling area 8, as expected based on a fallow rice field. Soil EC in the area of the 1941 event (sampling area 2, 0-4', vicinity of SN 25340) ranges from 0.27 to 1.51 mmhos/cm, with one unconfirmed result of 2.33 mmhos/cm at H-12 0-2' (11/13/2019, ICON). EC in the resample of H-12 within that depth interval were 0.60 and 0.76 mmhos/cm (H-12R, 0-1', 1-2', 11/17/2021, ICON). Soil EC (0-4') in other Chevron former operational areas range from 2 to 2.54 mmhos/cm (Area 1), 0.36 to 2.06 mmhos/cm (Area 4), 0.45 to 2.99 mmhos/cm (Area 5), 0.31 to 1.25 mmhos/cm (Area 6), 0.35 to 0.77 mmhos/cm (Area 8). These EC values are less than 29-B standards for upland (4 mmhos/cm) and wetland (8 mmhos/com) soil and do not indicate evidence of salts in the surface soils.

Based on our site inspection and ERA, the opinions provided by the plaintiffs' experts regarding exposures from legacy operations as well as impacts to the flora and fauna in Chevron former operational

areas on the subject site are not supported by site-specific data. There is no evidence that habitat for populations of any species has been limited on the site by Chevron legacy oil and gas operations.

Walker, Wilson. 2021. Assessment of the Environmental State of Sites Associated with Oil and Gas Activities on the Henning Management, LLC Site, Thornwell Field, Jefferson Davis and Calcasieu Parishes, Louisiana, Henning Management, LLC v Chevron USA, Inc., et al. Docket No. C-733-18, 31st JDC, Jefferson Davis Parish, LA (June 3, 2021).

The Wilson (2021) report includes an inventory of flora and fauna observed during his March 2021 site investigations as well as conclusions regarding the ecological condition of the site. Wilson alleges that oil and gas production activities have impacted and continue to impact the flora and fauna at the site (pg.25, Wilson, 2021). However, the Wilson report does not claim that there are impacts to flora and fauna that are the result of oil and gas operations. Wilson alleges on page 25 of his report that agriculture as a cause of disturbance to the site, limits the ability to associate ecological impacts to E&P operations.

The following discussions address Wilson's claims of impact.

Evaluation of Site Avian Diversity

The Wilson (2021) report concludes that the bird species observed at the site represent a modest portion of the species expected for the region. However, the Wilson evaluation of site bird diversity is not based on an appropriate comparison population.

Wilson compares the list of birds he observed on site from March 24-26, 2021, to birds historically documented in Jefferson Davis Parish and Calcasieu Parish, as provided by the Bird Study Group, an organization of birders based in Shreveport, Louisiana (Bird Study Group, 2021). The parish reference list of birds (Bird Study Group) is not an appropriate comparison as it includes: 1) parish-wide records of bird species that utilize habitats that do not occur on the site, 2) species that occur in different times of the year, and 3) rare species with geographic ranges outside of Louisiana (e.g., not expected to occur), such as the Northern Wheatear (*Oenanthe oenanthe*) (Audubon, 2022b). Therefore, the comparison made of the site to the parish list is not an appropriate reference.

A total of 70 species of birds were observed at the site during ERM (March 2021, January 2022) and CEI (March, 2021) site investigations. In our evaluation of site bird populations, we compare the list of 70 site birds to more accurate representative populations in Management Units A and B of Lacassine NWR. Management Units A and B of the refuge contain habitat that is similar to the site (emergent marsh, croplands, and early successional communities), and therefore more likely to host species similar to the site. Our evaluation of agency lists for Units A and B (USFWS, 2011) and reference area survey data from Units A and B (Mr. Jody Shugart, February 24, 2022) provide a more appropriate reference for birds expected in the region.

Of the 76 bird species associated with croplands, moist soil areas, and unimpounded marsh habitats at the reference area, 33 (42%) were also observed on site (Appendix E-3). Given that bird abundance at these properties is highly dependent on migratory birds (i.e., species richness fluxes throughout the year), and recreational hunting was observed on site during the January 2022 surveys, this is a favorable comparison of species richness. The data support that the birds observed on site represent a significant portion of those expected in similar habitat types in the region.

Evaluation of Site Plant Diversity

The Wilson (2021) report also concludes that the site lacks vegetative diversity. In his report, Wilson states that the low numbers of native plant species are to be expected because most of the subject site was in agricultural production, including fallow fields, during site visits. Wilson's conclusions are based on

his inventory of plants recorded during his March 2021 site investigation, and a comparison of site plant diversity from Noss (2012): "grasslands in the southern U.S. host up to 60 species per square meter" (Wilson Report, page 22). This description of species richness appears to be from Table 3.2 (Noss (2012), with 63 species reported in a square meter in a wooded meadow in Estonia. The geography and habitat in Estonia are not appropriate references for the site.

By contrast, the finding in our study is that plant species diversity at the site is exceptional. When the Wilson plant inventory is combined with ERM's survey data from March 2021 and January 2022, and all species recorded in the Holloway and Ritchie (2022) report, the plant list for the site totals 193 species. This total includes both hydrophytic and non-hydrophytic species from a range of vegetative communities, including freshwater marsh, ponds, bayous, and canals, bottomland forest, croplands, and early successional grassland and scrub-shrub communities. The species observed on site include the majority of species associated with Louisiana Freshwater Marsh and Sweetgum-Water Oak Bottomland Forest Natural communities (LDWF, 2010), and compares favorably to the vegetation data collected at Units A and B of Lacassine NWR by measures of species richness (79% species in common), proportion of hydrophytic and non-hydrophytic species, and vegetative community structure.

Given the mixed land use of the site (e.g., unmanaged successional growth, agriculture, hunting activities), the presence of natural community plant associates, and the similarity of the site vegetation to the Lacassine NWR reference area, the site has exceptional plant diversity by comparison to expected diversity in the region.

8. REFERENCES

- Adair, B.M., Reynolds, K.D., McMurray, S.T., and G.P. Cobb. 2003. Mercury Occurrence in Prothonotary Warblers (Protonotaria citrea) Inhabiting a National Priorities List Site and Reference Areas in Southern Alabama. Archives of Environmental Contamination and Toxicology 44: 265–271.
- Adamcik, R.S., Tood, A.W. and L.B. Keith. 1979. Demographic and dietary responses of red-tailed hawks during a snowshoe hare fluctuation. Can. Field-Nat. 93: 16-27.
- Aldrich, J.W. and A.J. Duvall. 1958. Distribution and migration of races of the mourning dove. Condor. Patuxent Wildlife Research Center. Volume 60. Issue 2: 108-128.
- Andersen, D.E. and O.J. Rongstad. 1989. Home-range estimates of red-tailed hawks based on random and systematic relocations. J. Wildl. Manage. 53: 802-807.
- Angle, D.G., Levert, A., and M.T. Purdom. 2022. Expert Report of David G. Angle, P.G., CGWP, Angela Levert, and Michael T. Purdom, P.G. in the matter: Henning Management LLC v. Chevron USA, Inc. et al. Docket No. 73318 (Div. C) 31st Judicial District Court, Parish of Jefferson Davis, State of Louisiana. Prepared by: Environmental Resources Management, 3838 N. Causeway Blvd. Suite 3000 Metairie, LA 70002. March 4, 2022.
- Audubon. 2022a. Important Bird Areas: Coastal Prairie, Louisiana. Available: https://www.audubon.org/important-bird-areas/coastal-prairie. Accessed March 2022.
- Audubon. 2022b. Guide to North American Birds: Northern Wheatear Oenanthe. Available: https://www.audubon.org/field-guide/bird/northern-wheatear. Accessed March 2022.
- Barbier, E.B. 2013. Valuing ecosystem services for coastal wetland protection and restoration: Progress and challenges. Resources 2: 213-230.
- Bechtel-Jacobs Company. 1998a. Empirical models for the uptake of inorganic chemicals from soil by plants. BJC/OR-133. U.S. Department of Energy, Oak Ridge, TN.
- Bechtel-Jacobs Company. 1998b. Biota-sediment accumulation factors for invertebrates: review and recommendations for the Oak Ridge Reservation. BJC/OR-112. Oak Ridge National Laboratory, Oak Ridge, TN.
- Berger, R.G., Aslund, M.W., Sanders, G., Charlebois, M., Knopper, L.D., and K.E. Bresee. 2016. A multiple lines of evidence approach for the ecological risk assessment of an accidental bitumen release from a steam assisted gravity drainage (SAGD) well in the Athabasca oil sands region. Science of the Total Environment 542: 495-504.
- Beyer, W.N., Connor, E.E., and S. Gerould. 1994. Estimates of soil ingestion by wildlife. Journal of Wildlife Management 58(2): 375-382.
- Beyer, W.N., Pattee, O.H., Sileo, S., Hoffman, D.J., and B.M. Mulhern. 1985. Metal contamination in wildlife living near two zinc smelters. Environmental Pollution (Series A) 38: 63-86.
- Bird Study Group. 2021. Louisiana Birds: Bird Checklists for All 64 LA Parishes. Available: <u>http://www.birdstudygroup.org/pdfs/LA%20Combined%20Parish%20Checklists.pdf</u>. Accessed March 2022.
- BirdLife International. 2022. Central Americas Flyway. Available: <u>http://datazone.birdlife.org/userfiles/file/sowb/flyways/2_Central_Americas_Factsheet.pdf</u>. Accessed March 2022.

- Bond, B.T., Bowman, J.L., Leopold, B.D., Burger, Jr., L.W., Godwin, K.D., and C.M. Class. 2006. Swamp rabbit (Sylvilagus aquaticus) demographics, morphometrics, and reproductive characteristics in Mississippi. Journal of the Mississippi Academy of Sciences 51(2): 123-128.
- Boyd and Abel. 1966. Canad. Med. Ass. J., The Acute Toxicity of Barium Sulfate Administered Intragastrically, Canad. Med. Ass. J.
- Brown, M. and L. Brown. 2014. Lavin's Radiography for Veterinary Technicians E-book, 5th Edition. ISBN 978-1-4557-2280-8.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration. 34 pp.
- Byrne, M. and M. Chamberlain. 2011. Seasonal Space Use and Habitat Selection of Adult Raccoons (Procyon lotor) in a Louisiana Bottomland Hardwood Forest. Am. Midl. Nat. 166:426-434. School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana.
- Cappuyns, V. 2018. Barium (Ba) leaching from soils and certified reference materials. Applied Geochemistry 88: 68-84.
- Carls, M.G. and S.D. Rice. 1984. Toxic Contributions of Specific Drilling Mud Components to Larval Shrimp and Crabs. Marine Environmental Research 12, 45-62.
- Chalmers, A. et al. 2013. Characterization of Mercury Contamination in the Androscoggin River, Coos County, New Hampshire, USGS, USEPA, USDOI
- Chibunda, R.T. 2009. Chronic Toxicity of Mercury (HgCl2) to the Benthic Midge Chironomus riparius. Int. J. Environ. Res., 3(3):455-462
- Chow, T.E., Gaines, K.F., Hodgson, M.E., and M.D. Wilson. 2005. Habitat and exposure modeling for ecological risk assessment: A case study for the raccoon at the Savannah River Site. Ecological Modeling 189: 151 – 167.
- Coastal Environments, Inc. (CEI). 2021. Assessment of the Environmental State of Sites Associated with Oil and Gas Activities on the Henning Management, LLC Site, Thornwell Field, Jefferson Davis and Calcasieu Parishes, Louisiana in the matter of: Henning Management, LLC v Chevron USA, Inc et al; Docket No. 73318; 31st JDC; Division "C", Jefferson Davis Parish, LA, Hayes Oil Field, Calcasieu and Jefferson Davis Parish, LA. Walker B. Wilson. June 3, 2021.
- Craighead, J.J. and F.C. Craighead. 1956. Hawks, owls and wildlife. Harrisburg, PA: The Stackpole Co. and Washington, DC: Wildl. Manage. Inst.
- Czech, H.A. and K.C. Parsons. 2002. Agricultural wetlands and waterbirds: A review. Waterbirds: International Journal of Waterbird Biology 25: 56-65.
- Daigle, J.J., Griffith, G.E., Omernik, J.M., Faulkner, P.L., McCulloh, R.P., Handley, L.R., Smith, L.M., and Chapman, S.S. 2006. Ecoregions of Louisiana. U.S. Geological Survey.
- Davis, A., Sellstone, C., Clough, S., Barrick, R. and B. Yare. 1996. Bioaccumulation of arsenic, chromium and lead in fish: constraints imposed by sediment geochemistry. Applied Geochemistry 11: 409-423.
- Dillon, O.W., Jr. 1958. Food habits of wild ducks in the rice-marsh transition area of Louisiana. Soil Conservation Service, Rosenberg, Texas.

- Engdahl, A., Borgiel, M., and L.G. Omberg. 2008. Oskarshamm and Forsmark Site investigation, Chemical composition of suspended material, sediment and pore water in lakes and sea bays, Swedish Nuclear Fuel and Waste Management Co., P-08-81, 80 pp.
- Environment International Ltd. 2010. Upper Columbia River in-Situ Porewater Assessment Sampling and Quality Assurance Plan, Washington State Attorney General's Office.
- ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Site, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.
- ESG International Inc. 2003. Ecotoxicity evaluation of reference site soils amended with barium sulphate. Technical Appendices for Barite Soil Remediation Guidelines. Alberta Environment and Canadian Association of Petroleum Producers. 2009. Appendix VI: 287-328.
- Falk, M.R. and M.J. Lawrence. 1973. Acute Toxicity of Petrochemical Drilling Fluids Components and Wastes to Fish. Environment Canada, Technical Report Series: CEN T-73-1.
- Feijtel, T.C. 1986. Biogeochemical Cycling of Metals in Barataria Basin (Diagenesis, Mass Balance, Transport, Louisiana). LSU Historical Dissertations and Theses. 4183. January 1986.
- Fernández-Martínez, R., Larios, R., Gomez-Pinilla, I., Gomez-Mancebo, B., Lopez-Andres, S., Loredo, J., Ordonez, A., and I. Rucandio. 2015. Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253–254, 30–38.
- Finerty, M.W., Madden, J.D., Feagley, and R.M. Grodner. 1990. Tissues of Wild and Pond-raised Crayfish in Southern Louisiana, Effect of Environs and Seasonality on Metal Residues. Arch. Environ. Contam. Toxicol. 19: 94-100.
- Fitch, H.S., Swenson, F., and D.F. Tillotson. 1946. Behavior and food habits of the red-tailed hawk. Condor 48: 205-237.
- Foley, C.C. 2015. Wading bird food availability in rice fields and crawfish ponds of the Chenier Plain of southwest Louisiana and southeast Texas. LSU Master's Thesis. 19. Available: <u>https://digitalcommons.lsu.edu/gradschool_theses/19</u>. Accessed March 2022.
- Goldman, E.A. 1950. Raccoons of North and Middle America. Fish and Wildlife Service, U.S. Department of the Interior. North American Fauna 60. 153 pp.
- Gosselink, J.G. 1979. An ecological characterization study of the Chenier Plain Coastal Ecosystem of Louisiana and Texas. Volume 1 Narrative Report. U.S. Fish and Wildlife Service. FWS/OBS-78/9
- Grantham, C.K. and J.P. Sloan. 1975. Toxicity Study Drilling Fluid Chemicals on Aquatic LifeConf.Proc.on Environ.Aspects of Chemical Use in Well-Drilling Operations, Research Triangle Inst., NC. EPA 560/1-75-004. (from ECOTOX)
- Hamilton, Jr., W.J. 1936. The food and breeding habits of the raccoon. The Ohio Journal of Science 36: 131 140.
- Hamilton, M.A., Rode, P.W., Merchant, M.E., and J. Sneddon. 2008. Determination and comparison of heavy metals in selected seafood, water, vegetation and sediments by inductively coupled plasma-optical emission spectrometry from an industrialized and pristine waterway in Southwest Louisiana. Microchemical Journal 88 (2008) 52–55.
- Hamilton, W.J., Jr. 1951. Warm weather foods of the raccoon in New York state. J. Mammal. 32: 341-344.
- Harper, C.A. 2007. Strategies for managing early succession habitat for wildlife. Weed Technology 21:932-937.

- Hettiarachchi, G.M. and G.M. Pierzynski. 2004. Soil lead bioavailability and in situ remediation of leadcontaminated Soils: A Review. Environmental Progress 23: 78-93.
- Holcomb, S.R, Reid, C.S., Seymour, M.A., Lorenz, N.F., Gregory, B.B., Javed, S.M., and K.F. Balkum. 2015. Louisiana Wildlife Action Plan. Louisiana Department of Wildlife and Fisheries. Available: <u>https://www.wlf.louisiana.gov/assets/Resources/Publications/Wildlife_Action_Plans/Wildlife_Action_n_Plan_2015.pdf</u>. Accessed October 2021.
- Holloway, L. and P. Ritchie. 2022. Review of Plant Conditions and Vegetation Root Study on the Henning Management, LLC Site in Jefferson Davis and Calcasieu Parish, Louisiana in the matter: Henning Management LLC v. Chevron USA, Inc. et al. Docket No. 73318 (Div. C) 31st Judicial District Court, Parish of Jefferson Davis, State of Louisiana. Prepared by: Holloway Environmental Services, Inc., 9269 Hwy. 124, Harrisonburg, LA 71340 & Environmental Resources Management, 3838 N. Causeway Blvd. Suite 3000 Metairie, LA 70002. Luther F. Holloway, Ph.D. and Patrick M. Ritchiew, PWS. February 14, 2022.
- Honarvar, S. 1975. Effect of drilling fluid components and mixtures on plants and soils. Utah State University. All Graduate Theses and Dissertations. 3497.
- Hull, S.D., Shaffer, J.A., and L.D., Igl. 2019. The effects of management practices on grassland birds Eastern Meadowlark (*Sturnella magna*), chap. MM of Johnson, D.H., Igl, L.D., Shaffer, J.A., and DeLong, J.P., eds. The effects of management practices on grassland birds: U.S. Geographical Survey Professional Paper 1842, 26 p. <u>https://doi.org/10.3133/pp1842MM</u>
- Hutcheson, D.P., Gray, D.H., Venugopal, B., and T.D. Luckey. 1975. Studies of Nutritional Safety of Some Heavy Metals in Mice. The Journal of Nutrition, Vol 105, no.6.
- ICON. 2021. Expert Report and Restoration Plan for the Landowners Henning Management, LLC v Chevron USA, Inc et al; Docket No. 73318; 31st JDC; Division "C", Jefferson Davis Parish, LA, Hayes Oil Field, Calcasieu and Jefferson Davis Parish, LA. Gregory W. Miller and Wayne Prejean. September 30, 2021.
- Janes, S.W. 1984. Influences of territory composition and interspecific competition on red-tailed hawk reproductive success. Ecology 65: 862-870.
- Johnson, A.S. 1970. Biology of the raccoon (Procyon lotor varius Nelson and Goldman) in Alabama. Alabama Cooperative Wildlife Research Unit; Auburn Univ. Agric. Exp. Stn. Bull. 402.
- Khangarot, B.S. 1991. Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex (Muller). Bull. Environ. Contam. Toxicol.46:906-912. (from ECOTOX)
- Khangarot, B.S. and P.K. Ray. 1989. Investigation of Correlation Between Physicochemical Properties of Metals and Their Toxicity to the Water Flea Daphnia magna Straus. Ecotoxicol. Environ. Saf.18(2): 109-121 (from ECOTOX)
- Khangarot, B.S. and S. Das. 2009. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC(50) values of other test models. J Hazard Mater, 172(2-3):641-9.
- Kubiak, M. and N.A. Forbes. 2012. Short Communications, Fluoroscopic Evaluation of Gastrointestinal Transit Time in African Grey Parrots. 10.1136/vr.100774, Veterinary Record.
- Kuperman, R., Checkai, R., Phillips, C., Simini, M., and J. Speicher. 2002. Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening Levels (ECO-SSL) Using Enchytraeid Reproduction Benchmark Values. U.S. Army Soldier and Biological Chemical Command.

- Kuperman, R., Checkai, R., Simini, M., Phillips, C., Speicher, J., and D. Barclift. 2006. Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Used Reproduction Endpoints for Folsomia candida, Eisenia fetida, and Enchytraeus crypticus. Environmental Toxicology and Chemistry 25: No. 3: 754-762.
- Lamb, D.T., Vitukawalu, P.M., Palanisami, T., Megharaj, M., and R. Naidu. 2013. Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite. Environ. Sci. Technol. 47: 4670-4676.
- Langmuir, D. 1997. Aqueous environmental geochemistry. Upper Saddle River, NJ: Prentice-Hall. 600 pp.
- LDEQ. 2014. Louisiana Water Quality Ecoregions: For Use in Ecologically-Driven Water Quality Standards.
- LDEQ. 2019. Data taken from the LDEQ's Louisiana Environmental Assessment Utility (LEAU) database. https://waterdata.deq.louisiana.gov/
- LDWF. 2010a. "Freshwater Marsh." Natural Communities Fact Sheets. Available: <u>https://www.wlf.louisiana.gov/assets/Resources/Publications/Natural_Communities_Fact_Sheets/</u> <u>Freshwater_Marsh.pdf</u>. Accessed March 2022.
- LDWF. 2010b. "Bottomland Hardwood Forest." Natural Communities Fact Sheets. Available: <u>https://www.wlf.louisiana.gov/assets/Resources/Publications/Natural_Communities_Fact_Sheets/</u> <u>Bottomland_Hardwood_Forest.pdf</u>. Accessed March 2022.
- LDWF. 2010c. "Coastal Prairies." Natural Communities Fact Sheets. Available: <u>https://www.wlf.louisiana.gov/assets/Resources/Publications/Natural_Communities_Fact_Sheets/</u> <u>Coastal_Prairie.pdf</u>. Accessed March 2022.
- LDWF. 2020a. "Louisiana's Animal Species of Greatest Conservation Need (SGCN) Rare, Threatened, and Endangered Animals – 2020." Available: <u>https://www.wlf.louisiana.gov/assets/Conservation/Protecting_Wildlife_Diversity/Files/rare_animal</u> s_tracking_list_2020.pdf. Accessed March 2022.
- LDWF. 2020b. Louisiana Big and Small Game Harvest Survey for 2019-2020. <u>https://www.wlf.louisiana.gov/assets/Resources/Publications/Hunting/Iouisiana_big_and_small_g</u> <u>ame_harvest_survey_2019-2020.pdf</u>. Accessed March 2022.
- LDWF. 2021. Rare, Threatened, and Endangered Ranks and Statuses. Available online: https://www.wlf.louisiana.gov/page/rare-threatened-and-endangered-ranks-and-statuses. Accessed March 2022.
- Louisiana Department of Environmental Quality (LDEQ) Corrective Action Group. 2003. Risk Evaluation and Corrective Action Program (RECAP). 129 pp.
- Louisiana Department of Environmental Quality (LDEQ). 2001. State-specific Background Arsenic Level in Soil: First Accessed online August 2011 via: <u>http://thelensnola.org/wp-</u> content/uploads/2010/02/LDEQ_Arsenic-background-level.pdf
- Louisiana Department of Wildlife and Fisheries (LDWF). 2009. The Natural Communities of Louisiana. Louisiana Natural Heritage Program. Available: <u>https://www.wlf.louisiana.gov/assets/Conservation/Protecting_Wildlife_Diversity/Files/natural_communities_of_louisiana.pdf</u>. Accessed March 2022.
- Luo, W., Verweij, R.A. and C.A.M. van Gestel. 2014. Contribution of soil properties of shooting fields to lead bioavailability and toxicity to Enchytraeus crypticus. Soil Biology & Biochemistry 76: 235-241.

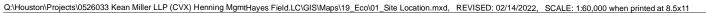
- Lytle, S. 1968. The morphological characteristics and relief relationships of representative soils in Louisiana. LSU AgCenter.
- Macdonald J.M., Shields, J.D., and R.K. Zimmer-Faust. 1988. Acute toxicities of eleven metals to early life-history stages of the yellow crab Cancer anthonyi, Marine Biology 98, 201-207.
- MacRoberts, M., MacRoberts, B., and Jackson, L. 2003. Louisiana Prairies. Chapter 6. Blackland Prairies of the Guld Coastal Plain, Four Existing Prairies. Edited by Evan Peacock and Timothy Schauwecker. University of Alabama Press.
- Menzie, C.A., Southworth, B., Stephenson, G., and N. Feisthauer. 2008. The Importance of Understanding the Chemical Form of a Metal in the Environment: The Case of Barium Sulfate, Human and Ecological Risk Assessment, 14: 974–991.
- Miller, R.W., Honarvar, S., and B. Hunsaker. 1980. Effects of drilling fluids on soils and plants: I. Individual fluid components. Journal of Environmental Quality. Volume 9. Issue 4. 547-552.
- Molino, D. 2021. Rice farms double as bird habitats. Louisiana Farm Bureau News. Available: <u>https://lafarmbureaunews.com/news/2021/11/3/rice-farms-double-as-bird-habitats</u>. Accessed March 2022.
- Nagel, W.O. 1943. How big is a 'coon. Missouri Conservationist 6-7.
- Nagy, K.A. 2001. Food requirements of wild animals: predictive equations for free-living mammals, reptiles, and birds. Nutrition Abstracts and Reviews Series B: Livestock Feeds and Feeding. 71(10): 3R-12R.
- National Research Council. 2003. Bioavailability of Contaminants in Soils and Sediments, Processes, Tools and Applications. Division on Earth and Life Sciences, Water Science and Technology Board, Committee on Bioavailability of Contaminants in Soils and Sediments., Washington, D.C.
- Natural Resources Conservation Service (NRCS). 1999. "Chapter 4: Corridor Benefits." In Part 614.4 Conservation Corridor Planning at the Landscape Level Managing for Wildlife Habitat. U.S. Department of Agriculture Natural Resources Conservation Service. Part 190 National Biology Handbook. Available: <u>https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_014927.pdf</u>. Accessed March 2022.
- NatureServe. 2022. NatureServe Explorer. Available: <u>https://explorer.natureserve.org</u>. Accessed March 2022.
- Nelson, D.W., Lui, S.L., and L.E. Sommers. 1984. Extractability and Plant Uptake of Trace Elements from Drilling Fluids. Journal of Environmental Quality, Vol. 13, No. 4.
- Noss, R.F. 2012. "Species Richness in Southern Grasslands." Forgotten grasslands of the South: natural history and conservation. Island Press, p 94.
- NRCS. 2012. What is early successional habitat? U. S. Department of Agriculture. Available: <u>https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1081109.pdf</u>. Accessed March 2022.
- Ohio EPA. 1991. Fish Tissue Bottom Sediment Surface Water Organic & Metal Chemical Evaluation, Ottawa River, Ten Mile Creek, Toledo, Ohio, Division Of Water Quality Planning And Assessment. US Geological Survey. Pearl, Mississippi.
- Pattee, O. and J.C. Franson. 1982. Short-term effects of oil ingestion on American Kestrals (Falco Sparverius). Journal of Wildlife Diseases, Vol. 18, No.2.

- Payne, J.F. et al. 2006. Risks assoc. with drill. fluids at petrol. developm. sites in the offsh.: Eval. of the potent. for an aliph. HC- based drill. fluid to produce sedimen. toxicity and for barite to be acut. toxic to plankton. Can. Tech. Rep. Fish. Aquat. Sci. 2679
- Payne, J.F., Andrews, C., Fancey, L., French, B., and K. Lee. 2011. Produced Water: Overview of Composition, Fates, and Effects. Chapter 21 Risks to Fish Associated with Barium in Drilling Fluids and Produced Water: A Chronic Toxicity Study with Cunner (Tautogolabrus adspersus).
- Razavi, R. 2013. Ebullition Rates and Mercury Concentrations In St. Lawrence River Sediments And a Benthic Invertebrate. Environmental Toxicology and Chemistry, Vol. 32, No. 4, pp. 857–865.

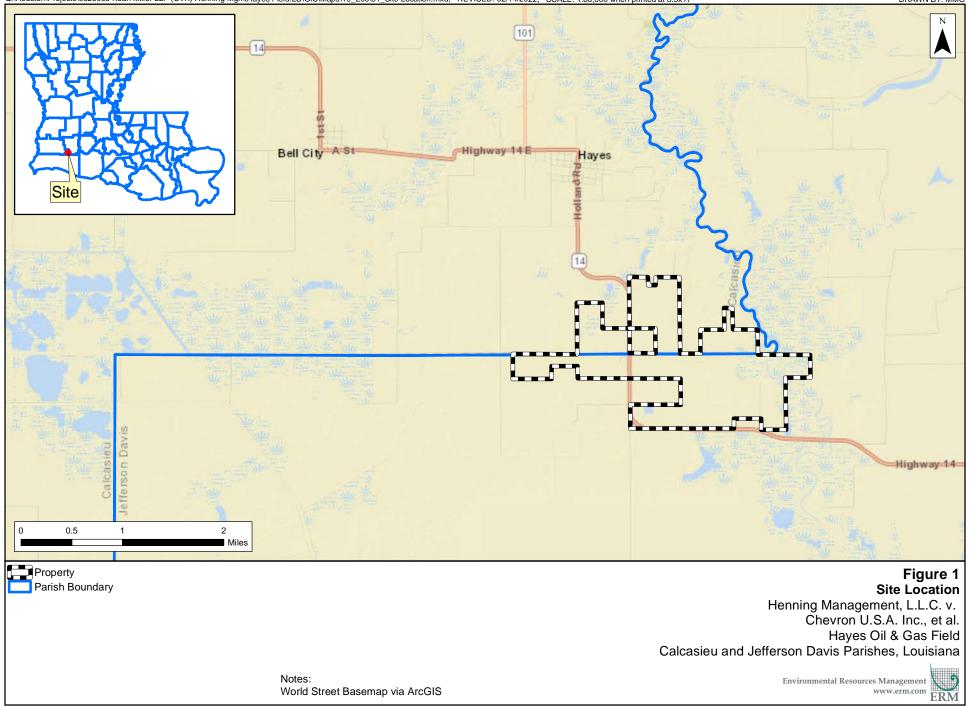
Remsen, J.V., Swan, M.M., Cardiff, S.W., and Rosenberg, K.V. 1991. J. La. Ornith. 1(2): 35-50.

- Ridal, J., Yanch, L.E., Fowlie, A.R., Razavi, N.R., Delongchamp, T.M., Choy, E.S., Fathi, M., Hodson, P.V., Campbell, L.M., Blais, J.M., Hickey, M.B.C., Yumvihoze, E., and D.R.S. Lean. 2010.
 Potential causes of enhanced transfer of mercury to St. Lawrence River Biota: implications for sediment management strategies at Cornwall, Ontario, Canada. Hydrobiologia 647:81–98.
- Rodriguez, L., Rincon, J., Asencio, I., and L. Rodriguez-Castellanos. 2007. Capability of Selected Crop Plants for Shoot Mercury Accumulation from Polluted Soils: Phytoremediation Perspectives. Journal of Phytoremediation, 9:1–13, 2007.
- Sample, B.E. and G.W. Suter II. 1994. Estimating Exposure of Terrestrial Wildlife to Contaminants. Oak Ridge National Laboratory, Tennessee, U.S. Department of Energy.
- Sample, B.E., Suter II, G.W., Beauchamp, J.J., and R.A. Efroymson. 1998a. Literature-derived bioaccumulation models for earthworms: development and validation. Environmental Toxicology and Chemistry 18(9): 2110-2120.
- Sample, B.E., Suter II, G.W., Beauchamp, J.J., and R.A. Efroymson. 1998b. Development and validation of bioaccumulation models for small mammals. ES/ER/TM-219. Oak Ridge National Laboratory, Oak Ridge, TN.
- Sanderson, G.C. 1984. Cooperative raccoon collections. Ill. Nat. Hist. Survey Div.; Pittman-Robertson Proj. W-49-R-31.
- Schuttler, S., Monello, R.J., Ruiz-Lopez, M.J. and L.S. Eggert. 2015. The interplay between clumped resources, social aggregation, and genetic relatedness in the raccoon. Mammal Research 60: 365-373.
- Silverman, S. and L.A. Tell. 2010. Radiology of Birds: Atlas of Normal Anatomy and Positioning. First Edition.
- Simini, M., Checkai, R., Kuperman, R., Phillips, C., and J. Speicher. 2002. Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening Levels (ECO-SSL) Using Earthworm (Eisenia Fetida) Benchmark Values. U.S. Army Soldier and Biological Chemical Command.
- Smith, D.B., Cannon, W.F., Woodruff, L.G., Solano, Federico, Kilburn, J.E. and D.L. Fey. 2013. Geochemical and mineralogical data for soils of the conterminous United States: U.S. Geological Survey Data Series 801, 19 p. http://pubs.usgs.gov/ds/801/.
- Smith, N.R. 2014. History, nesting population, migration, home range and habitats used by Louisiana bald eagles. LSU Master's Theses. 867.
- Spencer, R.K. and J.A. Chapman. 1986. Seasonal feeding habits of New England and eastern cottontails. Proc. Penn. Acad. Sci. 60: 157-160.

- Sprague, J.B. and W.J. Logan, 1979, Separate and Joint Toxicity to Rainbow Trout of Substances Used in Drilling Fluids for Oil Exploration, Environ. Pollut. 0013-9327.
- Springer, M.A. and D.R. Osborne. 1983. Analysis of growth of the red-tailed hawk (Buteo jamaicensis). Ohio J. Sci 83: 13-19.
- Steenhof, K. 1983. Prey weights for computing percent biomass in raptor diets. Raptor Res. 17: 15-27.
- Stumm, W. and J.J. Morgan. 1996. Aquatic chemistry: Chemical equilibria and rates in natural waters. In 3rd (Ed.), Scope of aquatic chemistry 1996; 1-15. John Wiley & Sons: New York, NY.
- Tabatabai, F.R. and M.L. Kennedy. 1988. Food habits of the raccoon (Procyon lotor) in Tennessee. J. Tenn. Acad. Sci. 63: 89-94.
- Teck American, Inc. 2010. Upper Columbia River Screening Level Ecological Risk Assessment (SLERA) Teck American, Inc., Spokane, WA.
- The Cornell Lab. 2022a. All About Birds: Bird Guide. Available: <u>https://www.allaboutbirds.org/guide/</u>. Accessed March 2022.
- U.S. Department of Agriculture (USDA). 1988. Soil Survey of Calcasieu Parish.
- U.S. Environmental Protection Agency (USEPA). 1993. Wildlife Exposure Factors Handbook. Volumes I and II. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C. EPA/600/R- 93/187a, b.
- U.S. Fish and Wildlife Service (USFWS). 1994. Accumulation of Mercury in Sediments, Prey, And Shorebirds of Lavaca Bay, Texas, Phase II Report.
- U.S. Forest Service (USFS). 2022. Ecosystem Services from National Grasslands. Available: https://www.fs.fed.us/grasslands/ecoservices/index.shtml. Accessed March 2022.
- U.S. Geological Survey (USGS). 2002. Vertical Distribution of Trace-Element Concentrations and Occurrence of Metallurgical Slag Particles in Accumulated Bed Sediments of Lake Roosevelt, Washington. Scientific Investigations Report 2004-5090.
- United States Department of Defense (USDOD). 2003. Final Guide for Incorporating Bioavailability Adjustments into Human Health and Ecological Risk Assessments at U. S. Department of Defense Facilities, Part 1: Overview of Metals Bioavailability Update Prepared for Tri-Service Ecological Risk Assessment Workgroup, Updated by Rosalind A. Schoof, Ph.D., From January 2000 Navy Edition, Prepared by Battelle and Exponent.
- University of Michigan. 2001. Animal Diversity Web. Canis latrans. Tokar, E. https://animaldiversity.org/accounts/Canis_latrans/ . Accessed March 2022.
- USDA. 2003. Soil Survey of Jefferson Davis Parish.
- USDA. 2012. Wetland Indicator Status." Natural Resources Conservation Service PLANTS Database. Available: <u>https://plants.usda.gov/wetinfo.html</u>. Accessed October 2021.
- USDA. 2021. Louisiana Rice Parish Estimates. Available: <u>https://www.nass.usda.gov/Statistics_by_State/Louisiana/Publications/Parish_Estimates/2020/20</u> <u>LA_rice.pdf. Accessed March 2022</u>.
- USDA. 2022. Natural Resources Conservation Service. PLANTS Database. https://plants.sc.egov.usda.gov/java . Accessed March 2022.
- USEPA. 1997. Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final, EPA 540-R-97-006.


USEPA. 1998. Guidelines for Ecological Risk Assessment, EPA/630/R-95/002F.

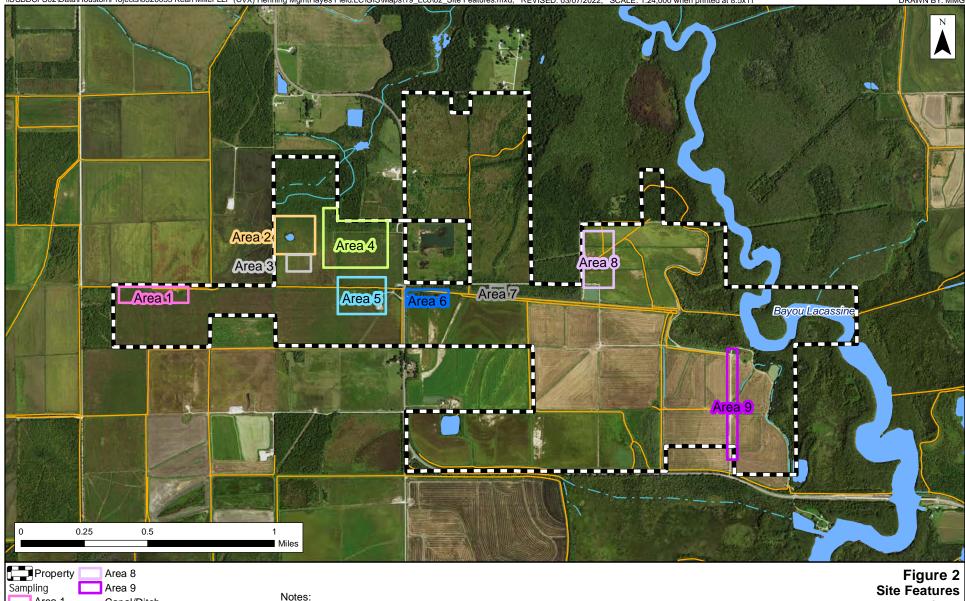
- USEPA. 1999. Toxicity Reference Values, Screening Level Ecological Risk Assessment Protocol, Multimedia Planning and Permitting Division Office of Solid Waste, Center for Combustion Science.
- USEPA. 2005a. Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92.857-55 and Attachment 1-2 (Assessment of whether to develop ecological soil screening levels for microbes and microbial processes).
- USEPA. 2005b. Ecological Soil Screening Levels for Arsenic, Interim Final, OSWER Directive 9285.7-62. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. March 2005.
- USEPA. 2005c. Ecological Soil Screening Levels for Barium, Interim Final, OSWER Directive 9285.7-63. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. February 2005.
- USEPA. 2005d. Ecological Soil Screening Levels for Cadmium, Interim Final, OSWER Directive 9285.7-65. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. March 2005.
- USEPA. 2005e. Ecological Soil Screening Levels for Lead, Interim Final, OSWER Directive 9285.7-70. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. March 2005.
- USEPA. 2006. Ecological Soil Screening Levels for Silver, Interim Final, OSWER Directive 9285.7-77. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. September 2006.
- USEPA. 2007a. Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). Review of Background Concentrations for Metals (Attachment 4-1). OSWER Directive 92857-55.
- USEPA. 2007b. Ecological Soil Screening Levels for Selenium, Interim Final, OSWER Directive 9285.7-72. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. June 2007.
- USEPA. 2007c. Ecological Soil Screening Levels for Zinc Interim Final OSWER Directive 9285.7-73. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. June 2007.
- USEPA. 2008. Ecological Soil Screening Levels for Chromium, Interim Final, OSWER Directive 9285.7-66. Office of Solid Waste and Emergency Response, 1200 Pennsylvania Avenue, N.W. Washington, DC 20460. April 2008.
- USEPA. 2015. Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments EPA/600/R-15/176.
- USEPA. 2022a. "Exhibit 1: Ecological hubs and corridors in the contiguous U.S., based on 2001 NLCD." Ecological Connectivity. Report on the Environment: Explore ROE Indicators. Available: <u>https://cfpub.epa.gov/roe/indicator.cfm?i=80</u>. Accessed March 2022.
- USEPA. 2022b. National Ecological Framework. Available: <u>https://cfpub.epa.gov/roe/documents/NEF_brochure.pdf</u>. Accessed March 2022.
- USEPA. ProUCL Software, Version 5.1.02. https://www.epa.gov/land-research/proucl-software


- USFWS. 2007. Lacassine National Wildlife Refuge Comprehensive Conservation Plan. U.S. Department of the Interior, Fish and Wildlife Service, Southeast Region. <u>https://ecos.fws.gov/ServCat/DownloadFile/5799</u>. Accessed March 2022.
- USFWS. 2011. Lacassine National Wildlife Refuge Habitat Management Plan. U.S. Department of the Interior, Fish and Wildlife Service, Southeast Region. https://ecos.fws.gov/ServCat/DownloadFile/16127?Reference=16600 . Accessed March 2022.
- USFWS. 2021. Migratory Bird Hunting Activity and Harvest Report 2019-20 and 2020-21. <u>https://www.fws.gov/sites/default/files/documents/migratory_bird_hunter_activity_harvest_report_2019-20_and_2020-21.pdf</u>. Accessed March 2022.
- Wharton, C.H., Kitchens, W.M., Pendleton, E.C., and T.W. Sipe. 1982. The ecology of bottomland hardwood swamps of the Southeast: a community profile. USFWS. 133 pp.
- White, D.H. and E. Cromartie. 1985. Bird Use and Heavy Metal Accumulation in Waterbirds at Dredge Disposal Impoundments, Corpus Christi, Texas. Bulletin of Environmental Contamination and Toxicology 34: 295-300.
- Wilson, D.E. and S. Ruff. 1999. The Smithsonian Book of North American Mammals. Smithsonian Institution Press.
- Wojtowski, P.A. 2008. Fallow. Advances in Agronomy. Available: <u>https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fallow. Accessed March</u> <u>2022</u>.
- Xu, X., Bryan, A.L., Mills, G.L., and A.M. Korotasz. 2019. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA), Science of The Total Environment. 668, 261-270.
- Zhong, B. and Xu, Yi Jun. 2014. Predicting climate change effects on surface soil organic carbon of Louisiana, USA. Environ Monit Assess 186:6169–6192.
- Zhou, W., Liang, J., Pan, H., Liu, J., Liu, Y., and Y. Zhao. 2019. A model of the physiological and biochemical characteristics of earthworms (Eisenia fetida) in petroleum-contaminated soil. Ecotoxicology and Environmental Safety 174: 459-466.

FIGURES

15 March 2022

\USBDCFS02\Data\Houston\Projects\0526033 Kean Miller LLP (CVX) Henning MgmtHayes Field.LC\GIS\Maps\19_Eco\02_Site Features.mxd, REVISED: 03/07/2022, SCALE: 1:24,000 when printed at 8.5x11


1- Hydrography data from the USGS National

2- Based on Figure 7 of ERM Expert Report (Angle/Levert/Purdom) 2022 3- 2019 Aerial via Earth Explorer

(https://viewer.nationalmap.gov/

Map Viewer

advanced-viewer/).

Source: Esri - ArcGIS Online; NAD 1983 UTM Zone 15N

Canal/Ditch

Stream/River

Lake/Pond

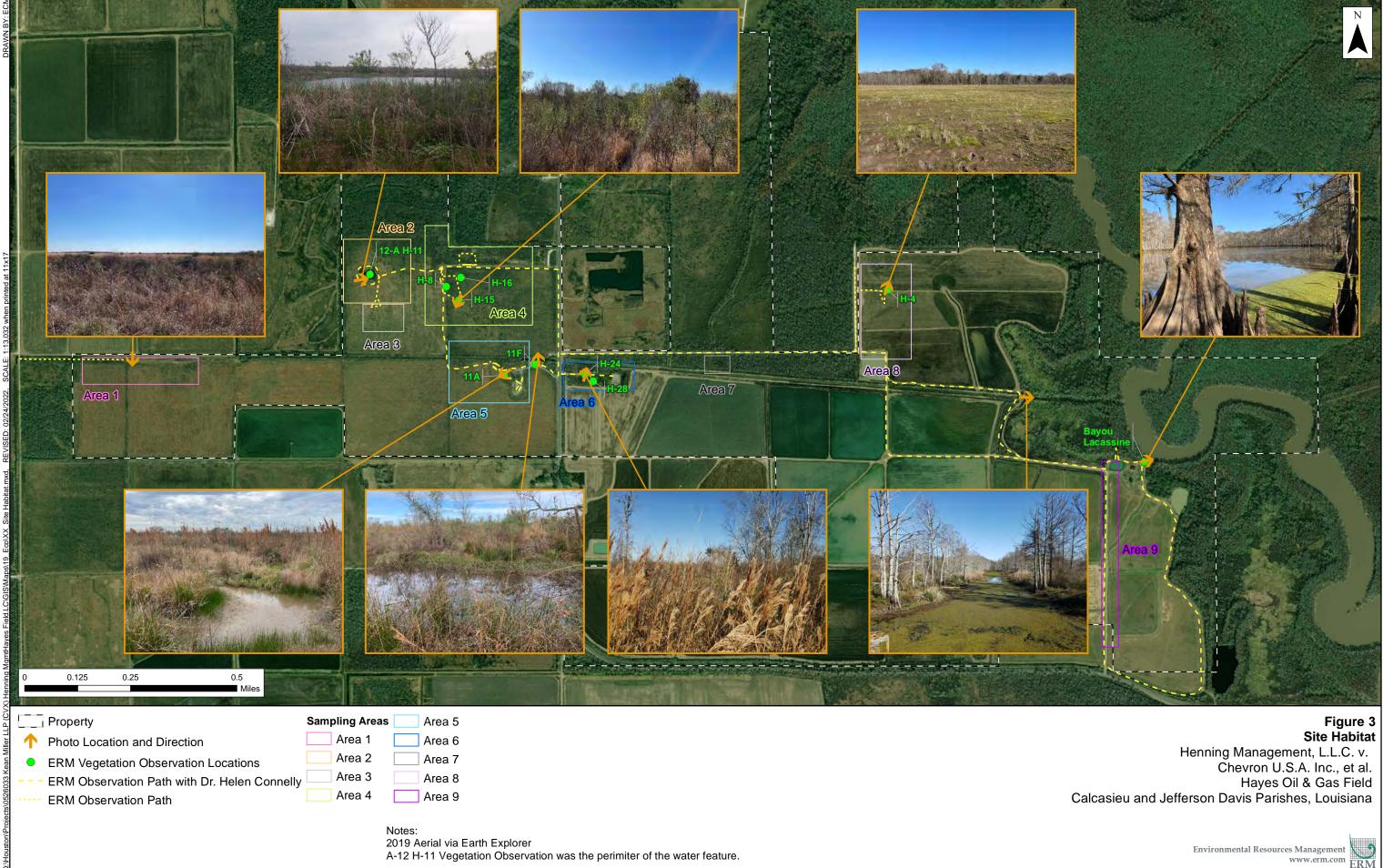
Stream/River - Perennial

Stream/River - Intermittent

Area 1

Area 2

Area 3

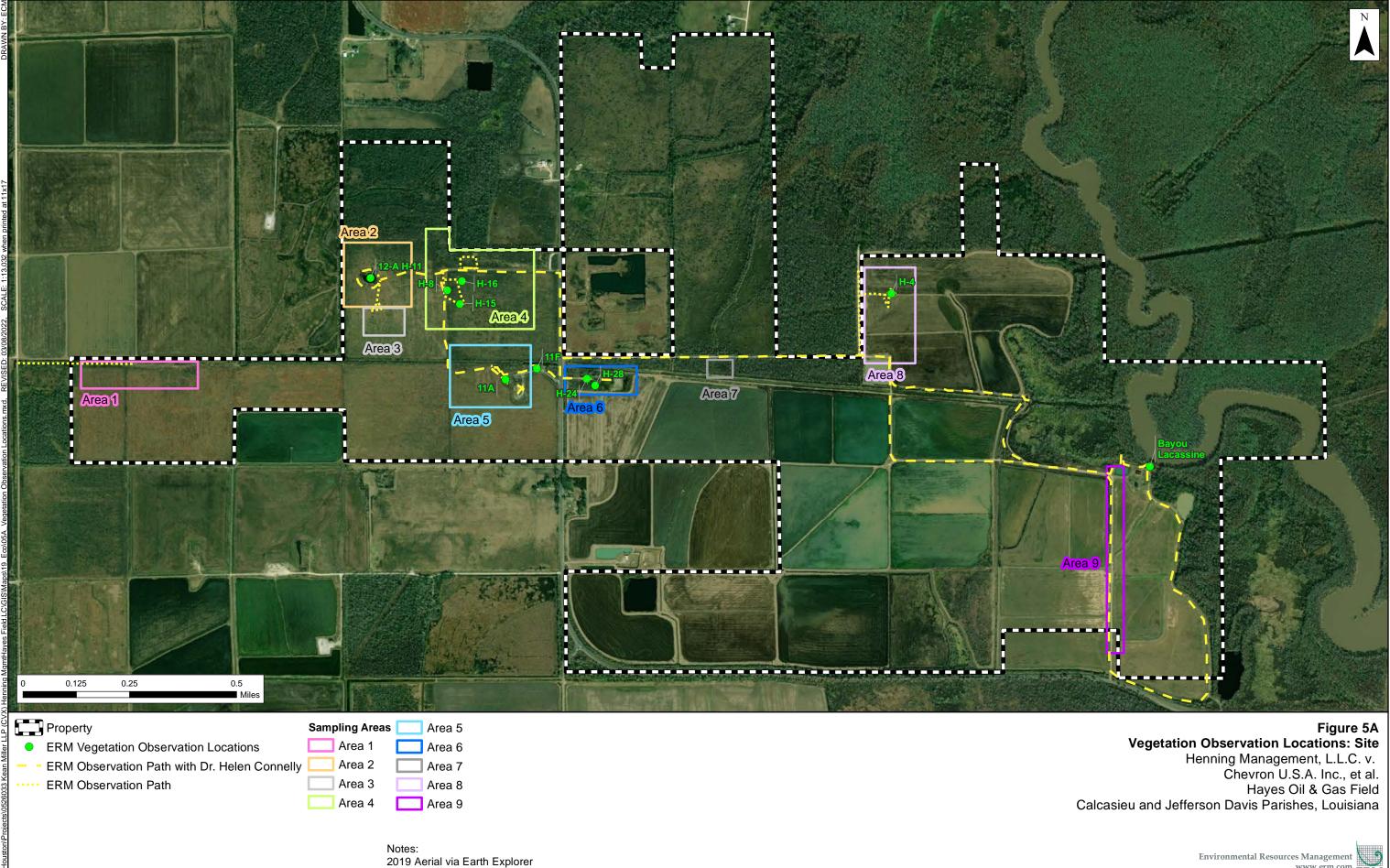

Area 4

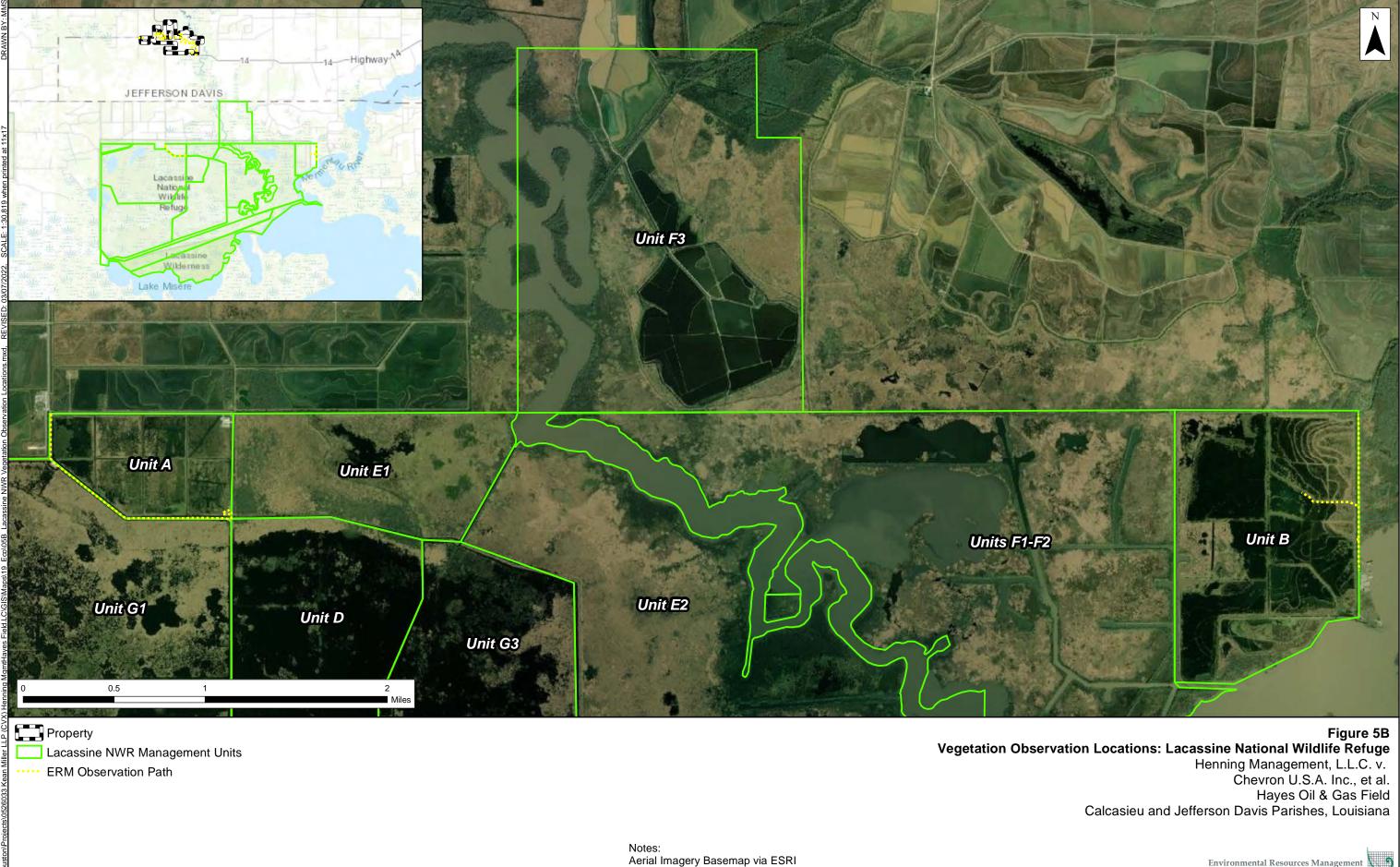
Area 5 Area 6

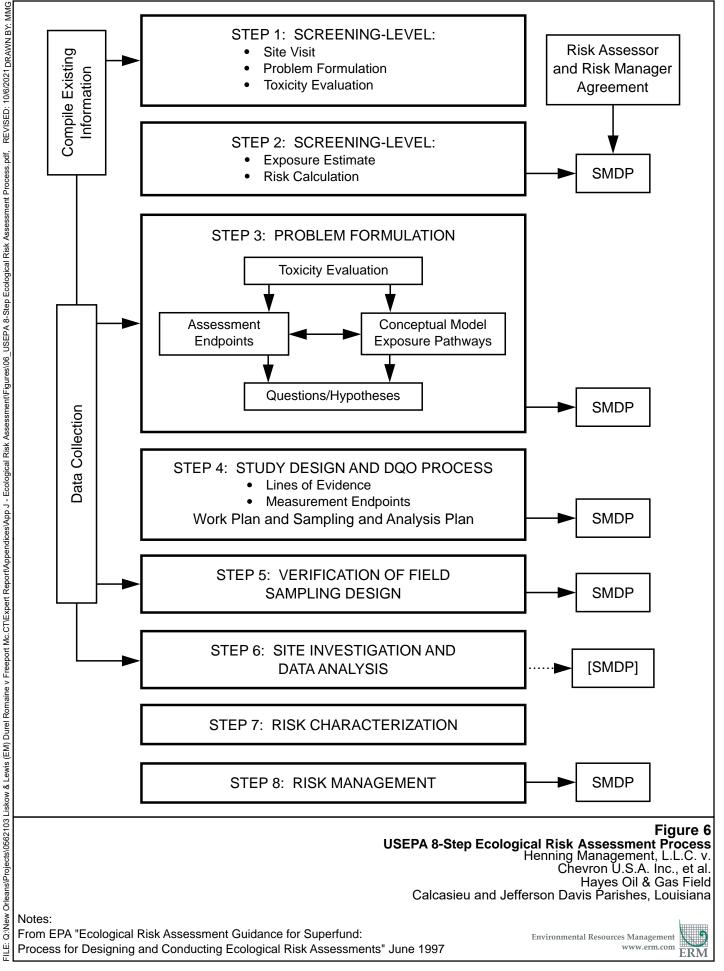
Area 7

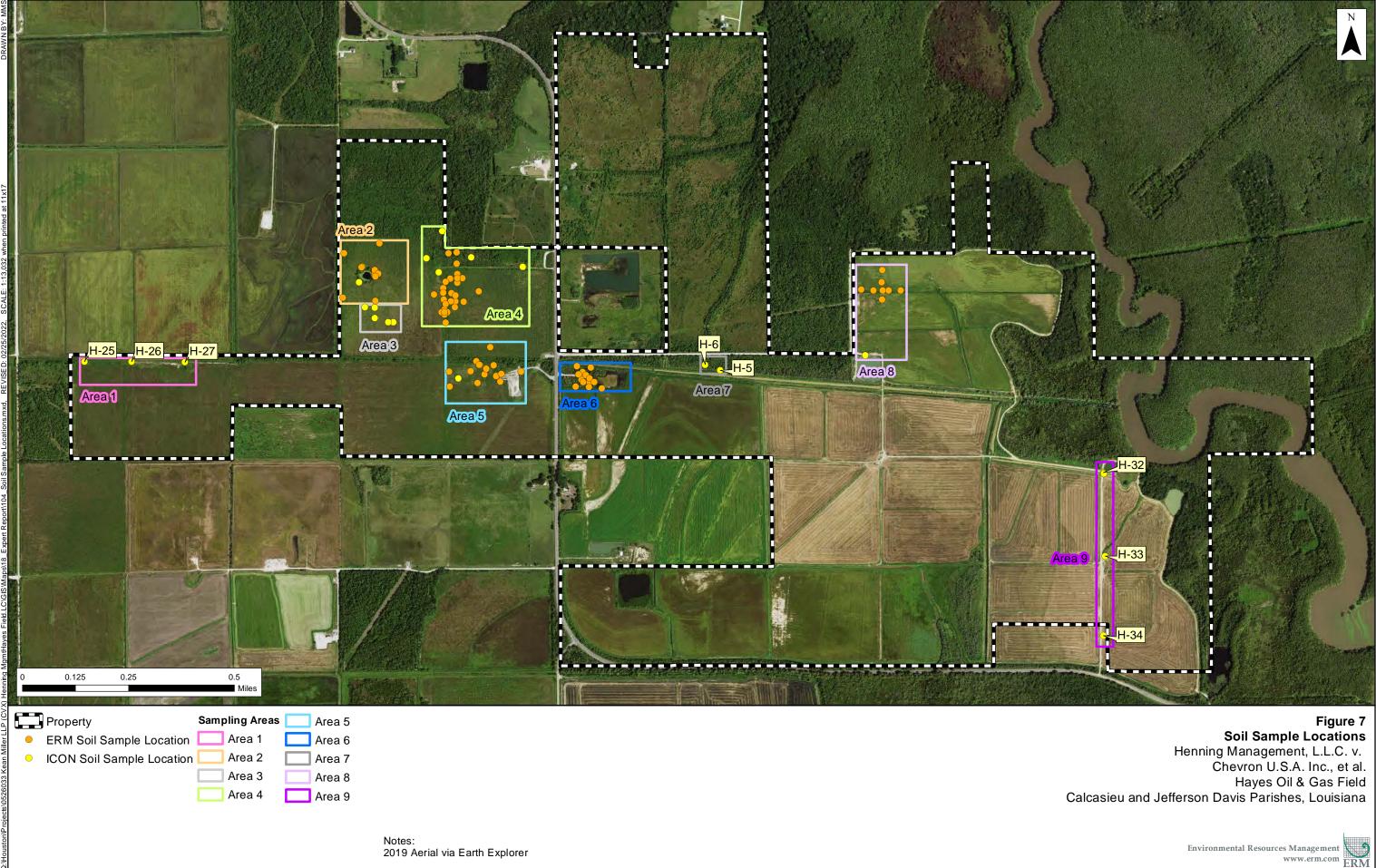
Site Features Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

> **Environmental Resources Management** www.erm.com

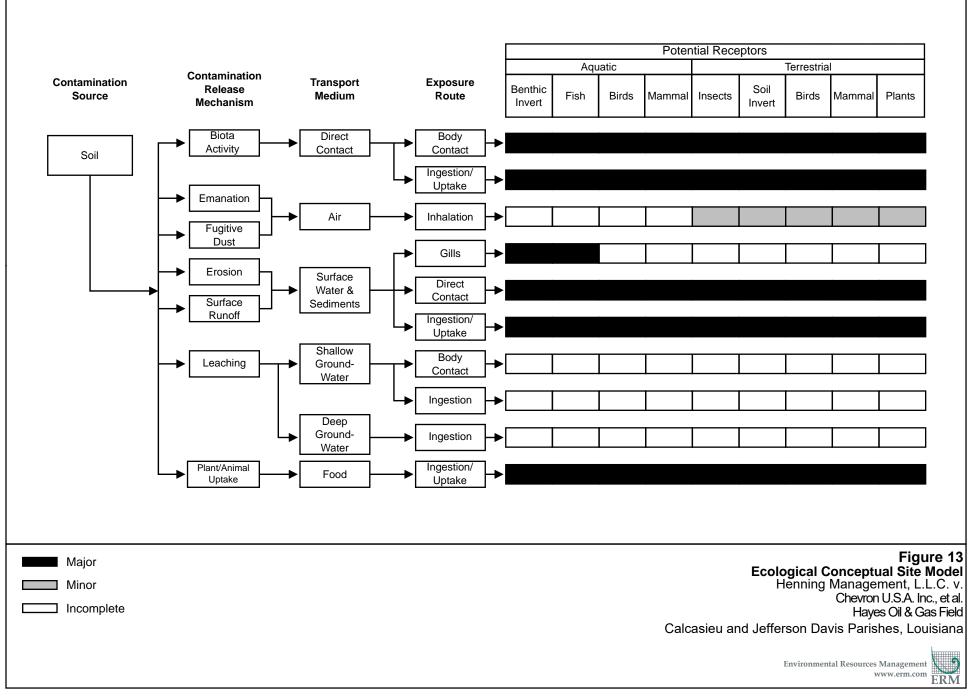

Property

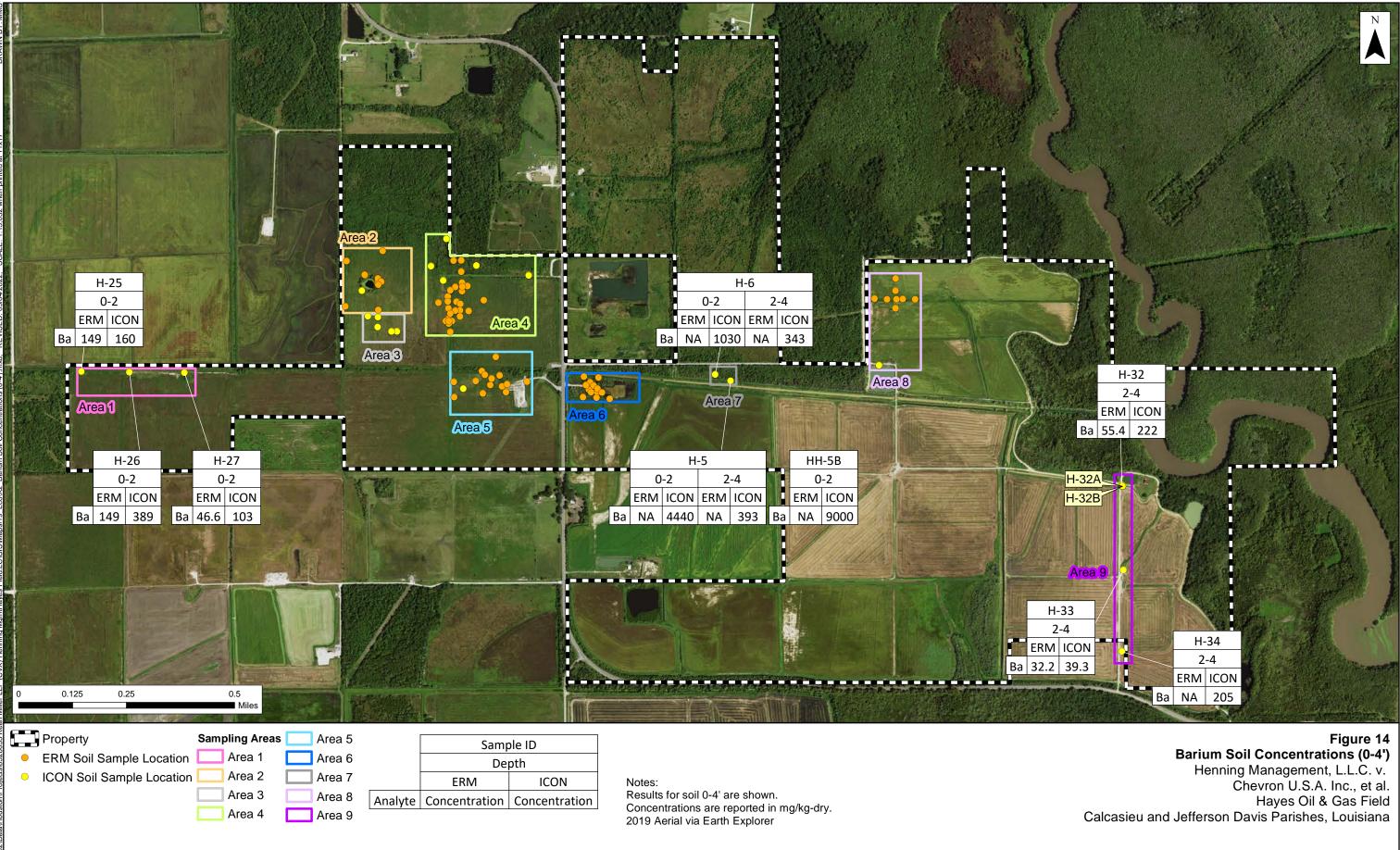

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake River


Notes: 1- Wetland data from US Fish and Wildlife Service (https://www.fws.gov/wetlands/ data/mapper.html). 2- 2019 Aerial via Earth Explorer Figure 4 USFWS Wetlands Map Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana


> Environmental Resources Management www.erm.com

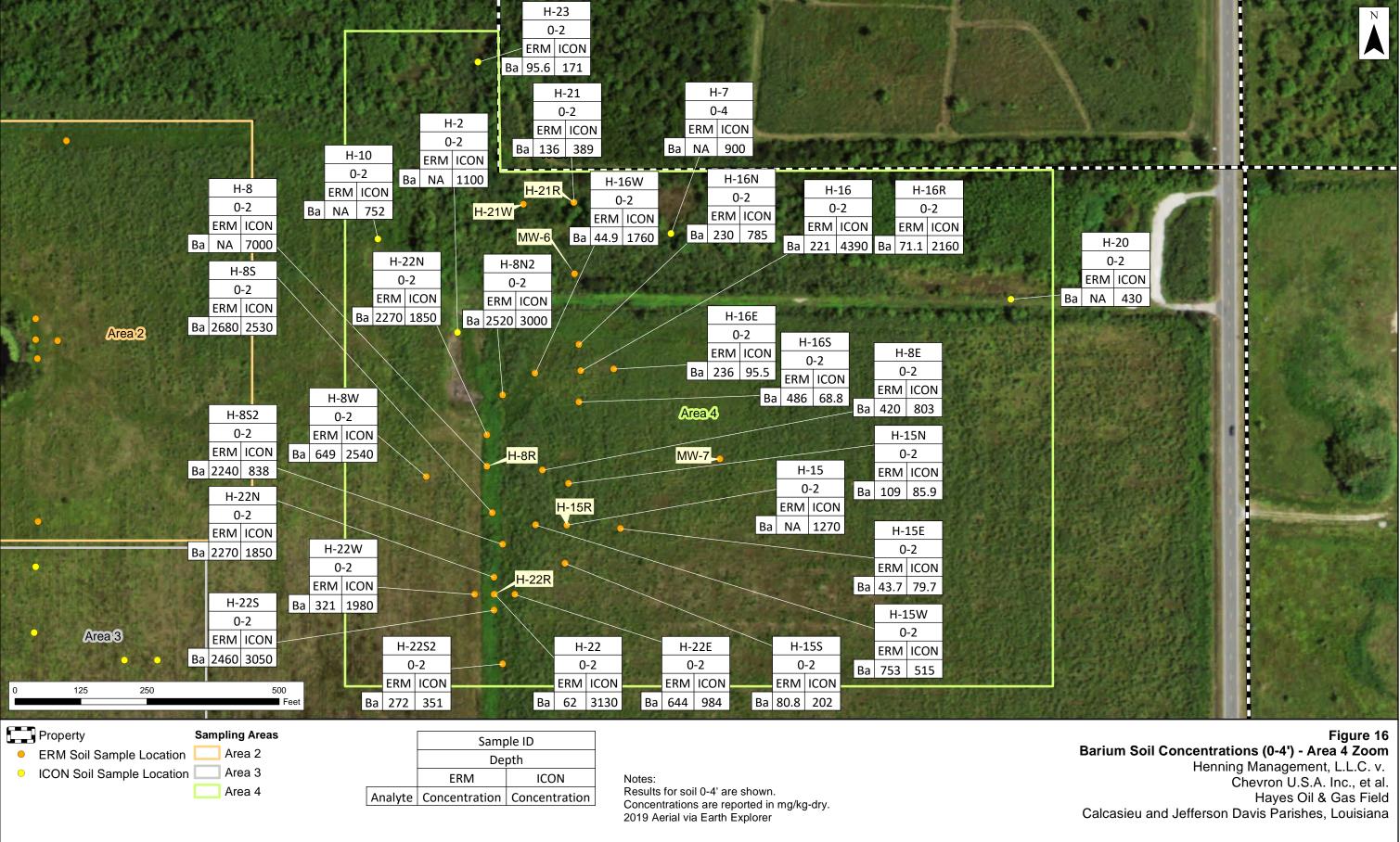
HOU\Projects\0526033\DM\29970H(figs).pdf



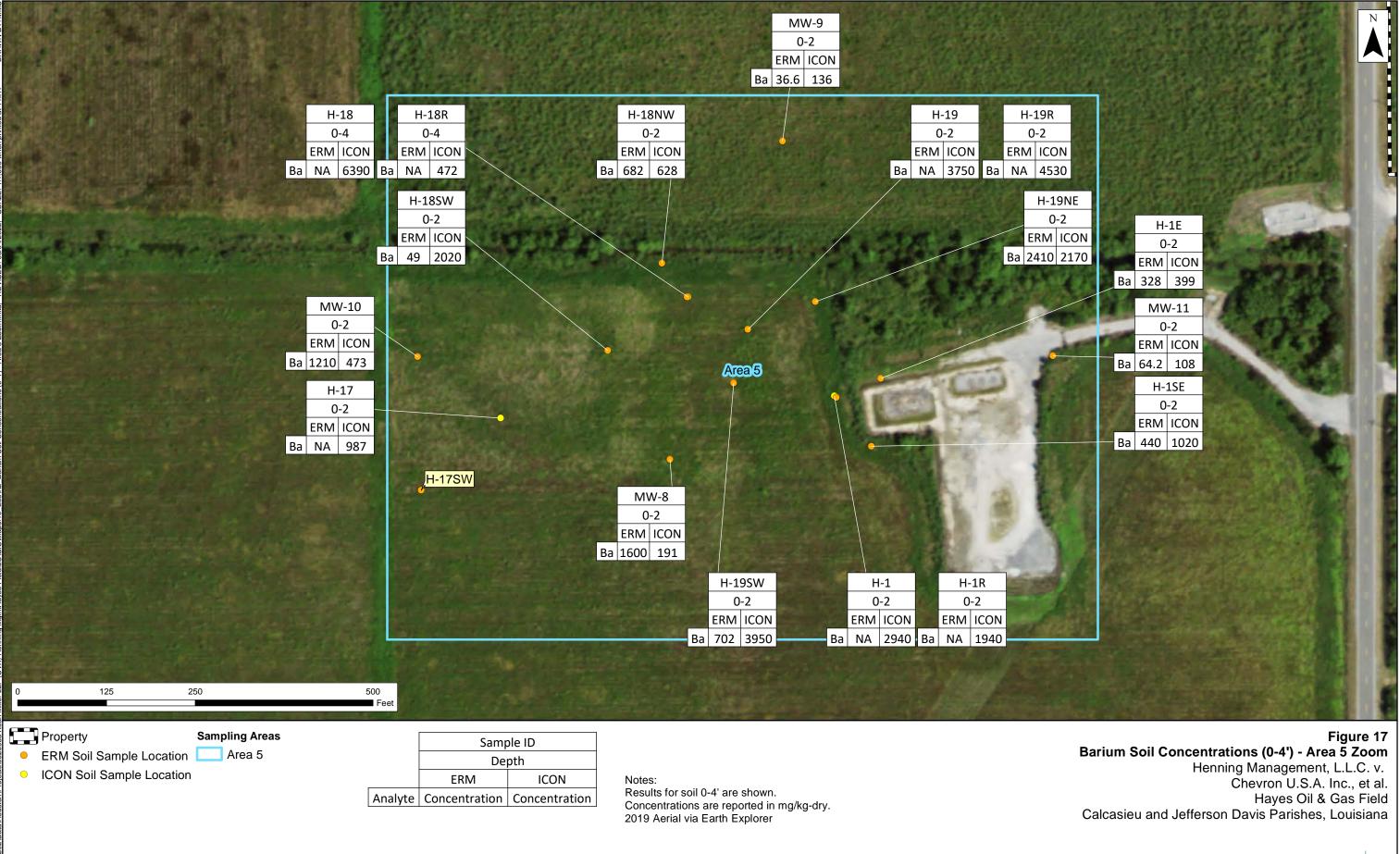


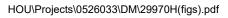
Source: Esri - World Imagery Map; NAD 1983 UTM Zone 15N

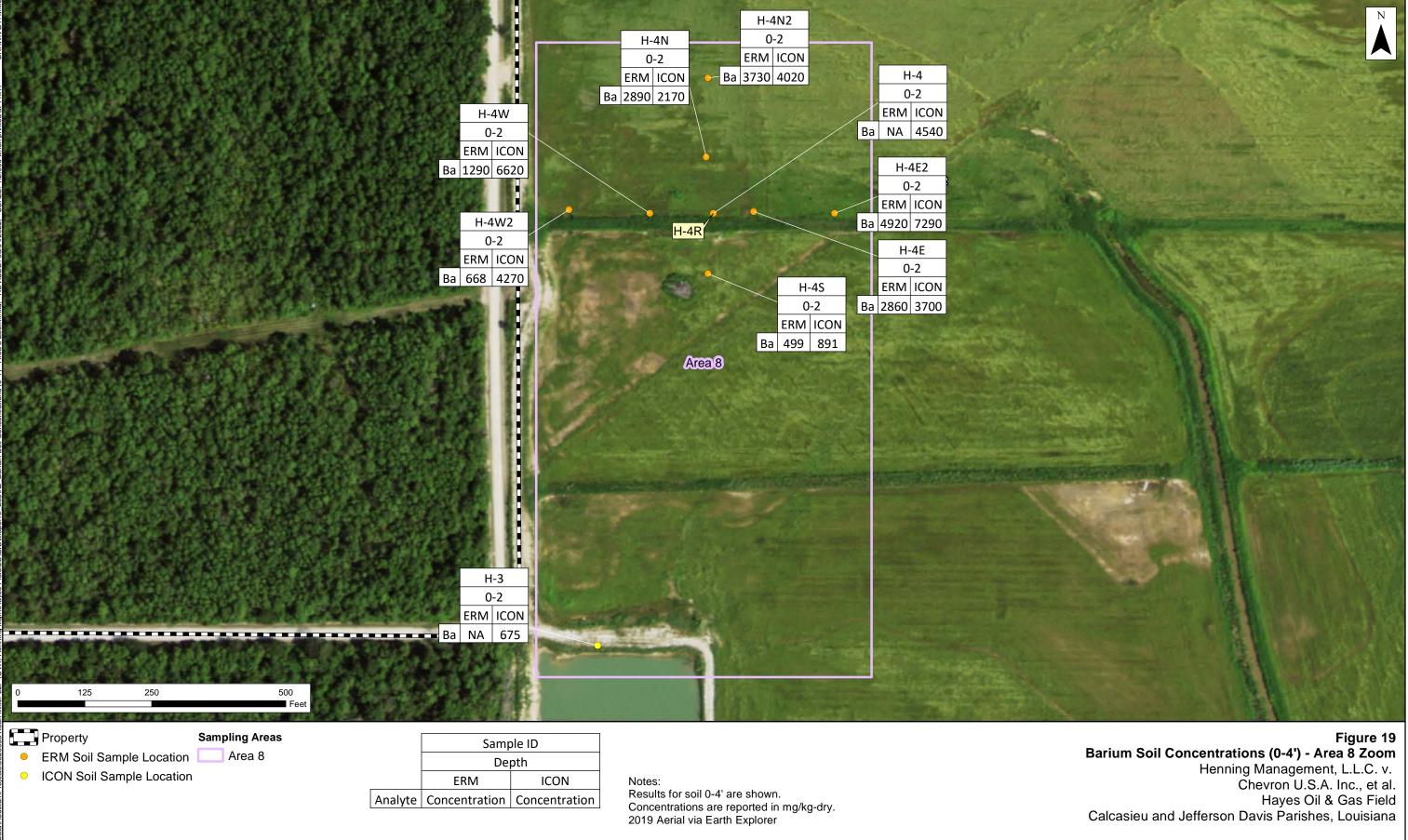
DRAWN BY: MMG

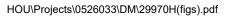


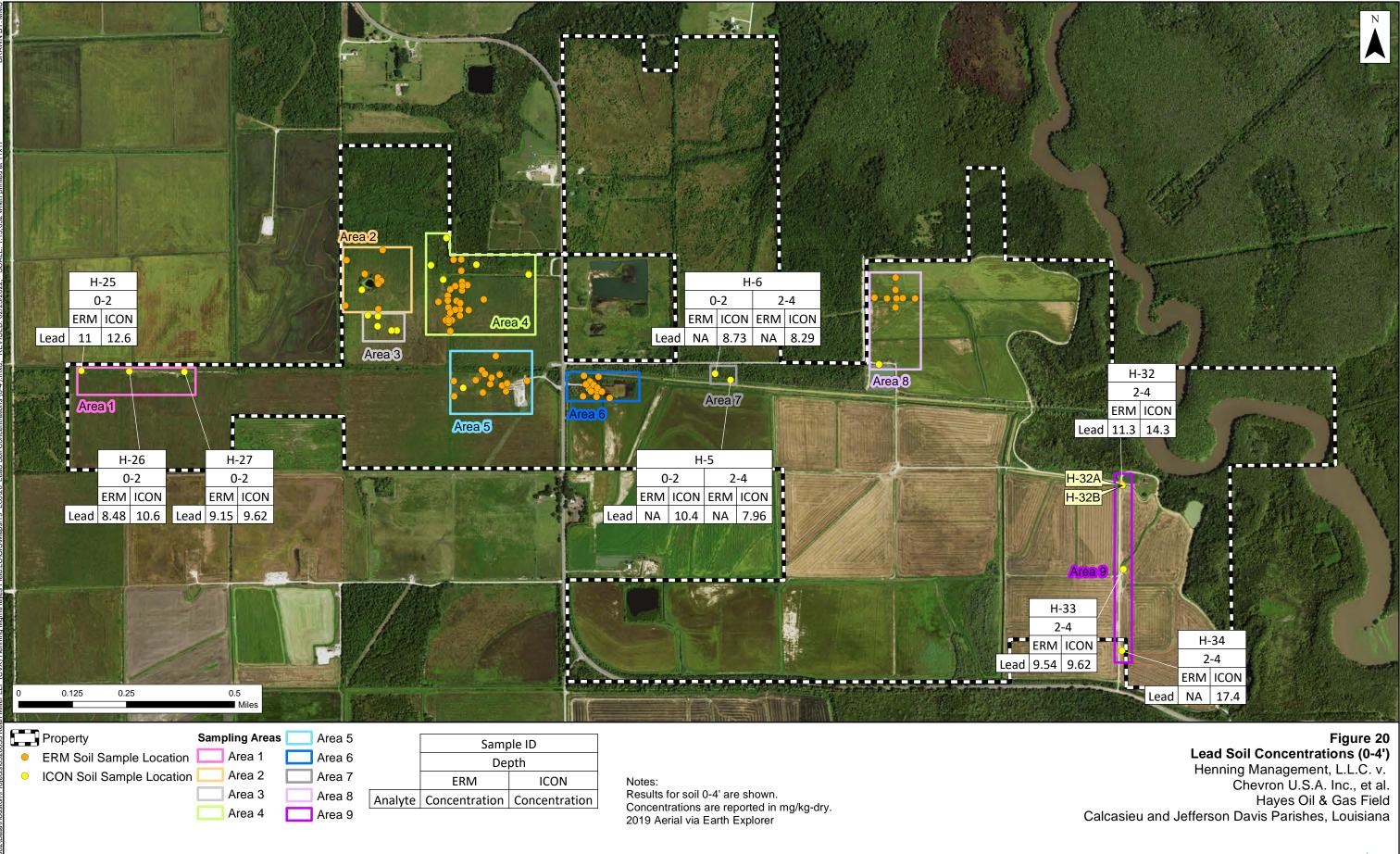
ERM

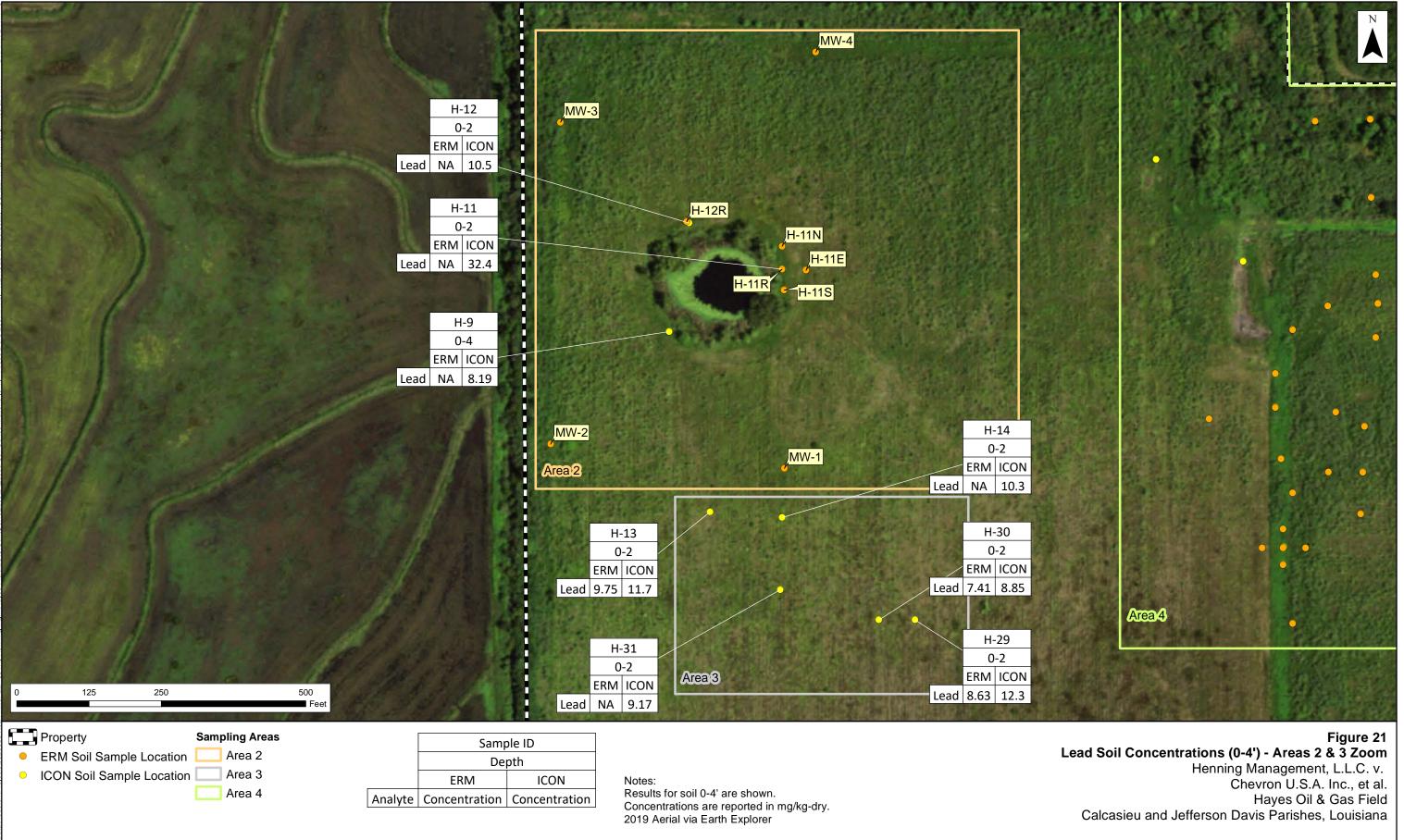

Environmental Resources Management www.erm.com

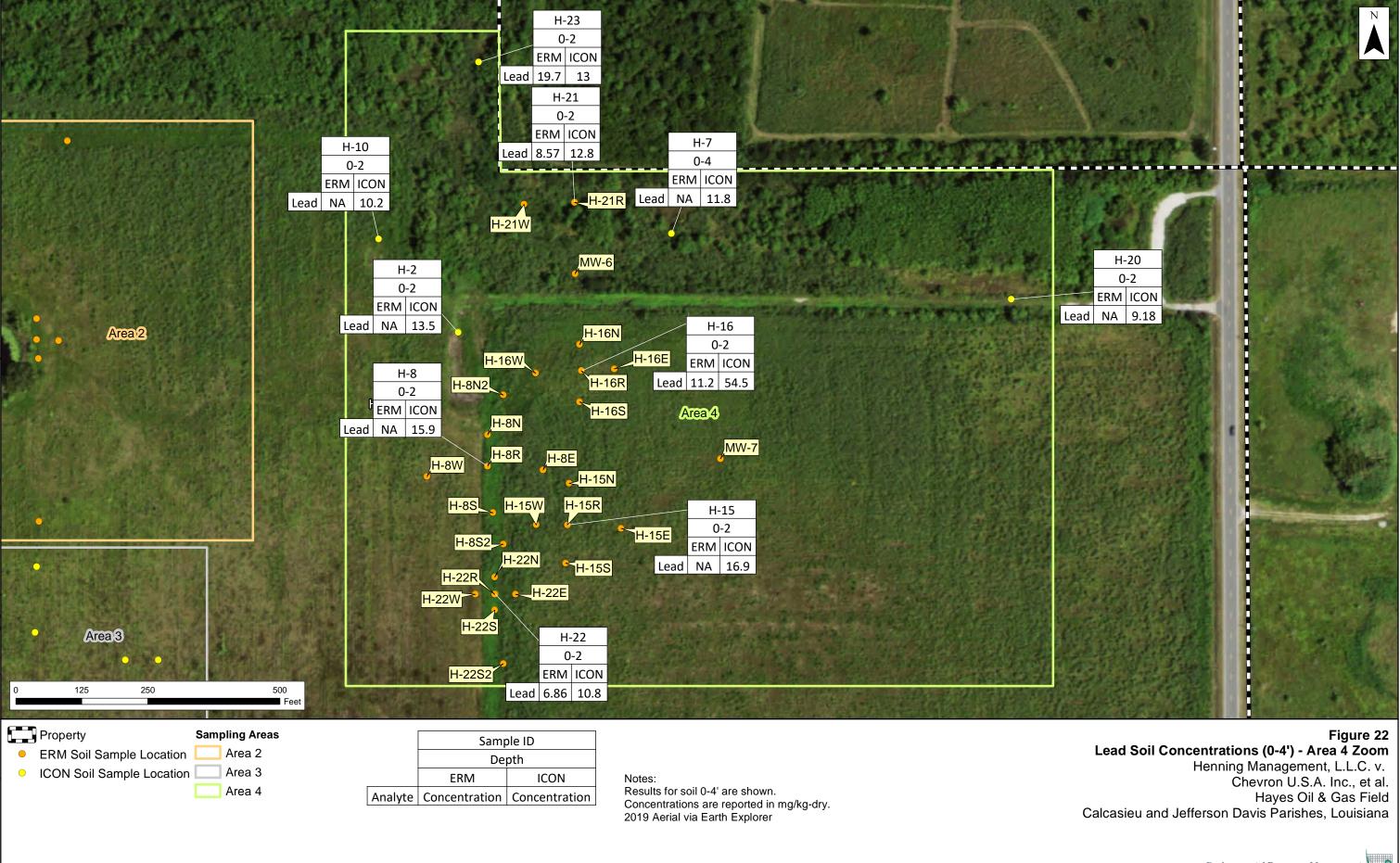

6

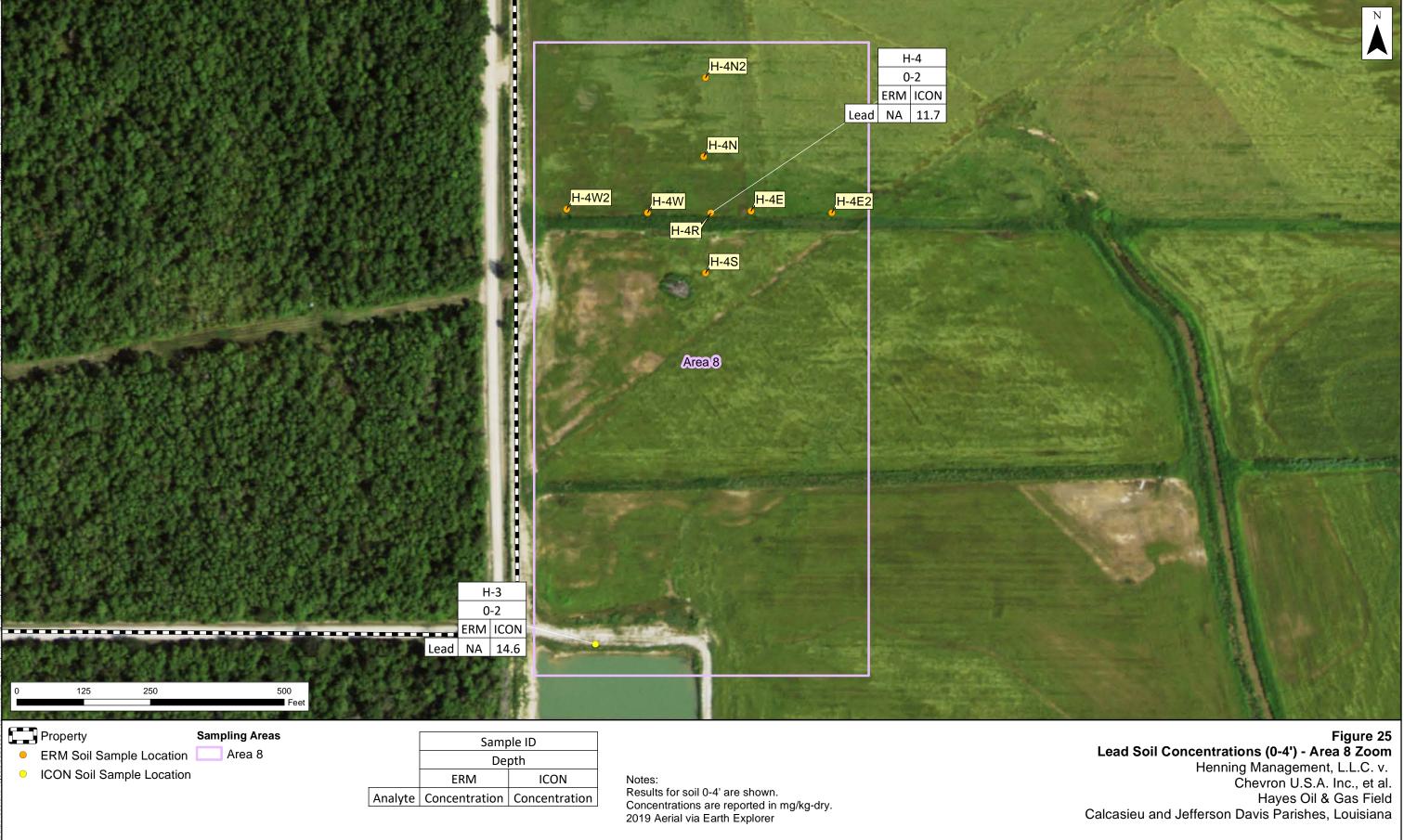


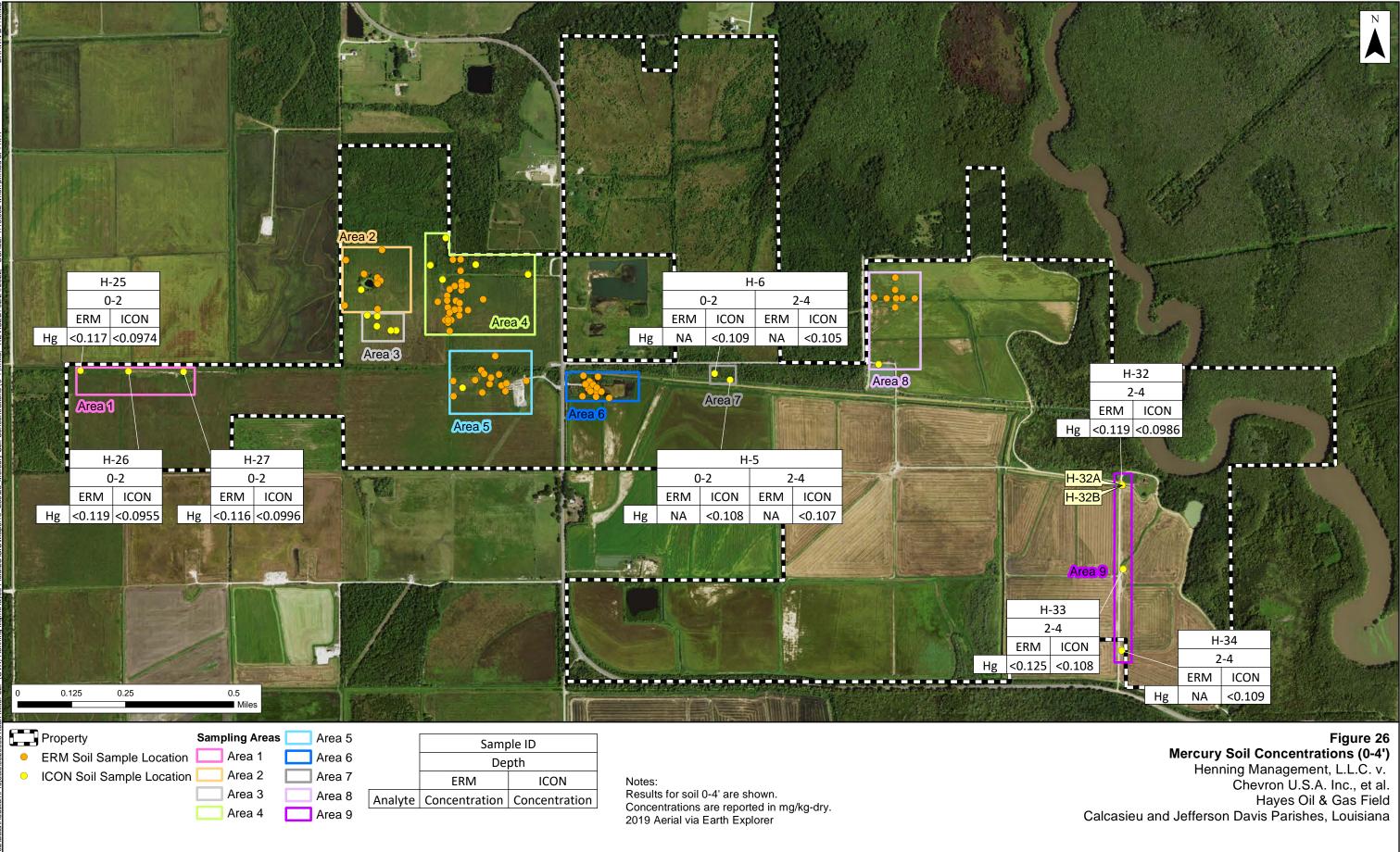

6

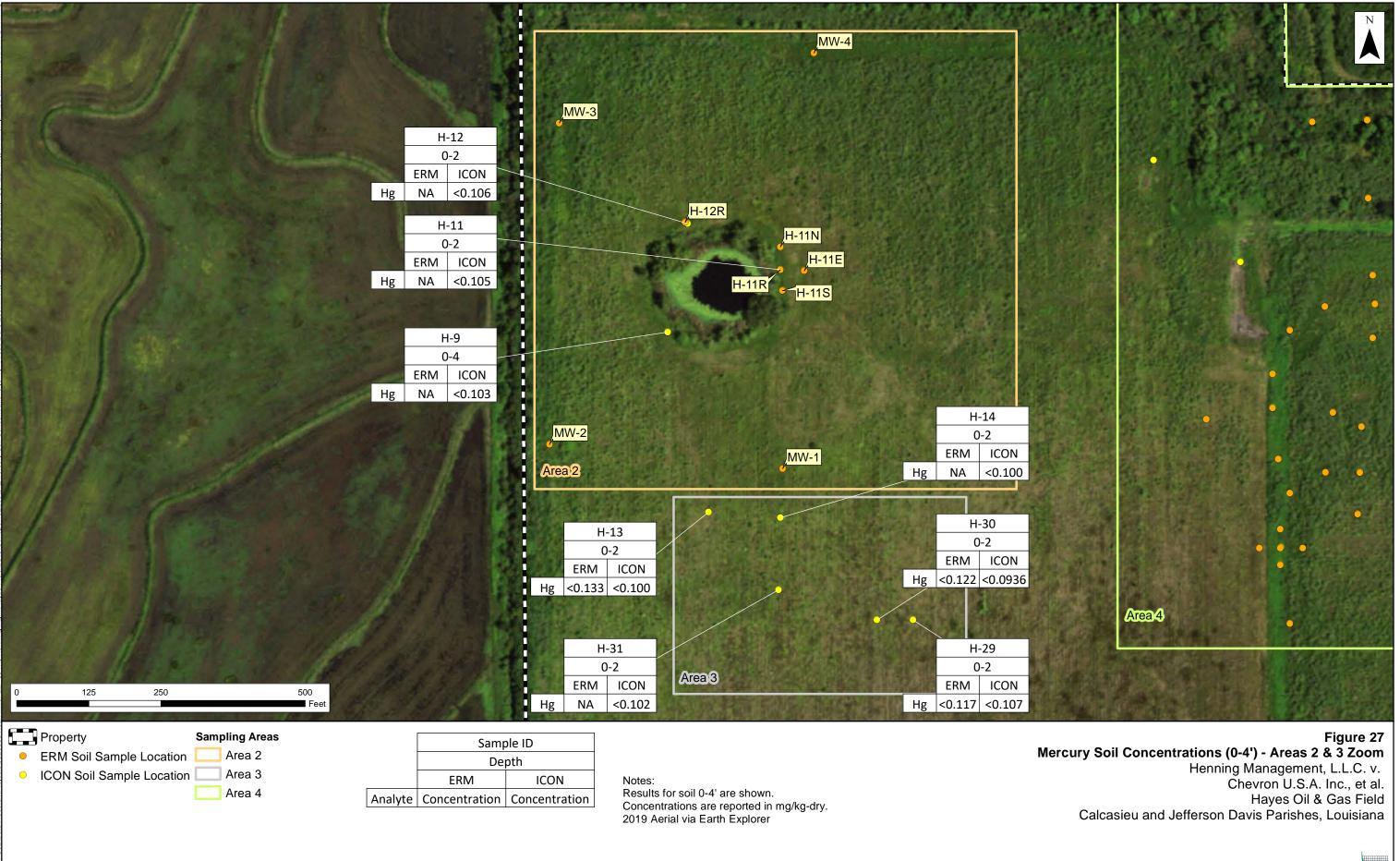


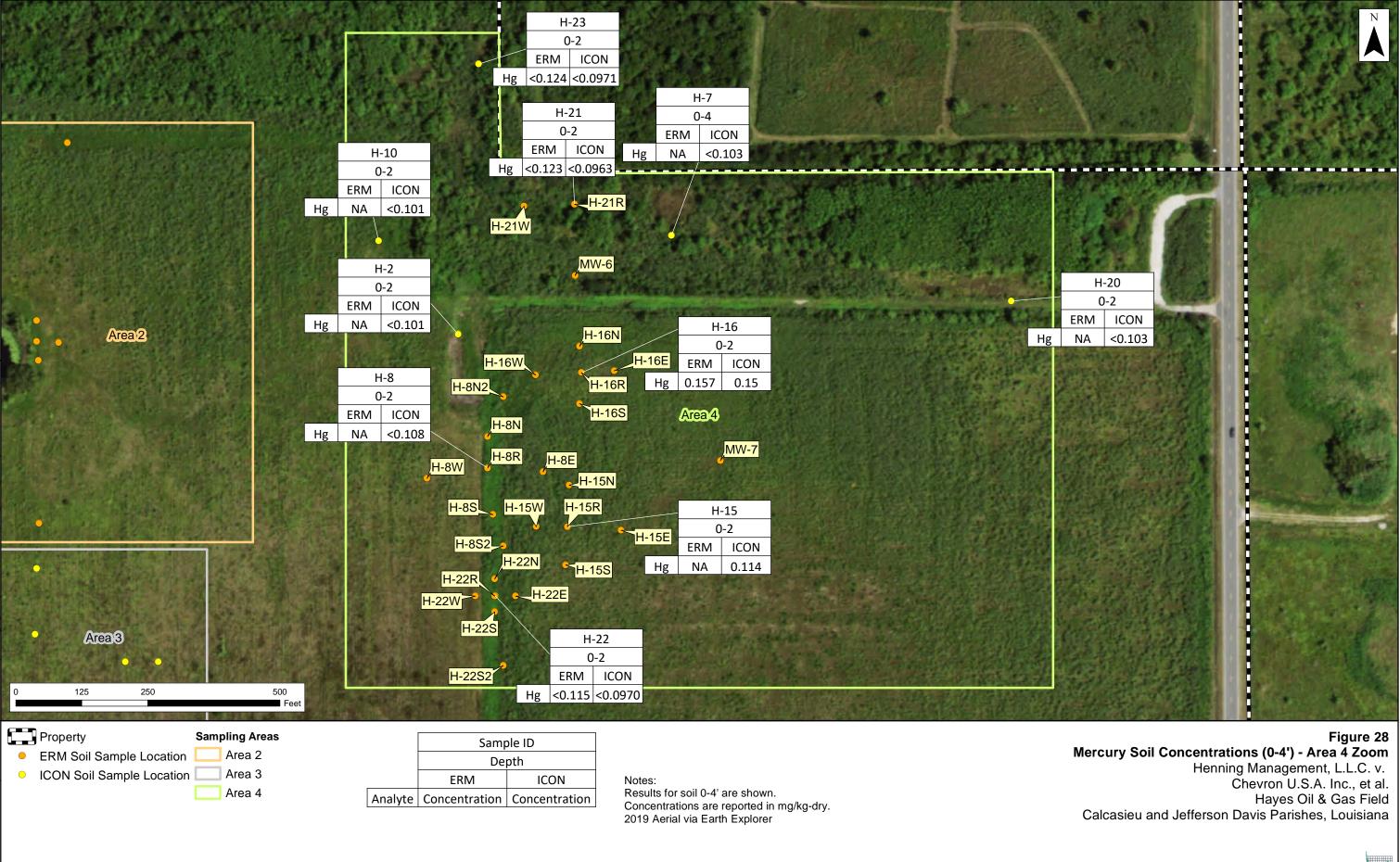


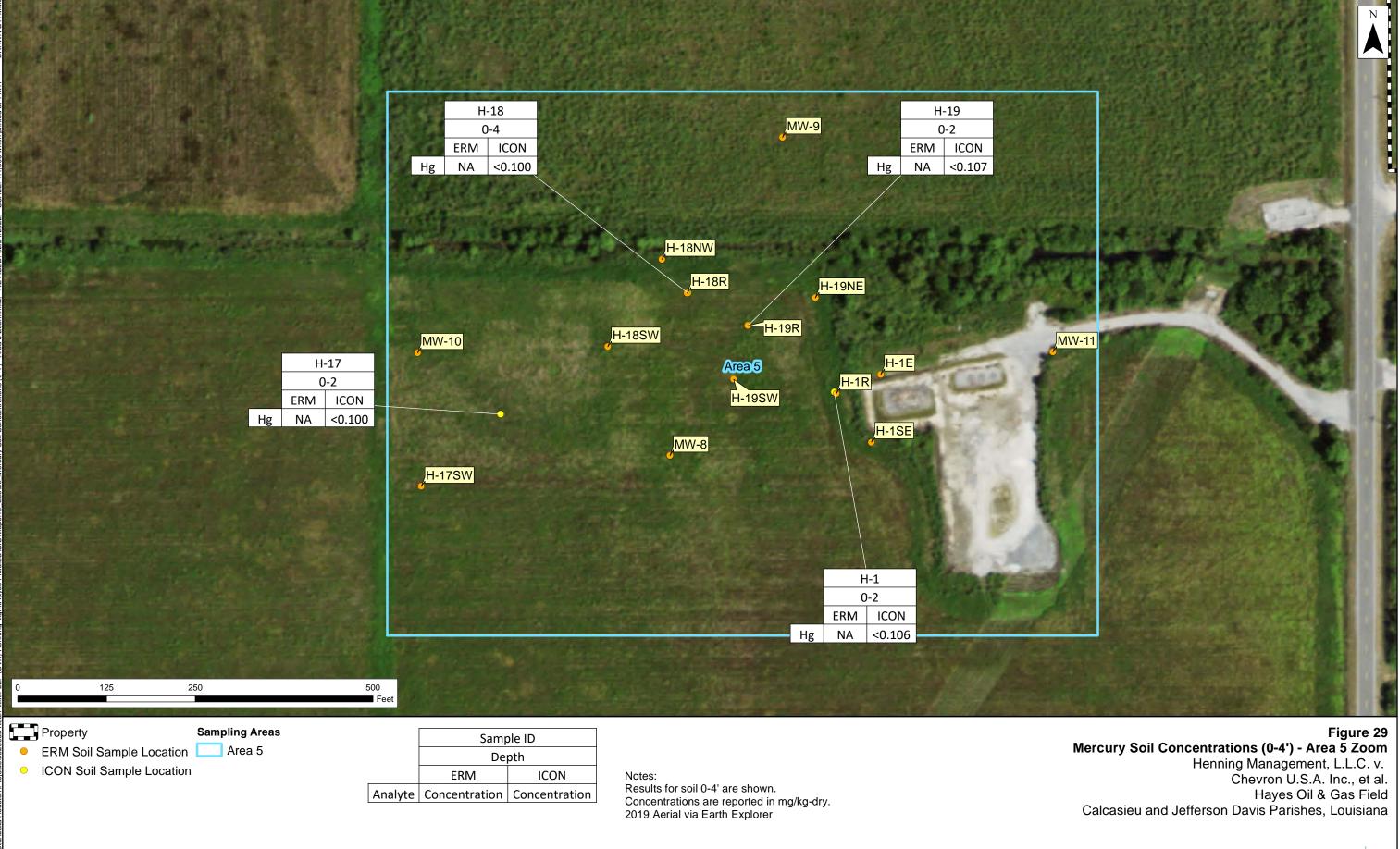


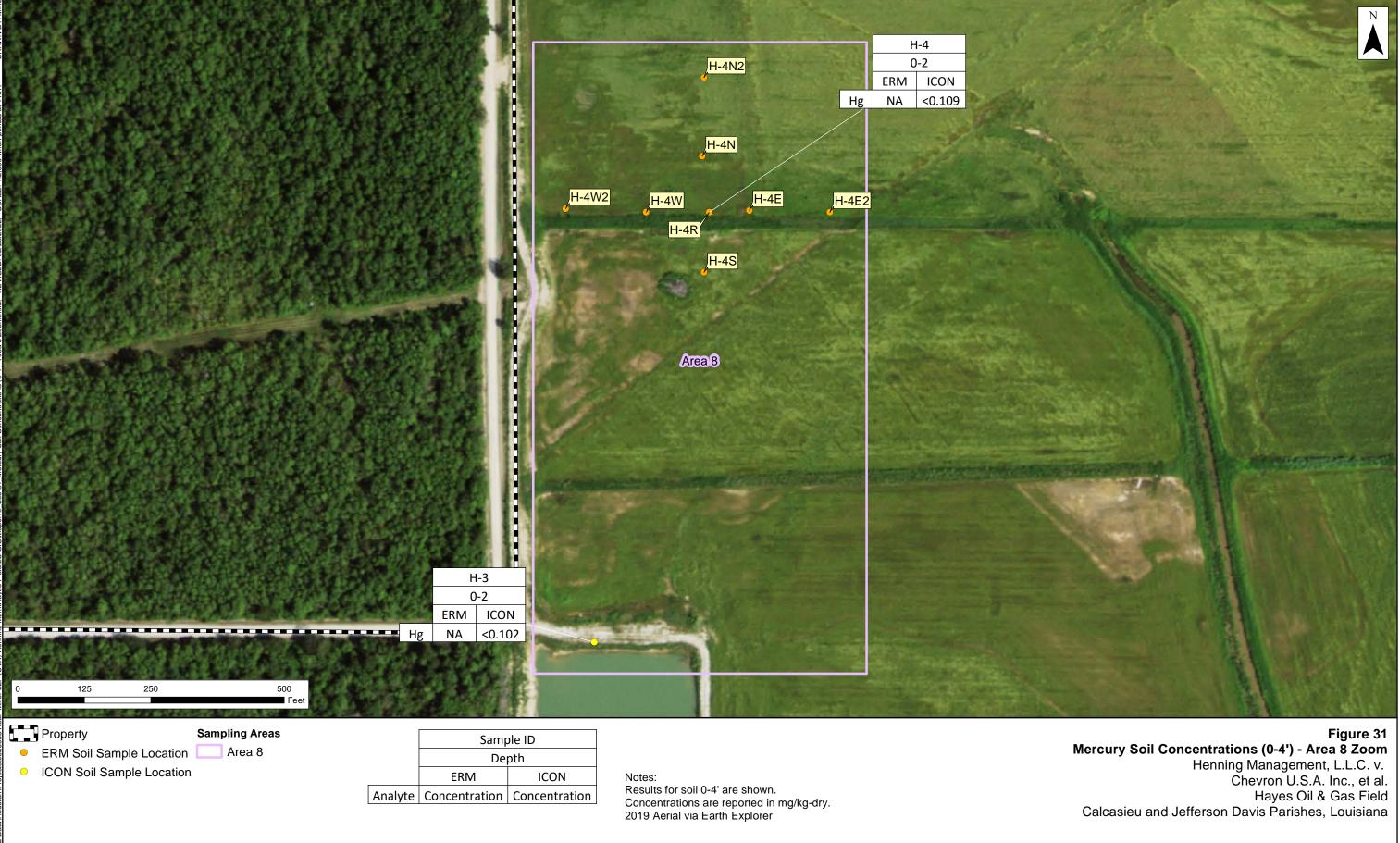

6

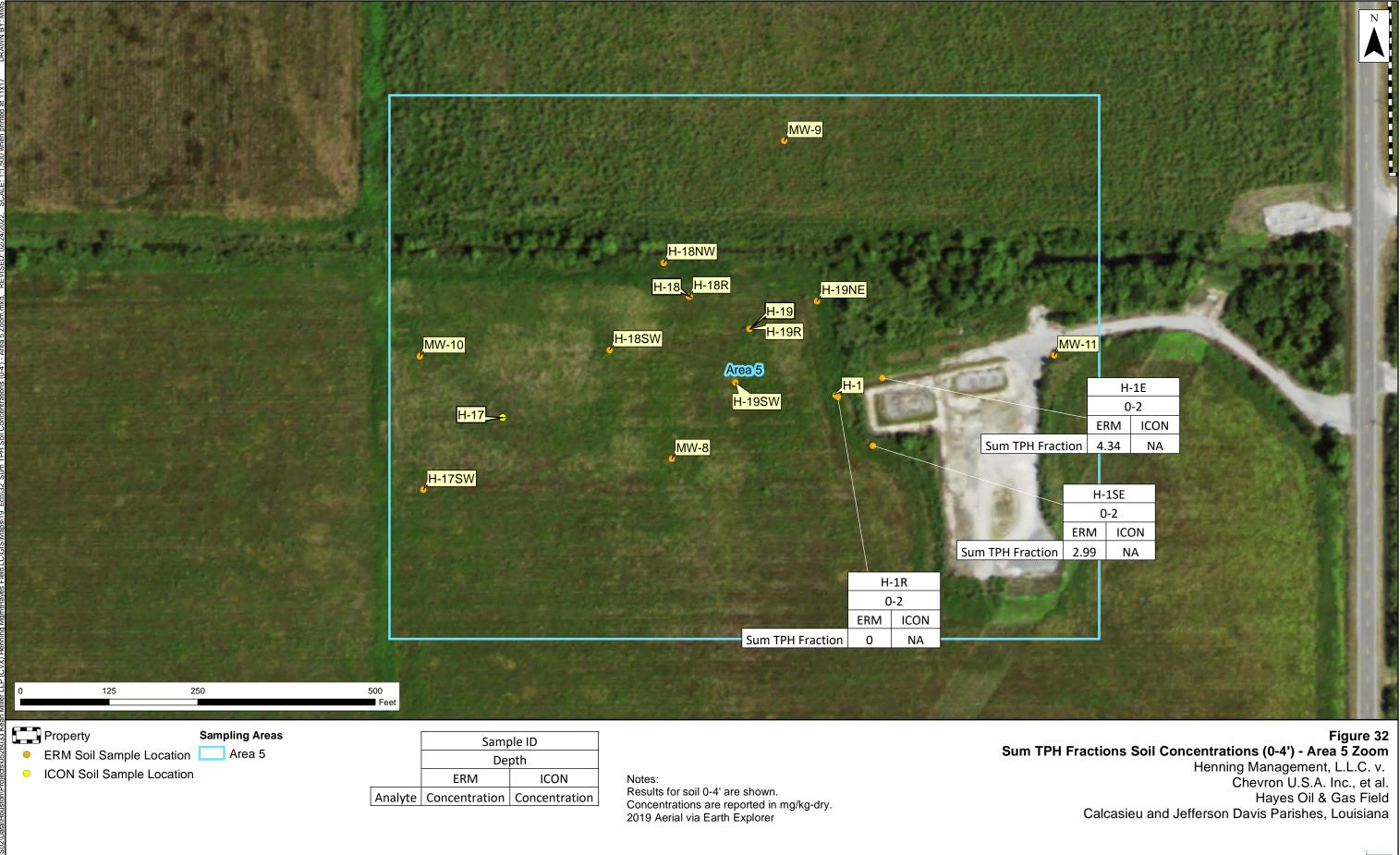


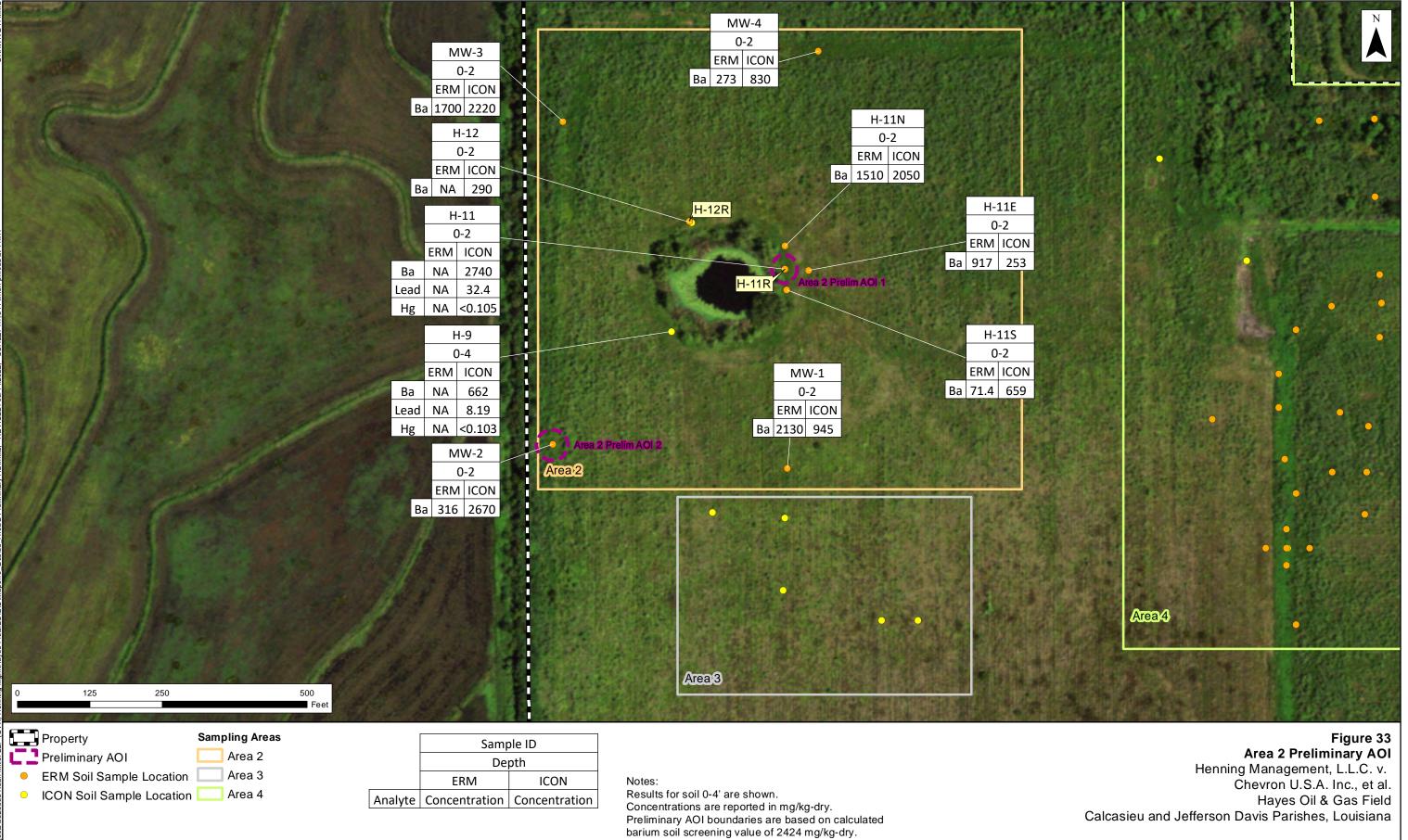












2019 Aerial via Earth Explorer

Source: Esri - World Imagery Map; NAD 1983 UTM Zone 15N

Environmental Resources Management www.erm.com 6

H-8 0-2	H-23 0-2 ERM ICON Ba 95.6 171 Lead 19.7 13 Hg <0.124 <0.0971 H-10 ERM ICON H-10 ERM ICON ERM ICON Lead NA 100 ERM ICON	H-21 H-7 0-2 0-4 ERM ICON Ba 136 389 Lead 8.57 12.8 Hg <0.123 <0.0963	0.8
Little polyidadius ERM ICON Ba NA 7000 Lead NA 15.9 Hg NA <0.108	H-8N 0-2 ERM ICON Ba 1890 3330 Ra 25	0-2 ERM ICON ERM	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
H-852 0-2 ERM ICON Ba 2240 838 H-22N		ERM Ba 236 Area 4 Prelim AOI 1 H-8R MW-7	ICON 0-2 H-8E
0-2 ERM ICON Ba 2270 1850 H-2 0- ERM Ba 62 Lead 6.86	Area 4 Prelim AOI 2 2 ICON 3130 10.8 H-22W H-22S	H-15R H-22R H-22S2 H-22E	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Hug <0.115 < 0 125 250	CO.0970 O-2 O-2 ERM ICON 500 Feet Ba 321 1980 Ba 2460 3050	0-2 0-2 ERM ICON ERM ICON Ba 272 351 Ba 644 984	0-2 Ba 753 515 ERM ICON 515 515 Ba 80.8 202 515
Property Sampling Area 2 Preliminary AOI Area 2 ERM Soil Sample Location Area 3 ICON Soil Sample Location Area 4	Sdiff		rted in mg/kg-dry. ries are based on calculated lue of 2424 mg/kg-dry.

Figure 34 Area 4 Preliminary AOI Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

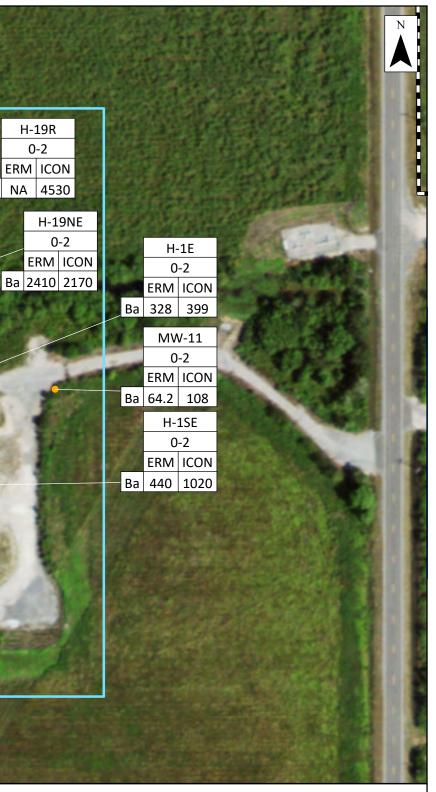
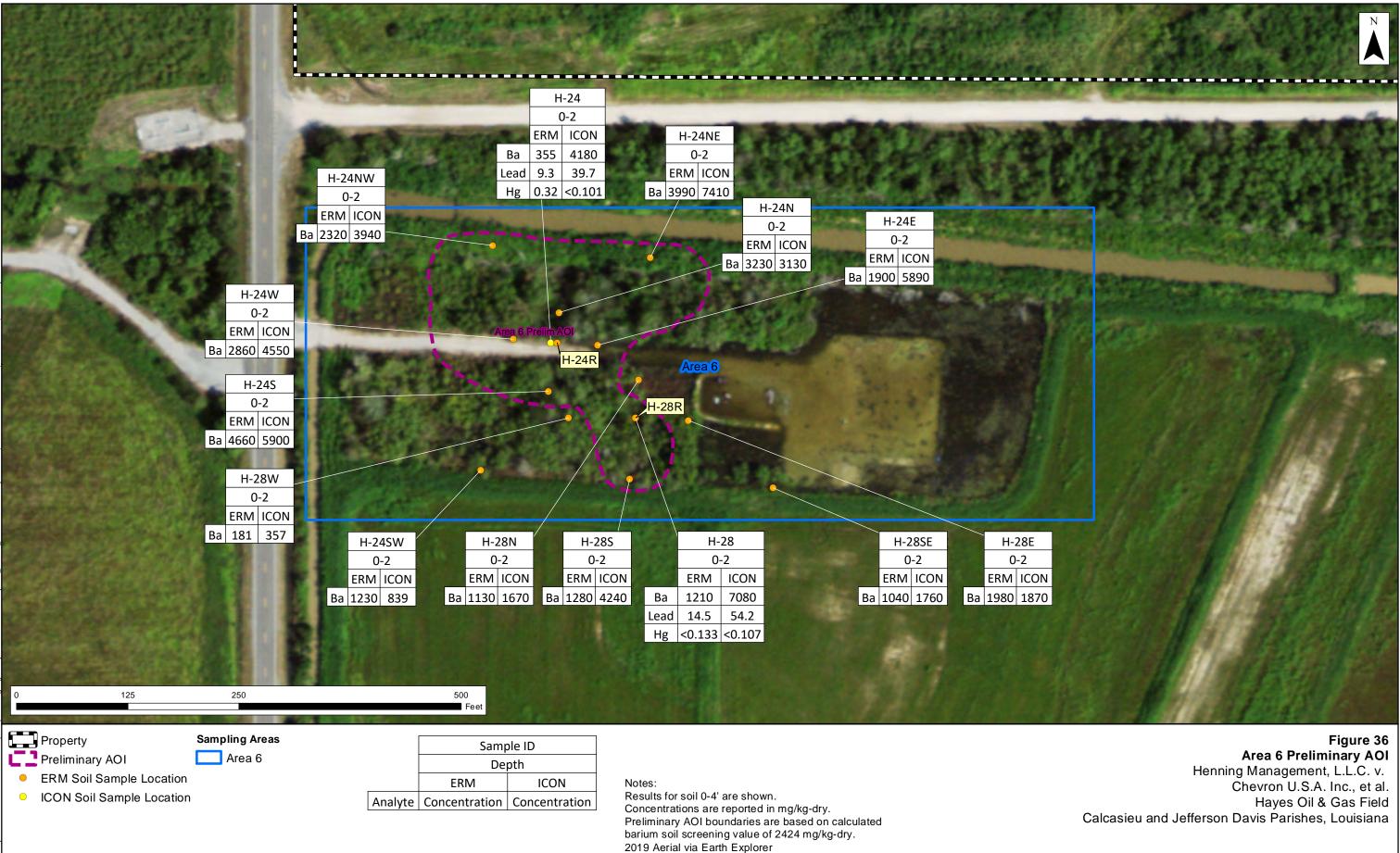
Environmental Resources Management www.erm.com

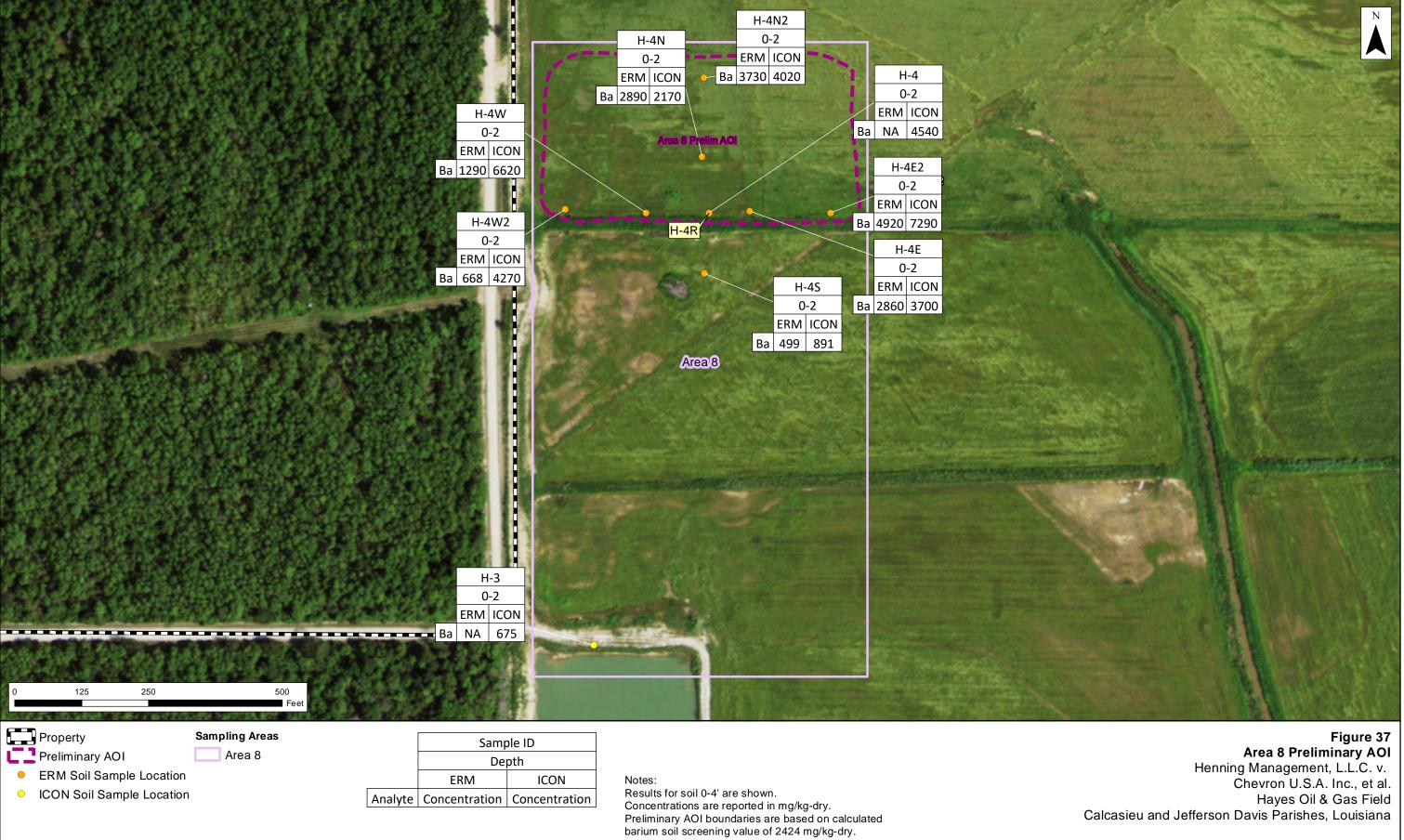
MW-9 0-2 ERM ICON Ba 36.6 136 H-18R H-18NW H-19 H-18 0-4 0-4 0-2 0-2 ERM ICON ERM ICON ERM ICON ERM ICON 6390 Ba NA 472 Ва NA Ba 682 628 Ва NA 3750 Ba NA 4530 NA 27.6 Lead NA 34 Lead H-18SW Hg | NA |<0.107 Hg NA <0.100 0-2 ERM ICON Ba 49 2020 MW-10 0-2 ERM ICON Ba 1210 473 Area 5 H-17 0-2 ERM ICON Ва NA 987 NA Lead 19.4 H-17SW Hg NA <0.100 MW-8 0-2 ERM ICON Ba 1600 191 H-19SW H-1R H-1 0-2 0-2 0-2 ERM ICON ERM ICON ERM ICON Ba 702 3950 Ва 2940 Ba NA 1940 NA Lead NA 24.4 Hg | NA |<0.106 125 250 500 Feet Property **Sampling Areas** Sample ID Preliminary AOI Area 5 Depth ERM Soil Sample Location 0 ERM ICON Notes: Results for soil 0-4' are shown. ICON Soil Sample Location Analyte Concentration Concentration Concentrations are reported in mg/kg-dry. Preliminary AOI boundaries are based on calculated

barium soil screening value of 2424 mg/kg-dry.

2019 Aerial via Earth Explorer

Source: Esri - World Imagery Map; NAD 1983 UTM Zone 15N


Figure 35 Area 5 Preliminary AOI Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

> Environmental Resources Management www.erm.com

6

6

2019 Aerial via Earth Explorer

Environmental Resources Management www.erm.com C

ERM

TABLES

15 March 2022

TABLE 1List of Vegetation Observed at the PropertyHenning Management, L.L.C. v. Chevron U.S.A. Inc., et al.Hayes Oil & Gas FieldCalcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Wetland Classification	Growth Habit	Aquatic
Alligatorweed	Alternanthera philoxeroides	OBL	Forb/herb	Yes
American black elderberry	Sambucus nigra	NA	Tree, Shrub	
American buckwheat vine	Brunnichia ovata	FACW	Vine	
American elm	Ulmus americana	FAC	Tree	
American pokeweed	Phytolacca americana	FACU	Forb/herb	
Annual blue-eyed grass	Sisyrinchium rosulatum	FAC	Forb/herb	
Annual bluegrass	Poa annua	FACU	Graminoid	
Annual marsh elder	Iva annua	FAC	Forb/herb	
Annual rabbitsfoot grass	Polypogon monspeliensis	FACW	Graminoid	
Annual yellow sweetclover	Melilotus indicus	FACU	Forb/herb	
Arrowhead	Sagittaria sp.	NA	Forb/herb	
Aster	Symphyotrichum sp.	NA NA	Forb/herb	
Bald cypress	Taxodium distichum	OBL	Tree	
	Eleocharis baldwinii	OBL	Graminoid	Yes
Baldwin's spikerush				res
Balloon vine	Cardiospermum halicacabum	FAC	Forb/herb, Vine	
Beaked cornsalad	Valerianella radiata	FAC	Forb/herb	
Bedstraw	Galium sp.	NA	Forb/herb	
Bermudagrass	Cynodon dactylon	FACU	Graminoid	
Bigpod sesbania	Sesbania herbacea	FACW	Subshrub, Forb/herb	
Birdeye speedwell	Veronica persica	NA	Forb/herb	
Bittercress	Cardamine sp.	NA	Forb/herb	
Black medick	Medicago lupulina	UPL	Forb/herb	
Black willow	Salix nigra	OBL	Tree	
Blackberry	Rubus sp.	NA	Shrub	
Bluestem	Andropogon sp.	NA	Graminoid	
Brazilian vervain	Verbena brasiliensis	NA	Subshrub, Forb/herb	
Bristlegrass	Setaria sp.	NA	Graminoid	
Bristly greenbrier	Smilax tamnoides	FAC	Shrub, Vine	
Broadleaf arrowhead	Sagittaria latifolia	OBL	Forb/herb	Yes
Burclover	Medicago polymorpha	FACU	Forb/herb	
Bushy bluestem	Andropogon glomeratus	FACW	Graminoid	
Buttercup	Ranunculus sp.	NA	Forb/herb	
Butterweed	Packera glabella	OBL	Forb/herb	
Canada goldenrod	Solidago altissima	FACU	Forb/herb	
Canada toadflax	Nuttallanthus canadensis	NA	Forb/herb	
Carolina canarygrass	Phalaris caroliniana	FACW	Graminoid	
Carolina geranium	Geranium carolinianum	NA	Forb/herb	
Carolina mosquitofern	Azolla caroliniana	OBL	Forb/herb	Yes
Carolina ponysfoot	Dichondra carolinensis	FAC	Forb/herb	165
				Vec
Cattail	Typha sp.	NA	Forb/herb	Yes
Cherrybark oak	Quercus pagoda	FACW		
Chinese privet	Ligustrum sinense	FAC	Tree, Shrub	
Chinese tallow	Triadica sebifera	FAC		
Climbing hempvine	Mikania scandens	FACW	Forb/herb, Vine	
Columbian watermeal	Wolffia columbiana	OBL	Forb/herb	Yes
Common persimmon	Diospyros virginiana	FAC	Tree	
Common rush	Juncus effusus	OBL	Graminoid	Yes
Common threesquare	Schoenoplectus pungens	OBL	Graminoid	Yes
Common water hyacinth	Eichhornia crassipes	OBL	Forb/herb	Yes
Common yellow oxalis	Oxalis stricta	UPL	Forb/herb	
Creeping primrose-willow	Ludwigia repens	OBL	Forb/herb	
Creeping woodsorrel	Oxalis corniculata	UPL	Forb/herb	
Crowpoison	Nothoscordum bivalve	FACU	Forb/herb	
Cuman ragweed	Ambrosia psilostachya	FAC	Forb/herb	
Curly dock	Rumex crispus	FAC	Forb/herb	
Delta arrowhead	Sagittaria platyphylla	OBL	Forb/herb	Yes
Dock	Rumex sp.	NA	NA	
	Eupatorium capillifolium	FACU	Forb/herb	

Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and state status data are not always applicable to taxa identified to genus.

Species observed growing in water during ERM site investigations are marked 'Yes' in the aquatic column.

References

TABLE 1 (Cont'd) List of Vegetation Observed at the Property Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Wetland Classification	Growth Habit	Aquatic
Dogwood	Cornus sp.	NA	Tree, Shrub	
Drummond red maple	Acer rubrum var drummondii	FAC	Tree	
Ducklettuce	Ottelia alismoides	OBL	Forb/herb	Yes
Duckweed	Lemna sp.	OBL	Forb/herb	Yes
Dwarf palmetto	Sabal minor	FACW	Tree, Shrub	
Eastern baccharis	Baccharis halimifolia	FAC	Tree, Shrub	
Eastern marsh fern	Thelypteris palustris	OBL	Forb/herb	
Eastern poison ivy	Toxicodendron radicans	FAC	Shrub, Subshrub, Forb/herb, Vine	
Ebony spleenwort	Asplenium platyneuron	FACU	Forb/herb	
Everlasting	Gamochaeta sp.	NA	Forb/herb	
Flatsedge	Cyperus sp.	NA	Graminoid	
Floating marshpennywort	Hydrocotyle ranunculoides	OBL	Forb/herb	Yes
Floating primrose-willow	Ludwigia peploides	OBL	Forb/herb	Yes
Florida mudmidget	Wolffiella gladiata	OBL	Forb/herb	Yes
Giant cane		FACW	Shrub, Subshrub, Graminoid	165
	Arundinaria gigantea			N _a -
Giant cutgrass	Zizaniopsis miliacea	OBL	Graminoid	Yes
Giant duckweed	Spirodela polyrhiza	OBL	Forb/herb	Yes
Giant ragweed	Ambrosia trifida	FAC	Subshrub, Forb/herb	
Goldenrod	Solidago sp.	NA	Forb/herb	
Grape	Vitis sp.	NA	Shrub, Vine	
Grass	Poaceae	NA	Graminoid	
Grassy arrowhead	Sagittaria graminea	OBL	Forb/herb	Yes
Green flatsedge	Cyperus virens	FACW	Graminoid	
Green hawthorn	Crataegus viridis	FACW	Tree, Shrub	
Greenbrier	Smilax sp.	NA	NA	
lairy buttercup	Ranunculus sardous	FAC	Forb/herb	
leartleaf nettle	Urtica chamaedryoides	FAC	Forb/herb	
Herb-of-grace	Bacopa monnieri	OBL	Forb/herb	
Herbwilliam	Ptilimnium capillaceum	OBL	Forb/herb	
Hercules' club	Zanthoxylum clava-herculis	FAC	Tree, Shrub	
Hydrocotyle	Hydrocotyle sp.	NA	Forb/herb	
ndian goosegrass	Eleusine indica	FACU	Graminoid	
ndian strawberry	Duchesnea indica	FACU	Forb/herb	
Japanese climbing fern	Lygodium japonicum	FAC	Forb/herb, Vine	
Japanese honeysuckle	Lonicera japonica	FACU	Vine	
lapanese privet	Ligustrum japonicum	FAC	Tree, Shrub	
lohnsongrass	Sorghum halepense	FACU	Graminoid	
lungle Rice	Echinochloa colona	FACW	Graminoid	
Knotweed (see Persicaria sp.)	Polygonum sp.	NA	Forb/herb	
Knotweed (see Polygonum sp)	Persicaria sp.	NA	Forb/herb	
ateflowering thoroughwort	Eupatorium serotinum	FAC	Forb/herb	
Little duckweed	Lemna obscura	OBL	Forb/herb	Yes
.ittle quakinggrass	Briza minor	FAC	Graminoid	
ive oak	Quercus virginiana	FACU	Tree	
ongleaf pondweed	Potamogeton nodosus	OBL	Forb/herb	Yes
ouisiana vetch	Vicia Iudoviciana	NA	Forb/herb, Vine	
.ow spearwort	Ranunculus pasillus	OBL	Forb/herb	Yes
owland rotala	Rotala ramosior	OBL	Forb/herb	
yreleaf sage	Salvia lyrata	FACU	Forb/herb	
<i>J</i> aidencane	Panicum hemitomon	OBL	Graminoid	Yes
/alabar sprangletop	Leptochloa fusca	FACW	Graminoid	
Aeadow garlic	Allium canadense	NA	Forb/herb	
Auskgrass	Chara sp.	NA	NA	Yes
	Saccharum baldwinii	OBL	Graminoid	165
Narrow plumegrass Narrowleaf plantain	Plantago lanceolata	FACU	Forb/herb	
•				
Dak	Quercus sp.	NA	Tree	
Paraguayan windmill grass	Chloris canterai	NA	Graminoid	
Pennsylvania everlasting	Gamochaeta pensylvanica	FACU	Forb/herb	

Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and state status data are not always applicable to taxa identified to genus.

Species observed growing in water during ERM site investigations are marked 'Yes' in the aquatic column.

References

TABLE 1 (Cont'd) List of Vegetation Observed at the Property Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Wetland Classification	Growth Habit	Aquatic
Peppervine	Nekemias arborea	FAC	Shrub, Vine	
Persian clover	Trifolium resupinatum	FACU	Forb/herb	
Philadelphia fleabane	Erigeron philadelphicus	FAC	Forb/herb	
Pickerelweed	Pontederia cordata	OBL	Forb/herb	Yes
Pinkladies	Oenothera speciosa	NA	Subshrub, Forb/herb	
Possumhaw	llex decidua	FACW	Tree, Shrub	
Poverty rush	Juncus tenuis	FAC	Graminoid	
Powderpuff	Mimosa strigillosa	FAC	Subshrub, Forb/herb	
Primrose-willow	Ludwigia sp.	NA	NA	
Purple passionflower	Passiflora incarnata	NA	Forb/herb, Vine	
Ragweed	Ambrosia sp.	NA	Forb/herb	
Red maple	Androsia sp. Acer rubrum	FAC	Tree	
•	Bromus catharticus	NA	Graminoid	
Rescuegrass			-	
Resurrection fern	Pleopeltis polypodioides	FACU	Forb/herb, Vine	N
Rice	Oryza sativa	OBL	Graminoid	Yes
Riverhemp	Sesbania sp.	NA	NA	
Rosemallow	Hibiscus sp.	NA	NA	
Roughleaf dogwood	Cornus drummondii	FAC	Tree, Shrub	
Roundfruit hedgehyssop	Gratiola virginiana	OBL	Forb/herb	Yes
Roundhead rush	Juncus validus	FACW	Graminoid	
Rush	Juncus sp.	NA	Graminoid	
Saltmeadow cordgrass	Spartina patens	FACW	Graminoid	
Sand spikerush	Eleocharis montevidensis	FACW	Graminoid	
Saw greenbrier	Smilax bona-nox	FAC	Shrub, Vine	
Sawtooth blackberry	Rubus argutus	FAC	Subshrub	
Scarlet pimpernel	Anagallis arvensis	FACU	Forb/herb	
Seaside goldenrod	Solidago sempervirens	FACW	Forb/herb	
Sedge	Carex sp.	NA	Graminoid	
Sensitive plant	Mimosa sp.	NA NA	NA	
·		OBL		Vac
Seven sisters	Crinum americanum		Forb/herb	Yes
Shield fern	Dryopteris carthusiana	FACW	Forb/herb	
Smooth beggartick	Bidens laevis	OBL	Forb/herb	Yes
Smut grass	Sporobolus indicus	NA	Graminoid	
Southern cattail	Typha domingensis	OBL	Forb/herb	Yes
Southern cutgrass	Leersia hexandra	OBL	Graminoid	Yes
Southern dewberry	Rubus trivialis	FACU	Subshrub, Vine	
Spanish moss	Tillandsia usneoides	FAC	Forb/herb, vine	
Spikerush	Eleocharis sp.	NA	Graminoid	
Spiny sowthistle	Sonchus asper	FACU	Forb/herb	
Spinyfruit buttercup	Ranunculus muricatus	FACW	Forb/herb	
Spotted lady's-thumb	Polygonum persicaria	FACW	Forb/herb	Yes
Spring forget-me-not	Myosotis verna	UPL	Forb/herb	
Spurge	Euphorbia sp.	NA	Forb/herb	
Sticky chickweed	Cerastium glomeratum	FACU	Forb/herb	
-	Galium aparine	FACU	Forb/herb, Vine	
Stickywilly				
Stiff dogwood	Cornus foemina	FACW	Tree, Shrub	
Stiff marsh bedstraw	Galium tinctorium	FACW	Forb/herb	
Sugarberry	Celtis laevigata	FACW	Tree, Shrub	
Sugarcane	Saccharum officinarum	FACU	Graminoid	
Sugarcane plumegrass	Saccharum giganteum	FACW	Graminoid	
Swamp smartweed	Polygonum hydropiperoides	OBL	Forb/herb	Yes
Sweetgum	Liquidambar styraciflua	FAC	Tree	
Thistle	Cirsium sp.	NA	Forb/herb	
Fhoroughwort	Eupatorium sp.	NA	Forb/herb	
Timothy canarygrass	Phalaris angusta	FACW	Graminoid	
Twoheaded water-starwort	Callitriche heterophylla	OBL	Forb/herb	Yes
Vasey's grass	Paspalum urvillei	FAC	Graminoid	
J J	Vicia sp.	NA	Forb/herb, Vine	

Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and state status data are not always applicable to taxa identified to genus.

Species observed growing in water during ERM site investigations are marked 'Yes' in the aquatic column.

References

TABLE 1 (Cont'd) List of Vegetation Observed at the Property Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Wetland Classification	Growth Habit	Aquatic
Water oak	Quercus nigra	FAC	Tree	
Water spangles	Salvinia minima	OBL	Forb/herb	Yes
Water tupelo	Nyssa aquatica	OBL	Tree	
Watermeal	Wolffia sp.	OBL	Forb/herb	Yes
Watermoss	Salvinia sp.	OBL	Forb/herb	Yes
Waterthread pondweed	Potamogeton diversifolius	OBL	Forb/herb	Yes
Wax myrtle	Morella cerifera	FAC	Tree, Shrub, Subshrub	
Weedy dwarfdandelion	Krigia caespitosa	FAC	Forb/herb	
White clover	Trifolium repens	FACU	Forb/herb	
White mulberry	Morus alba	FACU	Tree, Shrub	
Whitenymph	Trepocarpus aethusae	FACW	Forb/herb	
Willow oak	Quercus phellos	FACW	Tree	
Winged lythrum	Lythrum alatum var lanceolatum	NA	Subshrub, Forb/herb	
Woodsorrel	Oxalis sp.	NA	Forb/herb	
Woolly rosette grass	Dichanthelium scabriusculum	OBL	Graminoid	
Yellow foxtail	Setaria pumila	FAC	Graminoid	
Yellow nutsedge	Cyperus esculentus	FAC	Graminoid	
Yellow pond-lily	Nuphar lutea	OBL	Forb/herb	Yes
Yellow thistle	Cirsium horridulum	FAC	Forb/herb	
Total Observed	229			38

Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and state status data are not always applicable to taxa identified to genus.

Species observed growing in water during ERM site investigations are marked 'Yes' in the aquatic column.

References

TABLE 2 List of Birds Observed at the Site Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Diet	Species of Greatest Conservation Need
American Crow	Corvus brachyrhynchos	Omnivore	
American Goldfinch	Spinus tristis	Seeds	
American Kestrel	Falco sparverius	Small Animals	
American Pipit	Anthus rubescens	Insects	
Anhinga	Anhinga anhinga	Fish	
Bald Eagle	Haliaeetus leucocephalus	Fish	Yes
Barred Owl	Strix varia	Mammals	
Belted Kingfisher	Megaceryle alcyon	Fish	
Black Vulture	Coragyps atratus	Carrion	
Blue Jay	Cyanocitta cristata	Omnivore	
Blue-gray Gnatcatcher	Polioptila caerulea	Insects	
Boat-tailed Grackle	Quiscalus major	Omnivore	
Brown-headed Cowbird	Molothrus ater	Seeds	
Carolina Chickadee	Poecile carolinensis	Insects	
Carolina Wren	Thryothorus Iudovicianus	Insects	
Cedar Waxwing	Bombycilla cedrorum	Fruit	
Common Gallinule	Gallinula galeata	Plants	
Common Grackle	Quiscalus quiscula	Omnivore	
Common Yellowthroat	Geothlypis trichas	Insects	
Cooper's Hawk	Accipiter cooperii	Birds	
Crested Caracara	Caracara plancus	Omnivore	Yes
Downy Woodpecker	Dryobates pubescens	Insects	
Eastern Meadowlark	Sturnella magna	Insects	Yes
Eastern Phoebe	Sayornis phoebe	Insects	
Eastern Towhee	Pipilo erythrophthalmus	Omnivore	
Fish Crow	Corvus ossifragus	Omnivore	
Gray Catbird	Dumetella carolinensis	Insects	
Great Blue Heron	Ardea herodias	Fish	
Great Egret	Ardea alba	Fish	
Greater White-fronted Goose	Anser albifrons	Plants	
Greater Yellowlegs	Tringa melanoleuca	Aquatic Invertebrates	
Green Heron	Butorides virescens	Fish	
House Wren	Troglodytes aedon	Insects	
Killdeer	Charadrius vociferous	Insects	
King Rail	Rallus elegans	Aquatic Invertebrates	Yes
Laughing Gull	Leucophaeus atricilla	Aquatic Invertebrates	
Little Blue Heron	Egretta caerulea	Fish	Yes
Mottled duck	Anas fulvigula	Omnivore	Yes

Notes

Diet data provided by the The Cornell Lab (2022).

Louisiana Species of Greatest Conservation Need as per LDWF (2020).

References

Louisiana Department of Wildlife and Fisheries (LDWF). 2020. Louisiana's Animal Species of Greatest Conservation Need (SGCN) - Rare, Threatened, and Endangered Animals - 2020.

The Cornell Lab. 2022. All About Birds. Available: https://www.allaboutbirds.org/news/. Accessed February 2022.

TABLE 2 (Cont'd) List of Birds Observed at the Site Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Diet	Species of Greatest Conservation Need
Mourning Dove	Zenaida macroura	Seeds	
Neotropic Cormorant	Phalacrocorax brasilianus	Fish	
Northem Harrier	Circus hudsonius	Mammals	
Northern Bobwhite	Colinus virginianus	Plants	Yes
Northern Cardinal	Cardinalis cardinalis	Seeds	
Northern Mockingbird	Mimus polyglottos	Omnivore	
Orange-crowned Warbler	Leiothlypis celata	Insects	
Peregrine Falcon	Falco peregrinus	Birds	Yes
Pileated Woodpecker	Dryocopus pileatus	Insects	
Purple Martin	Progne subis	Insects	
Red-bellied Woodpecker	Melanerpes carolinus	Insects	
Red-shouldered Hawk	Buteo lineatus	Mammals	
Red-tailed Hawk	Buteo jamaicensis	Small Animals	
Red-winged Blackbird	Agelaius phoeniceus	Insects	
Ruby-crowned Kinglet	Regulus calendula	Insects	
Sandhill Crane	Antigone canadensis	Omnivore	Yes
Savannah Sparrow	Passerculus sandwichensis	Insects	
Sedge Wren	Cistothorus platensis	Insects	Yes
Snow Goose	Anser caerulescens	Plants	
Snowy Egret	Egretta thula	Fish	
Song Sparrow	Melospiza melodia	Insects	
Swamp Sparrow	Melospiza georgiana	Insects	
Tree Swallow	Tachycineta bicolor	Insects	
Turkey Vulture	Cathartes aura	Carrion	
Virginia Rail	Rallus limicola	Aquatic Invertebrates	
White Ibis	Eudocimus albus	Aquatic Invertebrates	
White-eyed Vireo	Vireo griseus	Insects	
White-faced Ibis	Plegadis chihi	Aquatic Invertebrates	
Wilson's Snipe	Gallinago delicata	Aquatic Invertebrates	
Wood duck	Aix sponsa	Plants	
Yellow-bellied Sapsucker	Sphyrapicus varius	Insects	
Yellow-rumped Warbler	Setophaga coronata	Insects	
Total Observed	71		10

Notes

Diet data provided by the The Cornell Lab (2022). Louisiana Species of Greatest Conservation Need as per LDWF (2020).

References

Louisiana Department of Wildlife and Fisheries (LDWF). 2020. Louisiana's Animal Species of Greatest Conservation Need (SGCN) - Rare, Threatened, and Endangered Animals - 2020.

The Cornell Lab. 2022. All About Birds. Available: https://www.allaboutbirds.org/news/. Accessed February 2022.

TABLE 3

List of Non-Avian Fauna Observed at the Site Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Trophic Level
Mammals		
Coyote	Canis latrans	Арех
Feral hog	Sus scrofa	Tertiary
Virginia opossum	Didelphis virginiana	Tertiary
Nine-banded armadillo	Dasypus novemcinctus	Secondary
Raccoon	Procyon lotor	Secondary
Nutria	Myocastor coypus	Primary
Rodent	Order Rodentia	Primary
Swamp rabbit	Sylvilagus aquaticus	Primary
White-tailed deer	Odocoileus virginianus	Primary
Reptiles		
American alligator	Alligator mississippiensis	Арех
Cottonmouth	Agkistrodon piscivorus	Tertiary
Eastern mud turtle	Kinosternon subrubrum	Tertiary
Rat snake	Elaphe sp.	Tertiary
Western rat snake	Pantherophis obsoletus	Tertiary
Western ribbon snake	Thamnophis proximus	Tertiary
Common five-lined skink	Plestiodon fasciatus	Secondary
Green anole	Anolis carolinensis	Secondary
Amphibians		
American bullfrog	Lithobates catesbeianus	Secondary
Blanchard's cricket frog	Acris blanchardi	Secondary
Cricket frog	Acris sp.	Secondary
Green frog	Lithobates clamitans	Secondary
Green tree frog	Hyla cinerea	Secondary
Leopard frog	Lithobates sphenocephalus utricularius	Secondary
Squirrel tree frog	Hyla squirrella	Secondary
Fish		
Least killifish	Heterandria formosa	Secondary
Mosquitofish	Gambusia affinis	Secondary
Terrestrial Invertebrates		
Ant lion	Family Myrmeleontidae	Secondary
Black-and-yellow mud dauber	Sceliphron caementarium	Secondary
Cricket	Superfamily Grylloidea	Secondary
Dragonfly	Infraorder Anisoptera	Secondary
Eastern pondhawk	Erythemis simplicicollis	Secondary
Leech	Subclass Hirudinea	Secondary
Organ pipe mud dauber	Trypoxylon politum	Secondary
Red imported fire ant	Solenopsis invicta	Secondary
Six-spotted fishing spider	Dolonedes titron	Secondary

Notes

Trophic levels are defined as follows:

Apex Predator: Carnivores; top predators at the top of the food chain without natural predators.

Tertiary Consumers: Carnivores and omnivores; organisms that consume primary and secondary consumers. **Secondary Consumers**: Omnivores and carnivores; organisms that consume primary consumers (herbivores). **Primary Consumer**: Herbivores; or organisms that consume plants and plant material (nectar, seeds, nuts, etc.).

TABLE 3 (Cont'd) List of Non-Avian Fauna Observed at the Site Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Trophic Level
Wolf spider	Family Lycosidae	Secondary
Ants	Family Formicidae	Primary
Apple snail	Promacea maculata	Primary
Bees	Clade Anthophila	Primary
Beetles	Order Cleoptera	Primary
Blue dasher	Pachydiplax longipennis	Primary
Butterflies	Order Lepidoptera	Primary
Caterpillar	Order Lepidoptera	Primary
Checkered butterfly	Burnsius communis	Primary
Common buckeye butterfly	Junonia coenia	Primary
Eastern carpenter bee	Xylocopa virginica	Primary
European honey bee	Apis mellifera	Primary
Fly	Order Diptera	Primary
Groundselbush beetle grub	Trirhabda bacharidis	Primary
Ladybug	Family Coccinellidae	Primary
Mayfly	Order Ephemeroptera	Primary
Monarch butterfly	Danaus plexippus	Primary
Pearl crescent	Phyciodes tharos	Primary
Ramshorn snail	Class Gastropoda	Primary
Red admiral	Vanessa atalanta	Primary
Skeletonizing leaf Beetle	Subfamily Galerucinae	Primary
Aquatic Invertebrates		
Devil crawfish	Lacunicambarus diogenes	Secondary
Digger crawfish	Creaserinus fodiens	Secondary
Grass shrimp	Palaemonetes sp.	Secondary
Red swamp crawfish	Procambarus clarkii	Secondary
Swamp dwarf crawfish	Cambarellus puer	Secondary
Fingernail clam	Sphaerium sp.	Primary
Total Observed	62	

Notes

Trophic levels are defined as follows:

Apex Predator: Carnivores; top predators at the top of the food chain without natural predators.

Tertiary Consumers: Carnivores and omnivores; organisms that consume primary and secondary consumers. **Secondary Consumers**: Omnivores and carnivores; organisms that consume primary consumers (herbivores). **Primary Consumer**: Herbivores; or organisms that consume plants and plant material (nectar, seeds, nuts, etc.).

	Samplin	g Area:			Α	rea 1													Area 2													
	•	nple ID:	H-:	25		1-26	Н	-27	H-9	H-11	H-11R	H	-11E	H	11N	H-1	1S	H-12			H-12R				MW-1		MM	V-2	M	N-3	N	1W-4
	Samp			2021		8/2021		/2021	11/5/2019	11/12/2019	11/19/2021		9/2021		9/2021	11/19/		11/13/2019			11/17/20				12/1/202	1	12/9/			/2021		8/2021
	Sample Dept			-2		0-2	-)-2	0-4	0-2	0-2		0-2)-2	0-:		0-2	0-1		1-2		2-3		0-2	-		-2		-2		0-2
		Screening		- 				<u> </u>		02	<u> </u>						-	• -			<u> </u>							-	•	<u> </u>		<u></u>
		-	ERM	ICON	ERM	ICON	ERM	ICON	ICON	ICON	ERM	ERM	ICON	ERM	ICON	ERM	ICON	ICON	ERM IC	ON E	RM I	ON E	RM ICON	N ER	RM IC	CON	ERM	ICON	ERM	ICON	ERM	ICON
Parameters	Units Valu	e (a)																														
29B/Misc																																
% Moisture	wt% N	'S	15.4	14.3	16.2	14.8	14.3	13.7	24.5	17.7	16.9	17.3	21.2	16.1	16.2	17.2	15.3	19.6	10.4 12	2.6 1	3.9 ⁻	5.8 1	7.3 16.8	3 18	3.2 ´	9.6	15.7	16.6	16.1	16.6	13.9	14.0
Cation Exchange Capacity (CEC)	meq/100g N	'S	26.6	24.7	24.3	25.1	28.3	30.8	32.7	29.2	NA	NA	NA	NA	NA	NA	NA	30.8	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	28.4	25.4
Electrical Conductivity (EC)	mmhos/cm N	'S	2.54	2.01	2	2.07	2.18	2.03	0.51	1.15	NA	NA	NA	NA	NA	NA	NA	2.33	NA 0.	60	NA	0.76	IA 1.46	6 1.0	02 (0.69	0.92	0.96	0.54	0.46	0.3	0.27
Exchangeable Sodium Percentage (ESP)	% N	'S	5.77	7.07	8.8	6.07	6.68	8.76	15.6	4.28	NA	NA	NA	NA	NA	NA	NA	11.8	5.45 4.	92 1	2.6	0.8 1	7.4 9.72	2	14	4.8	3.84	3.23	2.3	2.14	1.74	1.70
Sodium Adsorption Ratio (SAR)	Unitless N	'S	5.43	6.42	5.12	9.84	6.5	8.9	8.56	4.63	NA	NA	NA	NA	NA	NA	NA	14.4	6.14 5.	96 6	6.67 9	9.53 1	6.4 16.3	8 8.0	02 7	' .51	5.12	4.80	3.62	3.50	2.02	2.37
Soluble Calcium	meq/L N	'S	6.44	6.91	3.84	6.08	3.49	4.31	0.3	3.31	NA	NA	NA	NA	NA	NA	NA	2.09	1.29 1.	16 0).53 ().56 1	.03 0.86	6 1.3	36 ´	.38	2.5	2.27	1.65	1.19	0.96	0.63
Soluble Magnesium	meq/L N	'S	3.37	3.48	2.8	3.33	2.27	2.64	0.24	0.77	NA	NA	NA	NA	NA	NA	NA	0.84	0.39 0.	34 0).49 (0.34 0	.45 0.38	3 0.4	45 (0.56	0.74	0.64	0.65	0.35	0.58	0.32
Soluble Sodium	meq/L N	'S	12	14.6	9.34	21.3	11	16.6	4.42	6.61	NA	NA	NA	NA	NA	NA	NA	17.4	5.64 5.	17 4	1.76 0	5.40 1·	4.1 12.8	3 7.6	64	7.4	6.52	5.79	3.87	3.07	1.77	1.63
Chloride	mg/kg-dry N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40 42	2.9 7	/3.5 8	30.6 2	20 184	N	A	NA	NA	NA	NA	NA	NA	NA
True Total Barium	mg/kg-dry N	'S	260	203	97.3	535	124	165	697	3180	NA	NA	NA	NA	NA	NA	NA	334	NA N	A I	NA	NA M	IA NA	N	IA	NA	2250	4250	2710	3430	1090	1150
Leachate and SPLP																																
Leachate Chloride	mg/L N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
SPLP Chloride	mg/L N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
SPLP Sodium	mg/L N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
SPLP Barium	mg/L N	'S	NA	NA	NA	NA	NA	NA	NA	NA	0.206	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
SPLP Lead	mg/L N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	JA NA	N	A	NA	NA	NA	NA	NA	NA	NA
SPLP Mercury	mg/L N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
SPLP Strontium	mg/L N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Metals																																
Arsenic		8	2.48	3.58	2.15	3.33	1.97	2.64	4.8	5.89	NA	NA	NA	NA	NA	NA	NA	<1.99	NA N	A I	NA	NA N	IA NA	N		NA	NA	NA	NA	NA	NA	NA
Barium	mg/kg-dry 24	24	149	160	149	389	46.6	103	662	2740	NA	917	253	1,510	2,050	71.4	659	290	NA N	A I	NA	NA M	IA NA	2,1	130	945	316	2670	1700	2220	273	830
Cadmium	mg/kg-dry 0	8	<0.317	<0.497	<0.317	<0.498	<0.309	<0.499	<0.482	<0.498	NA	NA	NA	NA	NA	NA	NA	<0.498	NA N	A I	NA	NA N	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/kg-dry 8	4	7.58	8.95	7.17	9.63	5.39	6.77	8.16	9.83	NA	NA	NA	NA	NA	NA	NA	10.1	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Lead	mg/kg-dry 4	4	11	12.6	8.48	10.6	9.15	9.62	8.19	32.4	NA	NA	NA	NA	NA	NA	NA	10.5	NA N	A I	NA	NA M	IA NA	N	IA	NA	NA	NA	NA	NA	NA	NA
Mercury	mg/kg-dry 0.	11	<0.117	<0.0974	<0.119	<0.0955	<0.116	<0.0996	<0.103	<0.105	NA	NA	NA	NA	NA	NA	NA	<0.106	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Selenium	mg/kg-dry		NA	<3.97	NA	<3.99	NA	<3.99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Silver	mg/kg-dry 4	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	JA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Strontium	mg/kg-dry 2)3	16	19.6	18.9	21.9	17	17.7	34.5	110	NA	NA	NA	NA	NA	NA	NA	20	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/kg-dry 1	10	8.17	12	9.39	13.3	5.05	6.92	15	121	NA	NA	NA	NA	NA	NA	NA	15.6	NA N	A I	NA	NA M	JA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Hydrocarbons																																
TPH-D	mg/kg-dry N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	JA NA	N	A	NA	NA	NA	NA	NA	NA	NA
TPH-O		'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	JA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aliphatic C6-C8	mg/kg-dry N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA N	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C8-C10		′S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C10-C12		'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C12-C16	mg/kg-dry N		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C16-C35		′S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aromatic >C8-C10	mg/kg-dry N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aromatic >C10-C12		′S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aromatic >C12-C16	mg/kg-dry N	'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aromatic >C16-C21		′S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	IA NA	N	A	NA	NA	NA	NA	NA	NA	NA
Aromatic >C21-C35		'S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A I	NA	NA M	JA NA	N	A	NA	NA	NA	NA	NA	NA	NA

Concentrations are reported as or converted to dry weight. NA - Not Available; NS - No Standard

	S	ampling Area:				Are	ea 3														Area 4										
	-	Sample ID:	H	-13	H-14		-29	Гн	-30	H-31	H-2	H-7	H-8	H-8R	Тн	-8E	H-	8N	Н-8	SN2		·8S	H	-8S2	Н	I-8W	H-10	H-15	H-15R	H-	-15E
		Sample Date:		4/2019	11/18/2019		2/2021	_	2/2021	4/12/2021	10/30/2019		11/5/2019	0 11/11/2021	11/1	1/2021	11/11	/2021	1/11/	2022	11/11		_	1/2022	11/1	1/2021	11/6/2019	11/19/2019	11/18/2021		9/2021
	Sample	e Depth (feet):)-2	0-2)-2	_)-2	0-2	0-2	0-4	0-2	0-2	_)-2		-2	0.			-2		0-2	_	0-2	0-2	0-2	0-2		0-2
	T T	Soil Screening								-																					1
		Value (a)	ERM	ICON	ICON	ERM	ICON	ERM	ICON	ICON	ICON	ICON	ICON	ERM	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ICON	ICON	ERM	ERM	ICON
Parameters	Units	value (a)																													
29B/Misc																															
% Moisture	wt%	N/S	18.7	17.4	17.2	20.4	20.6	18.4	17.3	21.3	14.9	21.9	12.7	11.1	18.1	20.3	13.3	13	19.2	20.6	14.3	13.1	15	16.9	20	18.5		15.6	NA	22.2	23.1
Cation Exchange Capacity (CEC)	meq/100g	N/S	28.8	32.1	25.8	44	33.4	32.8	25.4	38.5	30.2	23.1	11.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.9	27.6	NA	NA	NA
Electrical Conductivity (EC)	mmhos/cm	N/S	1.77	1.28	1.48	0.78	0.68	2.96	3.08	0.99	0.38	0.6	0.7	NA	NA	NA	NA	NA	1.11	1.1	NA	NA	1.27	1.83	NA	NA	0.36	1.44	NA	NA	NA
Exchangeable Sodium Percentage (ESP)	%	N/S	4.51	4.67	7.94	2.83	2.28	2.92	0.87	2.67	1.14	7.22	1.82	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.21	5.07	NA	NA	NA
Sodium Adsorption Ratio (SAR)	Unitless	N/S	7.05	6.4	9.04	3.05	2.75	1.87	2.62	4.9	1.42	7.13	2.63	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.88	6.69	NA	NA	NA
Soluble Calcium	meq/L	N/S	3.93	2.91	1.52	2.38	1.79	24.1	22	1.85	1.36	0.57	3.11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.49	2.06	NA	NA	NA
Soluble Magnesium	meq/L	N/S	1.15	0.88	0.53	0.9	0.71	5.52	5.84	0.62	0.46	0.32	0.84	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.28	0.9	NA	NA	NA
Soluble Sodium	meq/L	N/S	11.2	8.81	9.13	3.91	3.08	7.18	9.78	5.45	1.35	4.77	3.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.01	8.14	NA	NA	NA
Chloride	mg/kg-dry	N/S	NA 4.450	NA 1010	NA	NA 100	NA	NA	NA 170	NA 100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
True Total Barium	mg/kg-dry	N/S	1,450	1610	891	408	477	464	170	163	1230	1030	22000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	850	1420	NA	NA	NA
Leachate and SPLP		N//0	N L A	N L A	N L O	N.L.O.	N L A	N L A	NLA	N L A	N I A	N.L.O.	N L A	N.I. 0.	b L A	N.L.O.	N L A	N L A	N L A	N L A	N.L.O.	N L A	N L A	N.L.O.	N I 0	N L A	N.I. 0	N.L.O.	N.L.O.	N L A	
Leachate Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Chloride SPLP Sodium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 1.02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Barium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.83	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Lead SPLP Mercury	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Mercury SPLP Strontium	mg/L	N/S N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	<0.000200	NA	NA
Metals	mg/L	IN/3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	ma/ka day	18	2.05	E 24	2.4	2.78	2.61	<1.25	<2.00	<2.00	5.47	5.79	9.46	NLA	NA	NA	NLA	NLA	NIA	NIA	NLA	NLA	NIA	NLA	NIA	NIA	4.81	4.68	NIA	NA	NIA
Arsenic Barium	mg/kg-dry	2424	2.05 64	5.34 1360	3.4 862	132	2.61 354	94.2	137	<2.00 85	1100	900	9.40 7000	NA	420	803	1.890	3330	2,520	3000	2.680	2530	2,240	838	649	2540		4.00	NA	43.7	79.7
Cadmium	mg/kg-dry	0.8	<0.311	<0.500	<0.488	< 0.324	<0.496	<0.311			<0.489	<0.47	< 0.463	NA	420 NA	NA	1,890 NA	3330 NA	2, <u>520</u>	3000 NA	2,000 NA	2330 NA	2,240 NA	NA	049 NA	2340 NA	<0.497	<0.494	NA	43.7 NA	79.7 NA
Chromium	mg/kg-dry mg/kg-dry	84	9.56	11.3	8.43	8.56	10.1	8.43	9.27	9.45	11.5	10.9	9.58	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.55	10.7	NA	NA	NA
Lead	mg/kg-dry	44	9.75	11.7	10.3	8.63	12.3	7.41	8.85	9.43	13.5	11.8	15.9	NA	NA	NA	NA	NA	NA	NA		NA NA	NA		NA	NA	10.2	16.9	NA	NA	NA
Mercury	mg/kg-dry	0.11	<0.133	<0.100	<0.100	<0.117	<0.107	<0.122			<0.101	<0.103	<0.108	NA	NA	NA	NA	NΔ	NA	NA	NA	NA	NA	NA	NA	NA	<0.101	0.114	NA	NA	NA
Selenium	mg/kg-dry	1	<2.5	×0.100	<0.100 NA	NA	<3.97	NA	<3.99	<3.99	NA	NA	NA	NA	NA	NA	ΝA	NΔ	NA	NA	NA	NΔ	NA	NA	NA	NA	<0.101 NA	NA	NA	NA	NA
Silver	mg/kg-dry	4.2	<0.311	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Strontium	mg/kg-dry	203	NA	55.9	41.4	19.7	27.3	14.1	18.4	16.8	55.8	55	112	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	27.4	80.2	NA	NA	NA
Zinc	mg/kg-dry	140	6.11	31.6	15.5	11	14.7	8.14	10.4	10.3	22.9	20.1	20.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.4	18.1	NA	NA	NA
Hydrocarbons	ing/itg dry	140	0.11	01.0	10.0		14.7	0.14	10.4	10.0	22.0	20.1	20.0	1.17.1	1.47.5	1 47 4	1 1/7 1	1 1/7 1	1.47.4	1 1/ 1	1.47.5	1 1/ 1	1 1/7 1	1.47.4	1.17.1	1 1/7 1	12.7	10.1	1.47.4	1 1/7 1	
TPH-D	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-O	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic C6-C8	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C8-C10	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C10-C12	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C12-C16	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C16-C35	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C8-C10	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C10-C12	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C12-C16	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C16-C21	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C21-C35	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
				2	1						1			1			5			2										1	

Concentrations are reported as or converted to dry weight. NA - Not Available; NS - No Standard

	<u>,</u>	Sampling Area:															Area 4														
		Sample ID:	H-1	5N	Н-	15S	Н-1	5W	Гн	-16	Н-	16R	H-1	6F	Н-1	16N		16S	H-1	6W	H-20	H-	21	T		H-	21R			H-:	-21W
		Sample Date:	11/18			9/2021	11/18	-)/2019		5/2021	11/11			1/2021	11/11		11/11/		3/29/2021	3/30/					7/2021				8/2021
	Samn	le Depth (feet):		-2)-2		-2		-2)-2	0.			-2		-2	0-		0-2		-2		0-1		-2	2	-3		0-2
				- 				Ē.	,	<u> </u>		<u> </u>		-	v	<u> </u>		–		-	02	•	Ē.	Ì				-			<u></u>
		Soil Screening	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON
Parameters	Units	Value (a)																													
29B/Misc																															
% Moisture	wt%	N/S	17.7	16.9	19.9	22.0	15.5	15.3	15.9	16.6	15.1	14.3	13.4	16.5	16.1	14.2	19	18.6	16.7	20	17.5	19.1	18.9	16.1	15.0	16	15.7	16.7	19.4	18.1	16.2
Cation Exchange Capacity (CEC)	meq/100g	N/S	NA	NA	NA	NA	NA	NA	31	29.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	34.2	29.2	37.7	NA	NA	NA	NA	NA	NA	NA	NA
Electrical Conductivity (EC)	mmhos/cm	N/S	NA	NA	NA	NA	NA	NA	1.13	1.28	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.91	2.06	1.64	0.64	0.60	0.79	0.63	1.32	1.15	0.68	0.88
Exchangeable Sodium Percentage (ESP)	%	N/S	NA	NA	NA	NA	NA	NA	5.51	6.81	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.77	23.8	12.1	4.05	5.77	16.3	14.9	24.7	20.8	4.63	5.43
Sodium Adsorption Ratio (SAR)	Unitless	N/S	NA	NA	NA	NA	NA	NA	6.74	7.94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.25	12.9	9.37	3.79	4.62	7.45	6.25	11.5	12.4	4.72	5.97
Soluble Calcium	meq/L	N/S	NA	NA	NA	NA	NA	NA	1.6	1.39	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.47	1.27	1.39	1.98	1.14	0.84	0.72	1.03	0.73	1.38	1.34
Soluble Magnesium	meq/L	N/S	NA	NA	NA	NA	NA	NA	0.56	0.62	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.79	0.54	0.64	0.7	0.56	0.57	0.45	0.76	0.35	0.69	0.75
Soluble Sodium	meq/L	N/S	NA	NA	NA	NA	NA	NA	7.01	7.96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.15	12.3	9.44	4.39	4.26	6.26	4.77	10.9	9.08	4.8	6.11
Chloride	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	242	218	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	61.5	60.1	128	96.1	271	371	94.6	152
True Total Barium	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	5,100	6540	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	476	349	402	NA	NA	NA	NA	NA	NA	NA	NA
Leachate and SPLP																															
Leachate Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Sodium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Barium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	0.472	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Lead	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	0.0147	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Mercury	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	< 0.000200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Strontium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals	Ĭ																														
Arsenic	mg/kg-dry	18	NA	NA	NA	NA	NA	NA	3.59	7.79	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.23	3.1	3.7	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/kg-dry	2424	109	85.9	80.8	202	753	515	221	4390	71.1	2160	236	95.5	230	785	486	68.8	44.9	1760	430	136	389	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	mg/kg-dry	0.8	NA	NA	NA	NA	NA	NA	<0.29	<0.491	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.500	<0.303	<0.500	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/kg-dry	84	NA	NA	NA	NA	NA	NA	9.39	19.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11.5	5.81	10.1	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/kg-dry	44	NA	NA	NA	NA	NA	NA	11.2	54.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.18	8.57	12.8	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	mg/kg-dry	0.11	NA	NA	NA	NA	NA	NA	0.157	0.15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.103	<0.123	< 0.0963	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	mg/kg-dry	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.400	NA	<4.00	NA	NA	NA	NA	NA	NA	NA	NA
Silver	mg/kg-dry	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Strontium	mg/kg-dry	203	NA	NA	NA	NA	NA	NA	48.2	148	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	37.7	77.6	90.6	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/kg-dry	140	NA	NA	NA	NA	NA	NA	22.1	98.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.4	8.91	35.1	NA	NA	NA	NA	NA	NA	NA	NA
Hydrocarbons																													1		
TPH-D	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-O	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic C6-C8	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C8-C10	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C10-C12	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C12-C16	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C16-C35	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C8-C10	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C10-C12	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C12-C16	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C16-C21	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C21-C35	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	J		*	*	*	*	*				*		*	*			*		*	*	*	*						*	*		

Concentrations are reported as or converted to dry weight. NA - Not Available; NS - No Standard

		Sampling Area:									Area 4													Area 5				
		Sample ID:	H	-22	H-22R	H-1	22E	H-	22N	H-	22S	H-	22 S 2	H-2	22W	н.	-23	M	W-6	H-1	Н	-1R	ГЦ	-1E	H-'	ISE	H-17	H-18
		Sample Date:		2021	11/11/2021	11/11		11/11			1/2021		1/2022		1/2021	4/5/2			8/2021	10/29/2019		3/2021		3/2021) 11/21/2019
	Same	ple Depth (feet):		-2	0-2		-2		-2)-2		0-2)-2		-2)-2	0-2)-2)-2		8/2021 -2	0-2	
			0	- <u>-</u>	0-2	0	-2	0	-2		J-2		0- <u>2</u>	U U	J-Z	0	-2		J-2 	0-2		J-Z		-2		-2	0-2	0-4
		Soil Screening	ERM	ICON	ERM	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ICON	ICON
Parameters	Units	Value (a)		loon												2		2.00		loon			_				10011	loon
29B/Misc																												++
% Moisture	wt%	N/S	14.4	13.8	16.3	13.4	16.2	11	10.3	12.7	10.6	14.7	14.7	19.6	22.6	19.6	18	19.5	20.1	13.6	17.0	15.4	19.9	18.8	10.4	14.3	16.7	18.5
Cation Exchange Capacity (CEC)	meg/100g	N/S	26	30.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.5	27	NA	NA	20.7	NA	NA	NA	NA	NA	NA	17.9	34.4
Electrical Conductivity (EC)	mmhos/cm	N/S	1.7	1.88	NA	NA	NA	NA	NA	NA	NA	0.67	0.68	NA	NA	0.75	0.6	1.25	1.58	1.32	0.94	2.07	NA	NA	0.58	0.52	1.06	1.64
Exchangeable Sodium Percentage (ESP)	%	N/S	2.77	5.19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.68	4.58	9.55	7.70	5.12	NA	NA	NA	NA	1.00	1.40	6.97	17.6
Sodium Adsorption Ratio (SAR)	Unitless	N/S	3.87	4.69	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.19	3.34	8.18	8.76	5.79	NA	NA	NA	NA	1.99	2.84	7.1	14.6
Soluble Calcium	meq/L	N/S	3.92	5.21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.44	1.04	2.22	3.41	2.58	NA	NA	NA	NA	2.57	1.63	1.07	0.79
Soluble Magnesium	meq/L	N/S	1.71	2.27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.13	0.79	0.57	0.73	0.77	NA	NA	NA	NA	1.03	0.67	0.54	0.45
Soluble Sodium	meq/L	N/S	6.5	9.08	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.61	3.2	9.65	12.6	7.49	NA	NA	NA	NA	2.68	3.04	6.39	11.5
Chloride	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	203	216	NA	NA	NA	NA	NA	NA	NA	NA	NA
True Total Barium	mg/kg-dry	N/S	3,790	8220	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	243	208	NA	NA	4210	NA	NA	NA	NA	NA	NA	1090	10900
Leachate and SPLP																												
Leachate Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Sodium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Barium	mg/L	N/S	NA	NA	1.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.41	NA	NA	NA	NA	NA	NA	NA
SPLP Lead	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Mercury	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Strontium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																												
Arsenic	mg/kg-dry	18	<1.17	3.45	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.25	5.32	NA	NA	7.03	NA	NA	NA	NA	NA	NA	5.02	7.33
Barium	mg/kg-dry	2424	62	3130	NA	644	984	2,270	1850	2460	3050	272	351	321	1980	95.6	171	NA	NA	2940	NA	1940	328	399	440	1020	987	6390
Cadmium	mg/kg-dry	0.8	<0.293	<0.499	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.325	<0.498	NA	NA	<0.493	NA	NA	NA	NA	NA	NA	<0.468	<0.493
Chromium	mg/kg-dry	84	7.56	7.36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.9	12.7	NA	NA	13.5	NA	NA	NA	NA	NA	NA	9.89	24.8
Lead	mg/kg-dry	44	6.86	10.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.7	13	NA	NA	24.4	NA	NA	NA	NA	NA	NA	19.4	27.6
Mercury	mg/kg-dry	0.11	<0.115	<0.0970	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.124	< 0.0971	NA	NA	<0.106	NA	NA	NA	NA	NA	NA	<0.100	<0.100
Selenium	mg/kg-dry	1	NA	<3.99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	mg/kg-dry	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Strontium	mg/kg-dry		26.4	41.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.3	31	NA	NA	78.9	NA	NA	NA	NA	NA	NA	76.7	124
Zinc	mg/kg-dry	140	9.26	14.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.5	18	NA	NA	17	NA	NA	NA	NA	NA	NA	21.8	30.2
Hydrocarbons		N//O	N I A	A L A	N L A	N I A	N.L.A	L I A	N L A	N.I.A	A L A	h I A	N.I.A.	A L A	A L A	A L A	A L A	N I A	N.I.A.	N. L. A	N. L.A.	N.L.A.	N.I.A	A L A	N.L.A.	L I A	N.L.A	6.1.A
TPH-D	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-O	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 4.24	NA	NA 2.00	NA	NA	NA
Aliphatic C6-C8	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.89	NA	4.34	NA	2.99	NA	NA	NA
Aliphatic >C8-C10	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5.8	NA	<6.17	NA	<5.83	NA	NA	NA
Aliphatic >C10-C12	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.41	NA	<2.5	NA	<2.23	NA	NA	NA
Aliphatic >C12-C16	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.41	NA	<2.5	NA	<2.23	NA	NA	NA
Aliphatic >C16-C35 Aromatic >C8-C10	mg/kg-dry	N/S N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.82 <3.87	NA	<4.99 <4.11	NA	<4.46 <3.88	NA	NA	NA
	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA		NA		NA	NA	NA
Aromatic >C10-C12 Aromatic >C12-C16	mg/kg-dry	N/S	NA	NA	NA	NA	NA	INA NIA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.2	NA	<1.25	NA	<1.12	NA	NA	NA
Aromatic >C12-C16 Aromatic >C16-C21	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.41	NA	<2.5	NA	<2.23	NA	NA	NA
Aromatic >C16-C21 Aromatic >C21-C35	mg/kg-dry	N/S N/S	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	<2.41 <2.41	NA NA	<2.5 <2.5	NA	<2.23 <2.23	NA	NA	NA
AIUIIIaliu 2021-000	mg/kg-dry	N/0	NA	NA	11/7	NA	11/1	I N/A	NA	IN/A	NA	NA	NA	NA	1 11/-1	INA	NA	1 1/-1	NA	11/4	~2.41	INA	NZ.0	INA	~2.23	I WA	IN/A	NA

Concentrations are reported as or converted to dry weight. NA - Not Available; NS - No Standard

(a) Based on higher of background and lowest Eco-SSL, except barium.
 Barium is based on calculated soil screening value of 2424 mg/kg-dry.
 Yellow shaded cell indicates exceedance of soil screening value.

HOU\Projects\0526033\DM\29970H(tb4).xlsx

	9	Sampling Area:														Area 5													
		Sample ID:				H-′	18R				H-1	8NW	H-1	8SW	H-19		-19R	H-1	9NE	H-1	9SW	M	W-8	M	W-9	MV	V-10	MV	W-11
		Sample Date:				12/3	/2021				12/3	/2021	12/14	1/2021	11/22/2019	12/14	4/2021	12/14	/2021	12/14	1/2021	12/14	4/2021	12/2	/2021	12/13	3/2021	12/7	7/2021
	Samp	le Depth (feet):	0)-1	0)-4		-2	2	-3)-2		-2	0-2		0-2		-2		-2		-2)-2		-2		0-2
		Soil Screening	ERM		ERM	ICON	ERM		ERM	ICON			ERM	ICON		ERM			ICON	EDM	ICON	EDM	ICON	ERM			ICON	EDM	ICON
Parameters	Units	Value (a)		ICON	ERINI	ICON		ICON			ERM	ICON			ICON	ERIVI	ICON	ERM	ICON	ERM		ERM	ICON	ERIVI	ICON	ERM	ICON	ERM	ICON
29B/Misc	onito											1																	+'
% Moisture	wt%	N/S	15.7	17.3	21.4	17.9	19.5	20.2	16.4	17.8	13.4	14.4	16.6	15.9	16	15.4	18.6	14.0	14.5	17.5	16.8	12.9	15.4	13.9	14.2	12.9	13.3	16.3	16.9
Cation Exchange Capacity (CEC)	meq/100g	N/S	NA	25.5	NA	NA	NA																						
Electrical Conductivity (EC)	mmhos/cm	N/S	1.26	1.08	NA	NA	1.37	1.71	0.85	1.3	NA	NA	NA	1.00	1.34	NA	NA	NA	2.07	NA	0.60	0.83	0.45	0.77	0.81	0.80	0.67	2.38	2.99
Exchangeable Sodium Percentage (ESP)	%	N/S	12	10.5	NA	NA	13.7	14.4	14.3	18.6	NA	NA	NA	NA	4.82	NA	NA	NA	NA	NA	NA	2.74	6.20	7.3	8.28	2.21	4.57	10.4	11.0
Sodium Adsorption Ratio (SAR)	Unitless	N/S	10.7	9.81	NA	NA	16.1	19	13.5	18.7	NA	NA	NA	NA	5.78	NA	NA	NA	NA	NA	NA	4.04	5.20	7.15	7.38	4.22	4.84	10.2	10.9
Soluble Calcium	meg/L	N/S	1.17	1.06	NA	NA	0.65	0.83	0.35	0.4	NA	NA	NA	NA	2.25	NA	NA	NA	NA	NA	NA	2.90	0.60	0.91	1	2.09	1.75	3.68	4.16
Soluble Magnesium	meq/L	N/S	0.66	0.5	NA	NA	0.44	0.48	0.28	0.32	NA	NA	NA	NA	0.92	NA	NA	NA	NA	NA	NA	0.57	0.22	0.62	0.59	1.03	0.97	1.84	2.04
Soluble Sodium	meq/L	N/S	10.3	8.76	NA	NA	11.9	15.3	7.59	11.3	NA	NA	NA	NA	7.29	NA	NA	NA	NA	NA	NA	5.33	3.34	6.27	6.57	5.27	5.65	16.9	19.2
Chloride	mg/kg-dry	N/S	NA	745	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								
True Total Barium	mg/kg-dry	N/S	NA	9360	NA	4120	661	NA	NA																				
Leachate and SPLP		11/0	1.17.1	1.47.7	1.47.7	1.47.1	1.1/1	1.47.3	1.47.7	1.47.3	1.47.1	1.47.7	1.47.7	1.47.7		1.47.7	1.47.7	1.07.1	1.47.1	1.47.3	1.47.1	1.47.3	1.1/1	1.47.7	1.17.1	1120			
Leachate Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
SPLP Chloride	ma/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
SPLP Sodium	ma/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
SPLP Barium	ma/L	N/S	NA	NA	0.885	NA	0.775	NA	12.4	NA	NA	NA																	
SPLP Lead	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
SPLP Mercury	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
SPLP Strontium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Metals		100	1.47.4	1.47.4	1.47.5	1.47.4	1.47.4	1.47.4	1.47.5	1473	1 47 4	1.47.5	1 1/ 1	1 17 1	1.47.4	1 1/ 1	1.07.5	1.07.0	1.17.1	1.47.4	1.47.5	1 47 4	1.47.1	1 17 1	1.47.5	1.47.5	1.47.4		
Arsenic	mg/kg-dry	18	NA	5.87	NA	NA	NA																						
Barium	mg/kg-dry	2424	NA	NA	NA	472	NA	NA	NA	NA	682	628	49	2020	3750	NA	4530	2410	2170	702	3950	1600	191	36.6	136	1210	473	64.2	108
Cadmium	mg/kg-dry	0.8	NA	< 0.496	NA	NA	NA																						
Chromium	mg/kg-dry	84	NA	24	NA	NA	NA																						
Lead	mg/kg-dry	44	NA	34	NA	NA	NA																						
Mercury	mg/kg-dry	0.11	NA	<0.107	NA	NA	NA																						
Selenium	mg/kg-dry	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Silver	mg/kg-dry	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Strontium	mg/kg-dry	203	NA	77.1	NA	NA	NA																						
Zinc	mg/kg-dry	140	NA	14.5	NA	NA	NA																						
Hydrocarbons																												·	1
TPH-D	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
TPH-O	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aliphatic C6-C8	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aliphatic >C8-C10	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aliphatic >C10-C12	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aliphatic >C12-C16	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aliphatic >C16-C35	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aromatic >C8-C10	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aromatic >C10-C12	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aromatic >C12-C16	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aromatic >C16-C21	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Aromatic >C21-C35	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												

Concentrations are reported as or converted to dry weight. NA - Not Available; NS - No Standard

(a) Based on higher of background and lowest Eco-SSL, except barium.
 Barium is based on calculated soil screening value of 2424 mg/kg-dry.
 Yellow shaded cell indicates exceedance of soil screening value.

HOU\Projects\0526033\DM\29970H(tb4).xlsx

		Sampling Area:															Are	ea 6														
		Sample ID:	H-	24	H-24R	Н-:	24E	Гн	-24N	Н-	24S	Н-	24W	Н-2	4NW	H-2	4NE		4SW	Н-	·28	H-28R	Н-:	28E	ГН	-28N	Н-:	28S	H-2	8W	H-28	8SF
		Sample Date:	4/6/2		11/12/2021		2/2021		2/2021	11/1			2/2021	_	/2022		/2022		/2022	4/12/		11/11/2021		1/2021		2/2021		/2021	11/11		1/11/2	
	San	nple Depth (feet):		-2	0-2		-2		0-2	-	-2		0-2)-2		-2		-2		-2	0-2)-2		0-2		-2	0			-0 -2
				–			-				-						-	- ·	-		<u> </u>			-				<u> </u>				
		Soil Screening	ERM	ICON	ERM	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON
Parameters	Units	Value (a)																														
29B/Misc																																
% Moisture	wt%	N/S	17.2	16.6	17.6	14.4	16.2	22.4	23.4	28.1	29.6	16	17.1	20.7	20.7	17	18.6	28.9	27.7	25.3	22.9	24.5	32.4	22.9	25.7	26.1	22.4	25.1	23.7	23.2	12.2	20.1
Cation Exchange Capacity (CEC)	meq/100g	N/S	21.7	30.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	35	30.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Electrical Conductivity (EC)	mmhos/cm	n N/S	1.25	1.16	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.45	0.52	0.4	0.46	0.32	0.31	1.08	1.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.55	0.57
Exchangeable Sodium Percentage (ESP)	%	N/S	3.93	5.24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8.95	13.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium Adsorption Ratio (SAR)	Unitless	N/S	5.19	4.21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.94	7.52	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soluble Calcium	meq/L	N/S	2.87	3.31	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.37	1.18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soluble Magnesium	meq/L	N/S	0.79	0.91	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.56	0.53	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soluble Sodium	meq/L	N/S	7.02	6.12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.81	6.96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloride	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
True Total Barium	mg/kg-dry	N/S	8,310	14200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15,400	17200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Leachate and SPLP																																
Leachate Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Sodium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Barium	mg/L	N/S	NA	NA	1.65	NA	NA	NA	NA	9.48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Lead	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Mercury	mg/L	N/S	NA	NA	<0.000200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Strontium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.52	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals		40		0.00	N 1 A	N. I. A.	N I 0	N I A	N. I. A.	N.1.0	N 1 A	N L A		N 1 4	N. I. A.	N. I. A.	N 1 A		N.L.A	0.00	0.01	N 1 A		b. I. A.	N 1 A	N I A	N. I. A.	N. I. A.	N.L.A	h 1 A	N. I. A.	N.L.A.
Arsenic	mg/kg-dry		1.4	2.66	NA	NA 4 000	NA	NA	NA	NA	NA 5000	NA	NA	NA	NA	NA	NA	NA 4.000	NA	3.32	3.81	NA	NA 1.000	NA 4070	NA	NA 4070	NA	NA 1010	NA	NA	NA 4.040	NA
Barium	mg/kg-dry		355	4180	NA	1,900	5890	3,230	3130	4,660	5900	2,860	4550	2,320	3940	3,990	7410	1,230	839	1210	7080	NA	1,980	1870	1130	1670	1280	4240	181	357	1,040	1760
Cadmium	mg/kg-dry		< 0.304	<0.497	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.329	0.538	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/kg-dry		6.32	14.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.95	63.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/kg-dry		9.3	39.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	14.5	54.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury Selenium	mg/kg-dry		0.32	<0.101 <3.98	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	<0.133	<0.107 <3.98	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	mg/kg-dry		NA	<3.90	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Strontium	mg/kg-dry		44.6	89.4	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA 123	NA 278	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/kg-dry		6.91	35.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	123	67.4	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Hydrocarbons	mg/kg-dry	140	0.91	- 30.Z	NA	NA	NA	INA	INA	NA	NA	NA	NA	INA	NA	INA	INA	INA	INA	13	07.4	NA	NA	NA	NA	NA	INA	INA	NA	NA	INA	INA
TPH-D	mg/kg-dry	N/S	NIA	NIA	NA	NA	NIA	NA	NIA	NA	NIA	NIA	NIA	NA	NIA	NA	NA	NA	NA	NA	NA	NA	NA	NIA	NIA	NA	NA	NA	NA	NA	NA	NA
TPH-O	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic C6-C8	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C8-C10	mg/kg-dry		NA	NΔ	NA	NA	NA	NA	NA	NA	NΑ	ΝA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NΔ	NA	NA	NA	NA	NA	NA	NΔ
Aliphatic >C10-C12	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C10-C12 Aliphatic >C12-C16	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	ΝΔ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C12-C10 Aliphatic >C16-C35	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	ΝΔ	ΝΔ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C8-C10	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C10-C12	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C10-C12 Aromatic >C12-C16	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C16-C21			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C21-C35	mg/kg-dry mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		11/0	1.41.7	1.47.7	1.1/.1	1.41.7	1.41.7	1.1/1	1 1/ 1	1 1/ 1	1.17.1	1.1/1	1.1/1	1 1/ 1	1.41.7	1.47.7	1 4/ 3	1 47 7	1.41.7	1.1/ 1	1.41.7	1 1/ 1	1.1/1	1 1/ 1	1.41.7	1.47.7	1.41.7	1.47.7	1417	1.1/1	1 17 1	14/1

Concentrations are reported as or converted to dry weight. NA - Not Available; NS - No Standard

		Sampling Area:			Area 7											Area 8											Area 9		
		Sample ID:		1-5	HH-5B	I L	-6	H-3	H-4	H-4R	ГЦ	-4E	Тн.	4E2	Ти	-4N	Г н.	4N2	Ти	-4S	Гн	-4W	Гн	4W2	H-	·32	H-	.33	H-34
				I-3 I/2019	-		/2019	п-з 10/31/2019		11/12/2021		- <u>+∟</u> 2/2021		+∟∠ /2022		2/2021		/2022		2/2021		2/2021)/2022	8/17/		8/18/		
	0	Sample Date:		-	1/11/2022				-						-														8/19/2021
	Samp	ole Depth (feet):	0-2	2-4	0-2	0-2	2-4	0-2	0-2	0-2	0)-2	0	-2	<u> </u>)-2	0)-2	0	-2)-2)-2	2	-4	2	-4	2-4
		Soil Screening	ICON	ICON	ICON	ICON	ICON	ICON	ICON	ERM	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ERM	ICON	ICON
Parameters	Units	Value (a)																											1
29B/Misc																													
% Moisture	wt%	N/S	19.2	16.6	21	16.3	18	12.8	18.7	18.1	27	23.5	20.3	22.1	21.1	18.6	21.2	20.9	25.3	24.6	17.3	17.9	24.6	20.5	15.4	13	16.1	16.7	17.8
Cation Exchange Capacity (CEC)	meg/100g	N/S	23.2	26	NA	16.3	22.6	22.7	18.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	25.8	28.9	21.1	17.6	27.4
Electrical Conductivity (EC)	mmhos/cm	N/S	1.56	2.56	NA	2.29	2.43	0.77	0.38	NA	NA	NA	0.58	0.69	NA	NA	0.35	0.35	NA	NA	NA	NA	0.62	0.62	0.54	0.4	0.58	0.48	0.78
Exchangeable Sodium Percentage (ESP)	%	N/S	12.8	25.8	NA	32.5	27.1	1.6	1.32	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.17	2.17	1.25	2.31	1.47
Sodium Adsorption Ratio (SAR)	Unitless	N/S	14.9	25.2	NA	25.3	25.4	1.85	1.66	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.76	3.45	3.65	3.11	2.7
Soluble Calcium	meg/L	N/S	0.99	1.08	NA	0.88	0.9	2.75	1.97	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.75	0.59	0.84	0.75	2.29
Soluble Magnesium	meg/L	N/S	0.43	0.43	NA	0.32	0.36	1.03	0.61	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.47	0.35	0.53	0.49	0.84
Soluble Sodium	meg/L	N/S	12.5	21.9	NA	19.7	20.1	2.54	1.89	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.94	2.37	3.02	2.45	3.37
Chloride	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
True Total Barium	mg/kg-dry	N/S	12000	667	NA	1210	394	676	12300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	144	319	102	74.4	111
Leachate and SPLP																													
Leachate Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Chloride	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Sodium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Barium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	2.41	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Lead	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Mercury	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SPLP Strontium	mg/L	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																													
Arsenic	mg/kg-dry	18	6.12	3.05	NA	4.98	4.76	6.7	7.65	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.11	5.32	2.74	3.5	4.44
Barium	mg/kg-dry	2424	4440	393	9000	1030	343	675	4540	NA	2,860	3700	4,920	7290	2,890	2170	3,730	4020	499	891	1,290	6620	668	4270	55.4	222	32.2	39.3	205
Cadmium	mg/kg-dry	0.8	<0.472	<0.48	NA	<0.487	<0.481	<0.482	<0.479	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.296	<0.457	<0.309	<0.464	<0.483
Chromium	mg/kg-dry	84	8.2	5.66	NA	7.9	20.3	12	9.35	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.5	11.6	7.65	8.27	11.8
Lead	mg/kg-dry	44	10.4	7.96	NA	8.73	8.29	14.6	11.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11.3	14.3	9.54	9.62	17.4
Mercury	mg/kg-dry	0.11	<0.108	<0.107	NA	<0.109	<0.105	<0.102	<0.109	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.119	<0.0986	<0.125	<0.108	<0.109
Selenium	mg/kg-dry	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.36	<3.65	<2.47	<3.71	<3.87
Silver	mg/kg-dry	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.296	NA	<0.309	NA	NA
Strontium	mg/kg-dry	203	99.9	76.3	NA	95.9	83.4	19	39.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.19	NA	6.75	10.7
Zinc	mg/kg-dry	140	10.6	7.48	NA	9.06	14.9	19.1	12.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.8	11.6	6.64	7.28	23
Hydrocarbons																													
TPH-D	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-O	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic C6-C8	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C8-C10	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C10-C12	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C12-C16	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aliphatic >C16-C35	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C8-C10	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C10-C12	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C12-C16	mg/kg-dry	N/S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C16-C21	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aromatic >C21-C35	mg/kg-dry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	<u>.</u>	-	-	-	-	-	-	-		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Notes.
Concentrations are reported as or converted to dry weight.
NA - Not Available; NS - No Standard
(a) Based on higher of background and lowest Eco-SSL, except barium. Barium is based on calculated soil screening value of 2424 mg/kg-dry.
Yellow shaded cell indicates exceedance of soil screening value.

TABLE 5 Toxicity Reference Values (TRVs) for BERA Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

		TF	RV	
Constituent	· · · ·	Avian ove, Red-winged Blackbird, owthroat, Red-tailed Hawk)	(Swamp Ra	Mammal abbit, Raccoon, Coyote)
	mg/kg/day	Source	mg/kg/day	Source
Barium	600ª	Brown et al. (2014); Silverman and Tell (2010); Kubiak (2012)	5433 ^b	Boyd and Abel (1966)
Lead	1.63	USEPA (2005b)	4.7	USEPA (2005b)
Mercury	3.25 ^c	USEPA (1999; Table E-8)	1.01 ^d	USEPA (1999; Table E-7)

NOTES:

^aBarium sulfate; Recommended x-ray imaging dose for birds of 6,000 to 15,000 mg/kg bw. Low range value of 6,000 mg/kg bw used as proxy NOAEL; uncertainty factor of 10 for acute to chronic endpoint applied.

^bBarium sulfate; Acute (14 day) NOAEL (mortality) for rat of 163,000 mg/kg bw; uncertainty factor of 10 for acute to chronic endpoint; and 3 for species variability.

^cMercuric chloride; Acute (5 day) LOAEL (mortality) for quail of 325 mg/kg/d; uncertainty factor of 10 applied to estimate from an acute to chronic endpoint (produces a very conservative TRV estimate.)

^dMercuric chloride; Chronic (6 month) NOAEL (reproduction) for mink of 1.01 mg/kg/day.

TABLE 6 Soil/Sediment Bioavailability Factors for BERA Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

COPEC	Soil/Sediment Bioavailability Factor	Citation
Barium	0.0002	Engdahl et al. (2008); Cappuyns (2018); Environment International Ltd. (2010); USGS (2002)
Lead	0.01	Hettiarachchi and Pierzynski (2004); Luo et al. (2014); Feijtel (1986)
Mercury	0.00031	Xu et al. (2019); Chibunda et al. (2009); Chalmers et al. (2013)

TABLE 7

Bioconcentration Factors (BCFs) for Food Items for BERA Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

COPEC	Soil- Plant BCF	Citation	Soil-Earthworm BCF	Citation	Soil-Mammal BCF	Citation
Barium	0.0046	Nelson et al. (1984); Lamb et al. (2013)	0.091	Sample et al. (1998a; Table C.1)	0.0566	Sample et al. (1998b; Table 7)
Lead	0.0389	Bechtel-Jacobs (1998a; Table 6)	0.266	Sample et al. (1998a; Table 11)	0.1504	Sample et al. (1998b; Table 7)
Mercury	0.2700	Fernández-Martínez (2015); Rodriguez (2007); Hamilton (2008)	1.693	Sample et al. (1998a; Table 11)	0.0534	Sample et al. (1998b; Table 7)

TABLE 7

Bioconcentration Factors (BCFs) for Food Items for BERA Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

COPEC	Soil-Bird BCF	Citation	Soil/Sediment - Benthic Invertebrate BCF	Citation	Sediment - Fish BCF	Citation
Barium	0.0566	Sample et al. (1998b; Table 7) [Barium soil-mammal BCF used as surrogate]	0.023	Finerty et al. (1990); ERM (2019)	0.028	Ohio EPA (1991); Teck American, Inc (2010); ERM (2019)
Lead	0.191	Beyer et al. (1985)	0.066	Bechtel Jacobs (1998b; Table 2)	0.0000018	Davis et al. (1996; p.420)
Mercury	0.148	White & Cromartie (1985); Adair et al. (2003)	0.48	Razavi (2013); USFWS (1994); Ridal et al. (2010); ERM (2019)	1.1	LDEQ LEAU database (2019); ERM (2019)

TABLE 8 Species Factors for BERA Wylie Corporation, et al. v Baby Oil, Inc., et al. Humphreys and Orange Grove Oil and Gas Fields Terrebonne Parish, Louisiana

Parameter	Description	Units	Mourning Dove	Source	Red-winged Blackbird	Source	Common Yellowthroat	Source
BW	Body weight of receptor	Kg	0.12	The Cornell Lab of Ornithology (2020) ^a	0.050	The Cornell Lab of Ornithology (2020) ^d	0.010	The Cornell Lab of Ornithology (2020) ^f
Food IR	Ingestion rate of food	Kg/Kg BW/d	0.14	Nagy (2001) ^b	0.19	Nagy (2001) ^b	0.15	Nagy (2001) ^b
Soil / Sediment Ingestion	Ingestion Proportion of soil or sediment	Fraction of Total Diet	0.093	Beyer et al. (1994) ^c	0.093	Beyer et al. (1994) ^c	0.093	Beyer et al. (1994) ^c
Fd (plants)	Fraction of diet consisting of plants		1	The Cornell Lab of Ornithology (2020)	0.64	The Cornell Lab of Ornithology (2020) ^e	0	
Fd (inverts)	Fraction of diet consisting of soil invertebrates		0		0.36	The Cornell Lab of Ornithology (2020) ^e	1	The Cornell Lab of Ornithology (2020)
Fd (mammals)	Fraction of diet consisting of mammals		0		0		0	
Fd (benthic inverts)	Fraction of diet consisting of benthic invertebrates		0		0		0	
Fd (fish)	Fraction of diet consisting of fish		0		0		0	
Fd (birds)	Fraction of diet consisting of birds		0		0		0	

NOTES:

^aMourning Dove body weight: Average of mean body weights for adult males and females for *Z. m. carolinensis* and *Z. m. marginella*, based on site location potentially in zone of overlap (Aldrich and Duvall, 1958).

^bFood ingestion rate using all birds dry matter intake equation.

^cSurrogate soil ingestion rate based on a consumer of terrestrial plants and insects.

^dRed-winged Blackbird body weight: Average of body weight ranges for adult males and females.

^eRed-winged Blackbird diet: Average year-round, including breeding and non-breeding seasons.

^fCommon Yellowthroat: Average of mean body weights for males and females.

TABLE 8 Species Factors for BERA Wylie Corporation, et al. v Baby Oil, Inc., et al. Humphreys and Orange Grove Oil and Gas Fields Terrebonne Parish, Louisiana

Parameter	Description	Units	Red-tailed Hawk	Source
BW	Body weight of receptor	Kg	1.1	USEPA (1993; Page 2- 82); [Source: Craighead & Craighead (1956), Steenhof (1983), Springer & Osborne (1983)] ^a
Food IR	Ingestion rate of food	Kg/Kg BW/d	0.070	Nagy (2001) ^ь
Soil / Sediment Ingestion	Ingestion Proportion of soil or sediment	Fraction of Total Diet	0	Sample and Suter (1994; Section 4.15)
Fd (plants)	Fraction of diet consisting of plants		0	
Fd (inverts)	Fraction of diet consisting of soil invertebrates		0	
Fd (mammals)	Fraction of diet consisting of mammals		0.87	USEPA (1993; Page 2- 83); [Source: Adamcik et al. (1979), Janes (1984), Fitch et al. (1946)] ^c
Fd (benthic inverts)	Fraction of diet consisting of benthic invertebrates		0	
Fd (fish)	Fraction of diet consisting of fish		0	
Fd (birds)	Fraction of diet consisting of birds		0.13	USEPA (1993; Page 2- 83); [Source: Adamcik et al. (1979), Janes (1984), Fitch et al. (1946)] ^c

NOTES:

^aRed-tailed hawk body weight: Average of adult males and adult females, all studies in USEPA 1993. ^bFood ingestion rate using all birds dry matter intake equation.

^cAverage for diet items of mammals and birds, all studies in USEPA 1993.

TABLE 8 Species Factors for BERA Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Parameter	Description	Units	Swamp Rabbit	Source	Raccoon	Source	Coyote	Source
BW	Body weight of receptor	Kg	2.118	Bond et al. (2006) ^a	5.78	USEPA (1993; Page 2-236); [source: Sanderson (1984); Nagel (1943); Johnson (1970); Hamilton (1936)] ^d	14	University of Michigan (2001) ⁹
Food IR	Ingestion rate of food	Kg/Kg BW/d	0.13	Sample and Suter (1994; Section 4.5, Page 16) ^b	0.035	Nagy (2001) ^e	0.028	Nagy (2001) ^e
Soil / Sediment Ingestion	Ingestion Proportion of soil or sediment	Fraction of Total Diet	0.063	Sample and Suter (1994; Section 4.5, Page 17) ^b	0.094	Beyer et al. (1994)	0.028	Beyer et al. (1994) ^h
Fd (plants)	Fraction of diet consisting of plants		1	USEPA (1993; Page 2-356); [Source: Spencer & Chapman (1986)] ^c	0.743	USEPA (1993; Page 2-237); [Source: Tabatabai & Kennedy (1988), Hamilton (1951)] ^f	0.1	University of Michigan (2001)
Fd (inverts)	Fraction of diet consisting of soil invertebrates		0		0.123	USEPA (1993; Page 2-237); [Source: Tabatabai & Kennedy (1988), Hamilton (1951)] ^f	0	
Fd (mammals)	Fraction of diet consisting of mammals		0		0.089	USEPA (1993; Page 2-237); [Source: Tabatabai & Kennedy (1988), Hamilton (1951)] ^f	0.9	University of Michigan (2001)
Fd (benthic inverts)	Fraction of diet consisting of benthic invertebrates		0		0.021	USEPA (1993; Page 2-237); [Source: Tabatabai & Kennedy (1988), Hamilton (1951)] ^f	0	
Fd (fish)	Fraction of diet consisting of fish		0		0.004	USEPA (1993; Page 2-237); [Source: Tabatabai & Kennedy (1988), Hamilton (1951)] ^f	0	
Fd (birds)	Fraction of diet consisting of birds		0		0.020	USEPA (1993; Page 2-237); [Source: Tabatabai & Kennedy (1988), Hamilton (1951)] ^f	0	

NOTES:

^aSwamp rabbit body weight: arithmetric mean of adult males and females (Bond et al. (2006)).

^bSwamp rabbit diet (based on Eastern cottontail) is converted to dry weight assuming 45% moisture in food.

^cSwamp rabbit soil ingestion rate is based on black-tailed jackrabbit.

^dAverage of adult males and adult females, all studies in USEPA 1993.

^eFood ingestion rate using all mammal dry matter intake equation.

^fAverage of diet items for Tennessee and New York, terrestrial food consumption habitats.

^gAverage of body weight range.

^hCoyotes soil ingestion rate based on carnivorous mammal.

TABLE 9 Exposure Modifying Factors (EMFs) for Receptors for BERA Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Parameter	Description	Mourning Dove	Red-winged Blackbird	Common Yellowthroa t	Red-tailed Hawk	Swamp Rabbit	Raccoon	Coyote	Citations	
Home Range	Home Range of receptor (acres)	27,157ª	0.49 ^b	2.3°	2081 ^e	7.9 ^f	366 ⁹	70,026 ^h	The Cornell Lab of Ornithology (2020, 2020, 2020), Smith (2014), USEPA (1993) [Source: Fitch et al. (1946), Craighead & Craighead (1956), Andersen & Rongstad (1989)], Gould (1974), Byrne and Chamberlin (2011), University of Michigan (2022).	
Spatial Factor	Fraction of home range that may be contaminated		•	r = potentially a with an upperb		•	nome range,		Calculated based on estimated size of potentially affected area (See Notes for estimated size of prelim AOIs)	
Time (Temporal) Factor	Fraction of time spent in presumed contaminated area	0.3	0.3	0.3	0.3	0.3	0.3	0.3	Based on the amount of time the animal spends in the affected area	

NOTES:

^aThe Cornell Lab of Ornithology (2020); Average of maximums for adults, areas based on circle radii.

^bThe Cornell Lab of Ornithology (2020); Mean territory size for habitats.

^cThe Cornell Lab of Ornithology (2020); Average of territory ranges for 8 states.

^dSmith (2014); Mandalay NWR.

^eUSEPA (1993) [Source: Fitch et al. (1946), Craighead & Craighead (1956), Andersen & Rongstad (1989)]; Average of all territory ranges in USEPA 1993.

^fGould, A. (1974); Average of adult male (10.6 acres) and female (5.14 acres) home ranges.

^gByrne and Chamberlain (2011); Average of adult male and female home ranges, all seasons, Louisiana Atchafalaya bottomland hardwood habitat. ^hUniversity of Michigan (2022); Maximum home range.

				Spa	atial Factors			
	Estimated			Common				
	Area	Mourning	Red-winged	Yellowthroa	Red-tailed	Swamp		
Prelim AOI	(acres)	Dove	Blackbird	t	Hawk	Rabbit	Raccoon	Coyote
	Home Range:	27,157	0.49	2.3	2,081	7.9	366	70,026
Area 4 [1]	1.2	4.4E-05	1.0E+00	5.2E-01	5.8E-04	1.5E-01	3.3E-03	1.7E-05
Area 4 [2]	0.1	3.7E-06	2.0E-01	4.3E-02	4.8E-05	1.3E-02	2.7E-04	1.4E-06
Area 5	1.2	4.4E-05	1.0E+00	5.2E-01	5.8E-04	1.5E-01	3.3E-03	1.7E-05
Area 6	1.2	4.4E-05	1.0E+00	5.2E-01	5.8E-04	1.5E-01	3.3E-03	1.7E-05
Area 8	4.1	1.5E-04	1.0E+00	1.0E+00	2.0E-03	5.2E-01	1.1E-02	5.9E-05

APPENDIX A CV

15 March 2022

Helen R. Connelly, PhD

Toxicologist

Helen's experience includes evaluation of ecological and human health risk due to exposure to petroleum hydrocarbons, metals, PCBs, PAHs, salts, chlorinated compounds, and other organic and inorganic compounds. She is experienced in designing and completing complex sampling and analysis plans and biological surveys in wetland, industrial, agricultural, and rural settings. Helen's skills include managing teams to accomplish large projects, working collaboratively with other consultants and experts, and completing complex ecological and human health risk assessments. Helen has successfully provided expert testimony at trial, in regulatory hearings, and in depositions in support of litigation, and has provided expert opinions and expert reports for human and ecological exposures.

Experience: 19 years of experience in environmental toxicology, ecological and human health risk assessment

Email: helen.connelly@erm.com

Education

- Ph.D., Veterinary Medical Sciences in Physiology, Pharmacology and Toxicology, Louisiana State University School of Veterinary Medicine, US, 1997
- B.S., Geology, Louisiana State University, 1985

Professional Affiliations and Registrations

- Adjunct Faculty, Louisiana State University Department of Environmental Sciences
- Baton Rouge Geological Society
- American Association of University Women
- Society of Environmental Toxicology and Chemistry

Languages

- English, native speaker
- French, limited working proficiency

Honors and Awards

- US Department of Energy Graduate Research Fellowship
- US Department of Energy Post-Doctoral Research Fellowship

Fields of Competence

- Environmental Toxicology
- Ecological Risk Assessment
- Human Health Risk Assessment
- Freshwater and Estuarine Field Studies
- Project Management
- LDEQ RECAP Risk Assessment
- Freshwater Fish Culturing
- Conservation Biology
- Environmental Data Analysis
- Biological Species Surveys
- Wetlands Rapid Assessments

Key Industry Sectors

- Oil and Gas
- Litigation
- Chemical Production
- Pipeline

Publications

 Connelly, H. and Means, J. International Journal of Toxicology, 2010 29: 532: Immunomodulatory Effects of Dietary Exposure to Selected Polycyclic Aromatic Hydrocarbons in the Bluegill (*Lepomis macrochirus*).

Key Projects

Airborne Sulfur Dioxide and Hydrogen Sulfide Human Health Risk Assessment

Calculated human health risk due to airborne SO2 and H2S release from a major petrochemical refinery on the Gulf Coast. Potentially exposed receptors included neighborhood residents adjacent to the refinery. Health risks were calculated by comparing LDEQ monitoring station data and air data collected in the neighborhood to site specific calculated protective standards. Protective standards were calculated using exposure studies from a full review of the scientific literature. Prepared two expert reports for this study. Was deposed for opinion and testified in federal court in this matter.

Coastal Sediment Ecological Risk Assessment: PAHs, PCBs, Dioxins/Furans, TPH, and Metals

Completed a screening ecological risk assessment for a brackish to saline coastal open water area based on concentrations in sediments. Ecological exposures to PCBs, Dioxins/Furans, PAHs, TPH, and metals were assessed using metals and organics comparison values, PAH toxic unit values, and metals speciation and AVS data. Receptors were assumed to be birds, mammals, and fish.

Airborne PM10 Human Health Risk Assessment

Calculated human health risk due to an airborne catalyst release from a major petrochemical refinery on the Gulf Coast for an expert report. Potentially exposed receptors included neighborhood residents adjacent to the refinery. Risk was calculated using EPA National Ambient Air Quality Standards (NAAQS) for particulate matter (PM10), PM10 data from the nearby LDEQ monitoring station, and modeled air concentrations. Wipe sample data was collected from surfaces in the neighborhood, and were compared to US Army wipe standards. The health effects portion of this lawsuit was dropped by opposing counsel on the day that my deposition on the matter was to occur.

Benzene Human Health Risk Assessment

Prepared a human health risk assessment for recreational (swimming) exposure to creek surface water. Protective standards for creek surface water were calculated, using EPA guidelines, to represent concentrations that did not pose unacceptable risk of cancer. The setting for this risk assessment was a natural creek in a wooded area. There were 10 years of data for this evaluation, which reduced some levels of uncertainty normally present in a risk assessment.

Benzene Air Sampling Plan for Human Health Risk Assessment

Wrote air sampling and analysis plan to evaluate airborne volatile hydrocarbons in the area of a residence near an underground petroleum pipeline. Researched and described best current technology for air sample collection and for identifying low levels of compounds in air. Calculated protective healthbased standards for benzene in air based on LDEQ RECAP and EPA guidelines.

Screening Level Ecological and Human Health Risk Assessment of TPH-Impacted Canal Sediments

Initiated a preliminary ecological risk screening of a heavily TPH impacted canal in St. Charles Parish. Compared sediment, water, and sheen concentrations in the samples collected to proxy MO-1 human health standards and NOAA SQUIRT standards. Attempted electrofishing sample collection, but the conductivity of the water was prohibitive.

Pipeline Spill Human Health Risk Assessment

Planned, collected and analyzed soil and ground water samples for a major petrochemical client in response to their request for RECAP compliant investigation report for a gasoline pipeline spill near a sugar cane field. Analyzed reported constituent concentrations using LDEQ RECAP Screening Standards and prepared RECAP report for submittal to LDEQ.

Human Health Pipeline Worker Risk Assessment

Evaluated health risks to pipeline workers installing a pipeline thirty feet below ground surface across a Superfund site in an area with thick clay strata in the soil lithology. Surface soil constituents included heavy metals and carcinogens. Considered inhalation, dermal and ingestion routes of exposure to workers. Used RECAP and TCEQ standards as references for toxicity assessment. Estimated the potential for constituents to migrate from the pipeline excavation via groundwater to other areas. Wrote a brief summary type letter to EPA for the client to obtain approval for the pipeline installation. EPA granted approval.

Oil Spill PAH Fish Immunotoxicity Study

Designed and successfully executed a freshwater fish toxicity study to evaluate the effects of polycyclic aromatic hydrocarbons (PAH) from energy related wastes, such as oil spills, on the proliferative behavior of immune cells in a native bluegill fish model (Lepomis macrochirus). Worked with the Louisiana Department of Wildlife and Fisheries to collect bluegill from the LSU lakes using electrofishing. Maintained the fish in indoor tanks. Collected lymphocytes from fish after feeding them a diet of 2-methylnaphthalene, 9,10dimethylanthracene, and 2-aminoanthracene for a period of weeks. Published the results in a peer reviewed journal. Presented this research at the Society of Environmental Toxicology and Chemistry (SETAC) annual meeting in San Francisco, 1997.

LDEQ RECAP MO-1 Human Health Risk Assessment of Salt and TPH Impacted Agricultural Field

Calculated human health risk using LDEQ RECAP protocol for two agricultural sites of former and current oil and gas production in the central Louisiana area. Both sites had salt impacted soils and groundwater. Used identified background concentrations for groundwater standards. Soil was evaluated using Screening standards and MO-1 standards for metals and hydrocarbons. LDNR standards and SPLP methods were used to assess salt in soils, and to delineate areas of impact. Both projects involved collaboration with environmental scientists from many disciplines all working together on the projects. Both projects involved managing, analyzing and reporting on large data sets. Wrote portions of the risk assessment for two reports, including calculating RECAP standards.

Barium Ambient Water Quality Standard Development

Developed a barium ambient water quality standard for protection of aquatic organisms. Followed US EPA guidelines and very specific protocol for developing a chronic exposure standard based on a complete review of the scientific literature. Developed an EPA compliant standard that is one order of magnitude larger than current available standards.

Sediment Barium, PAH, and Mercury AOI Delineation in Fresh to Brackish Marsh

Worked collaboratively with a team of risk assessors to develop a sampling and analysis plan to delineate areas for sediment remediation investigation in a fresh to brackish marsh. Analytical methods involved PAH pore water analysis to estimate toxic units and metals speciation by QEMSCAN to estimate metals toxicity. Calculated site-specific sediment screening for barium and mercury, which as accepted as appropriate methodology by LDEQ and LDNR.

LDEQ RECAP Human Health Risk Assessments

Established human health exposure pathways and receptors and/or calculated site specific RECAP standards for the following sites: creosoting wood treatment facility, dry cleaning establishment, former industrial waste disposal site, gasoline spill site, paper mill, and former exploration and production sites.

Shipyard Human Health Risk Assessment

Calculated the human health risk associated with exposure to sediments containing lead, arsenic, cadmium, and chromium at a former shipyard in St. Mary Parish.

Two Year Crawfish Bioaccumulation Study

Planned and executed two crawfish collection studies in surface waters in St. Charles Parish in ditches impacted with chlorinated compounds and other organic compounds. Prepared an analysis of crawfish abundance as affected by drought and surface water contaminants. Analyzed crawfish tissues for compounds detected in surface waters to determine if accumulation was occurring. Presented this research to the LSU Department of Environmental Sciences and was unanimously accepted as an adjunct faculty member based on the research.

Blue Crab Population Study

Analyzed crab weight, size, and fullness as related to crab habitat characteristics in a study area of natural bayou, lake, and marsh ecosystems, as well as manmade oilfield canals. Collected crabs and fish under a Louisiana Department of Wildlife and Fisheries collection permit as part of a team of risk assessors working on a study of heavy metal toxicity in aquatic organisms. Reported the crab and fish collection techniques in a detailed sampling methods and results report that was submitted to LDEQ, LDHH, and LDWF. Compared the measured weights, sizes and abundance of the crabs collected in this project to annual crab studies done by LDEQ, LSU and the Gulf States Marine Fisheries Commission.

Freshwater/Brackish Marsh Functions and Services Analysis

Planned and executed a field study to assess wetland functions and services in a fresh to intermediate marsh ecosystem. Evaluation methods used were based on USEPA Rapid Wetlands Assessment techniques. The study area setting was man-made canals, a bayou and a lake. The field study involved trapping native bait fish and blue crabs (*Callinectes sapidus*), recording vegetation in the habitats, and recording birds and other wildlife present. At each location, an evaluation was done using a wetlands assessment tool to quantify the functioning of the ecosystem. This wetlands function assessment report was submitted to LDEQ, LDHH, and LDWF.

Personal Injury Expert Reports

Researched and prepared health toxicity expert reports for human exposures to two different compounds: carbon monoxide and gluteraldehyde, both for litigation not in the petrochemical industry. Was deposed for opinion each time.

Crawfish Ingestion Human Health Risk Assessment

Performed a crawfish ingestion analysis based on potential shellfish consumption from a ditch impacted with low levels of chlorinated compounds and other organic compounds for presentation to LDEQ for a petrochemical client. Used LDEQ RECAP ingestion and exposure parameters to calculate crawfish consumption risk assessment.

Data Analysis/Data Management

Managed large amounts of soil, sediment, water and biological data for several projects. Data analysis includes work such as: identifying and analyzing effects of non-detected analytes on calculated results, analyzing effects of sample depths by location, calculating dry weights/wet weights, identifying data gaps and uncertainty, comparing results from different labs, identifying unusable data, statistical comparison of site to background concentrations, calculation of mean 95%UCL and UTL, and identifying trends and patterns in constituent concentrations.

Biological and Non-Biological Field Sampling

Collected and recorded field samples under chain of custody for environmental media and biological species for many projects including: soil and sediment sampling, shallow and deep groundwater and drinking well sampling, surface water and vegetation sampling, periphyton collection, macroinvertebrate collection, crawfish trapping, blue crab trapping, electrofishing for freshwater fish species, dip netting small freshwater fish and invertebrates in submerged aquatic vegetation, and trawling for fresh and intermediate salinity fish.

LDEQ Community Relations

Assisted in writing and publishing LDEQ community relations newsletters and planning town meetings in order to communicate health risks associated with Superfund sites and other inactive and abandoned sites with nearby residents. Provided public health information to communities surrounding Superfund sites such as Old Inger, Lincoln Creosote, and Combustion.

Fresh Marsh Flooded Forest Vegetation Survey

Evaluated and recorded vegetation assemblages in six locations in the southern portion of the Louisiana Department of Wildlife and Fisheries White Lake Wetlands Conservation Area. Performed the study of the fresh marsh and wooded wetlands with natural and man-made canals with my graduate students. Identified common plant species and measured associated water salinity, turbidity, pH and temperature.

Graduate Student Mentor Masters of Natural Science Degree in Biology

Mentored and taught a total of eighteen graduate students over a three year period in the Gordon A. Cain Center Department at Louisiana State University. All eighteen candidates completed projects and final exams and were awarded Master's Degrees in Natural Sciences with a specialization in Biology. During the three year period, I taught classes in Biology, Environmental Science and Ecology, and led field and laboratory exercises during all semesters.

LDEQ MO-3 Human Health and Ecological Risk Assessment of Flooded Forest Fresh Marsh

Completed and submitted to LDEQ, at the request of LDNR, both a human health and an ecological risk assessment of sediments from canal bottoms in a fresh marsh and flooded forest environment. Comanaged with one of my peers, all phases of the risk assessment from the initiation of sample collection planning to the final calculations of risk. Used innovative statistical methods to identify background concentrations, extensive research to identify freshwater marsh-specific/species-specific exposure parameters. Risk assessment included calculating hazard quotients for native species based on measured levels of metals in sediments and soils in a setting frequented by recreational hunters and fishermen. Sediment constituents of concern were barium, TPH, and polycyclic aromatic hydrocarbons. **RECAP** algorithms using recreational exposure values were used to assess potential hazard due to the human direct contact pathway. For the ecological assessment, barium exposure was assessed based on identifying the locations where soluble barium may exist (TCLP analysis) and evaluating those locations based on probable no-effects concentrations for barium in sediments. TPH and barium were evaluated for their potential for accumulation in fish, based on accumulation factors from the scientific literature. Modeled concentrations in fish were then compared to LDEQ/LDHH calculated fish tissue screening levels for human consumption. LDEQ and LDNR has granted a no further action at this time status to the site, based on the MO-3 analysis.

LDNR Pit Closure Plan

Prepared with a co-worker, and submitted to LDNR, a work plan to close four pits that exceeded 29-B standards for O&G and/or barium using site specific RECAP MO-1 industrial standards. The work plan included confirmatory sampling to completely delineate the pits to 29-B standards and sampling to complete a TPH fractions and barium RECAP assessment. The rationale behind the plan was to only excavate soils if analysis showed that the soils exceed both 29-B and RECAP standards, indicating potential effects to human health and the environment. The four former pits are lushly vegetated, in a remote setting accessible only by boat, and do not include any residences. Excavation of soils that do not demonstrate health hazards can be avoided in a setting like this, limiting destruction to the ecosystem. Also included in the work plan was a vegetation survey/wetlands assessment at each of the four pits to document expected vegetation and ecosystem functioning.

Vegetation as part of ecosystem function was assessed by estimating that percentage cover of each category of vegetation was appropriate to the setting, as well as by comparing the vegetation species present to species documented in the scientific literature for each habitat type. Presented the concepts and data behind this closure approach to LDNR, prior to submitting the work plan to them, in order to include all LDNR input/comments in the plan prior to submittal.

Ecological Risk Assessment Brackish Marsh Estuary Approved by LDEQ and LDNR

Worked collaboratively with a team of risk assessors to design and execute a complex data collection and ecological risk assessment in a brackish marsh estuary. Sampling included soils, sediments, surface waters, fish, and crabs. Vegetation was recorded and analyzed for providing functions and services. Crab, fish, and avian population data were compared to reference marsh data identified in the primary scientific literature. PAH and TPH ecotoxicity were assessed via USEPA 34 PAH porewater invertebrate toxicity assessment (toxic units). Barium was speciated using scanning electron microscopy energy dispersive spectometry (QEMSCAN). Barium sediment screening values were calculated based on the results of a large literature review. Mercury sediment screening values were calculated based on a large literature review. Mercury biomagnification was calculated based on measured levels in crab tissues and modeled levels in bird eggs. Mercury benchmarks were calculated for wildlife health. Bioaccumulation factors were calculated based on field data and literature review for barium sulfate, methylmercury and PAH. The methods used in the risk assessment and the planned further investigation were approved by LDEQ and LDNR.

Fish and Vegetation Quantitative Assessment Freshwater Swamp and Bayou

Completed a vegetation survey and fish collection to support conclusions of a large scale ecological risk assessment in a south Louisiana bayou and cypress tupelo swamp setting. Collected and released more than a thousand native freshwater fish and recorded vegetation in 30 unique quadrats. Vouchered each unique fish species. Collected fish from bayous, swamps and open water using cast netting, hoop nets and wire net traps, and recorded fish by genus and species. Surveyed and recorded vegetation at each location where fish were collected. Photographed each habitat, fish collection and vegetation location in detail. Worked collaboratively with a team of scientists to complete this bioassessment.

Visiting Guest Lecturer

Delivered several lecture presentations to educate peers, industry, attorneys and regulators in various fields of toxicology. Presented a talk and photos at an on-site event describing phytoremediation, natural attenuation, and constituent toxicity at a Superfund site at the request of USEPA. Presentation was for public service and done at the request of community members. Worked as a member of a team along with other scientist presenters for this event. Presented methods for interpreting metals data in biological tissues for both human health and ecological risk assessments to large groups of environmental attorneys on several occasions. Presented toxicity and effects of acute exposure to benzene and arsenic to members of the Louisiana Environmental Health Association at their monthly meeting at LDEQ at the request of Bill Schramm with LDEQ. Gave a lecture on accumulation of total petroleum hydrocarbons (TPH) in fish and sediments at the Louisiana 2016 Solid Waste Conference in Lafayette, Louisiana. Presented annually to my co-workers the toxicology portion of the 40 hour health and safety training over a five year period.

Groundwater Sampling in Vicinity of Brine Sinkhole

Worked collaboratively in the field to collect and analyze groundwater samples from onsite and offsite monitoring wells at a south Louisiana industrial facility. Collected from each well more than sixty samples for metals, volatiles, hydrocarbons, salt parameters, and radionuclides analysis. Collected field data on water pH, turbidity, conductivity, temperature, well depth, and water depth. Supervised as many as six other parties at each well collecting duplicate water samples. Maintained chain of custody and sample documentation prior to transport to the lab for analytical testing. Have analyzed this data, along with three additional years of data from this location to complete an LDEQ complaint MO-2 human health risk assessment based on human exposure to well water. LDEQ and LDNR approved the risk assessment.

Rapid Bioassessment of Wadeable Streams in Mississippi

Completed Rapid Bioassessments of four streams in 100 meter reach segments. Collected macroinvertebrates, periphyton and native fish following a prescribed EPA protocol. Fish were collected by electroshocking, macroinvertebrates were collected using a jabbing dip net process and periphyton were collected by hand scraping. Each habitat was sampled in each stream according to the percentage the habitat represented of that stream. Sampling included duplicate sampling for periphyton and voucher collection for each fish species collected. Performed a scored habitat assessment comparison of the four streams and presented an evaluation of fish species diversity and richness. The entire process was photo documented in detail.

LDEQ MO-2 and MO-3 Human Health and Ecological Risk Assessments for Brine Sinkhole

Completed and submitted LDEQ RECAP compliant MO-2 and MO-3 Work Plans for a Louisiana brine mining operation for review by LDNR and LDEQ. The Work Plans encompass the results of over three years of surface water and groundwater data collection and analysis. The efforts to complete the Work Plans included analysis of over 170,000 data points of more than 300 different constituents. The intended methods were presented to LDEQ and LDNR prior to creating the actual Work Plans to obtain comments. The plans describe RECAP compliant human health risk assessment for groundwater and ecological risk assessment and human health risk assessment for the surface waters. The effort involved statistical comparison of data sets using PROUCL software, calculation of RECAP health based standards and scientific literature review for ecological toxicity values. These human health and ecological risk assessment work plans represented complete assessment, even though they were termed work plans. The human health work plan was approved by LDNR and LDEQ.

Calculation of Worker Exposure to Volatiles During Oil Spill Clean-Up

Prepared opinion for Mike Pisani while he was in the midst of a trial on worker exposure to volatiles during an oil spill clean-up. Estimates of likely exposure were made using data from two other oils spills, EPA, and OSHA data. Estimated levels and durations of exposure were compared to concentrations predicted to have long term or irreversible health effects, and to levels sufficient to cause short term, reversible health effects in oil spill workers. This opinion was used by Pisani to respond to questioning during the trial.

Human Health Lead Exposure Risk Assessment

Performed EPA-compliant risk assessment for a lead-impacted bayou near a major petroleum refinery in St. Charles Parish. Calculated health risks to hunters and fishers consuming fish, crabs and game from the bayou area. Used the Integrated Exposure Uptake Biokinetic (IEUBK) model and the Adult Lead Model to assess lead human health risks.

Screening Level Chemical Plant Human Health Risk Assessment

Estimated the toxicity and calculated risk based standards for more than 150 compounds, including many tin compounds, for which no RECAP standards exist, at a chemical plant in South Louisiana. Used chemically similar compounds with known toxicities as proxies for compounds with limited toxicity information.

PCB Fingerprinting Analysis in Soils and Sediments

Compared polychlorinated biphenyl concentrations (PCB) in soils and sediments at an industrial facility to PCB concentrations in an adjacent ditch and connecting bayou to determine if site PCBs were the source of the ditch PCBs. The analysis involved a detailed review of the congeners on site by depth and by congener ratio. We provided the client with support for our conclusions in the form of statistics and graphs. We also provided an opinion as to the original Aroclor formulation that was the source of the PCBs on site. This project involved creating an extensive database from PDF files, as no Excel versions were available, as well as converting congener identifying names from different labs to consistent names for all data.

Chlorinated Groundwater Human Health Risk Assessment

Worked collaboratively with the in-house research division of a large petrochemical company in St. Charles Parish to complete the risk assessment portions of a RCRA Corrective Measures Study Work Plan. Performed a detailed QA/QC evaluation of current and historical data used in the assessment. Assessed human health risk due to exposure to chlorinated compounds in shallow and deep groundwater.

LDNR Hearings Ecological Risk Assessment

Presented testimony and was questioned by attorneys and LDNR regulators on my findings and results from ecological risk assessments on three separate occasions. The hearings were accomplished in order to present to the agency, in each instance, a most feasible plan for investigation and remediation of legacy E&P sites. In each instance, I was one of many experts presenting project results. One of the investigations was for a cypress tupelo swamp and the other two were for bottomland hardwood wetland ecosystems.

Expert Testimony Jury Trial

Presented the findings and results of an ecological risk assessment performed at an industrial facility

and adjacent bottomland hardwood forest to a judge and jury. The risk assessment results included evaluation of habitat for mammals, birds, and invertebrates and results of a salinity study. Data presented included avian and vegetation survey results and risk calculations based on soil TPH, PAH, and metals data. The result of the trial was a finding of no damages by the jury.

Bottomland Hardwoods Ecological Risk Assessments Submitted to LDNR

Performed an ecological risk assessment of bottomland hardwood wetlands in four different locations. These projects are throughout South Louisiana in locations of Plaquemines Parish, St. Mary Parish, and in the Lafayette area. Compared vegetation diversity to CRMS data and wildlife refuges, completed vegetation and avian surveys, documented salinity indicators, performed metals speciation analysis, SPLP analysis, hazard quotient analysis, photo documentation, and literature review. Expert reports were completed for all four ecological risk assessments. Two of the risk assessments were submitted to LDNR in support of a Limited Admission to the agency.

Cypress Tupelo Swamp Ecological Risk Assessment Submitted to LDNR

Performed an ecological risk assessment of a cypress tupelo swamp in Iberia Parish. Measured cypress tree circumferences, investigated salinity indicators, recorded birds and vegetation, researched the cypress tree scientific literature, calculated risk for avian and mammalian receptors, and made comparisons to nearby wildlife refuges. We performed a submerged wetlands assessment based on surface elevations and nearby USACOE gauging data. This risk assessment was presented to the LDNR in a hearing associated with a limited admission.

Prairie Grasslands Ecological Risk Assessment

Performed an ecological risk assessments of prairie grassland species in industrial and agricultural settings in two locations in the Lafayette area. For assessing the grasslands, we used comparisons to wildlife refuges, vegetation and avian surveys, metals speciation analysis, SPLP analysis, hazard quotient analysis, photo documentation, and literature review. Expert reports were completed for both ecological risk assessments.

Salt Marsh Ecological Risk Assessment

Performed an ecological risk assessments of a salt marsh in Cameron Parish. For this assessment, we reviewed historical records of species native to the area and to the nearby wildlife refuge. We identified birds and mammals dedicated to salt marshes and performed risk calculations for those animals. We compared the site vegetation to expected species for the salt marsh, based on the literature review. The project included a sediment and a marsh ecological risk assessments.

Flooded Forest Ecological Risk Assessment

Performed a screening level ecological risk assessment of a flooded forest and marsh that is in direct communication with the Atchafayla River. Soils and sediments were below background levels, so the risk assessment did not advance beyond the screening level. Performed a thorough investigation of the forested area, by measuring diversity within quadrats along a transect. The flooded nature of the land made the work difficult. The quadrat vegetation data was compared to CRMS data in the nearest CRMS reference stations. We performed a submerged wetlands assessment for this risk assessment based on measured surface elevations and nearby USACOE gauging data.

Mentor to Indonesian Ph.D. Candidate

Working with a young woman in Indonesia to assist and mentor her during the process of applying for a Ph.D. program in the US. Meeting with her weekly.

Presentation of Ecological Risk Assessment Methods to Oil and Gas In-House Scientists

Invited to present bespoke mercury methylation assessment methods, barium SEM EDS speciation methods, and PAH ex situ porewater methods to inhouse science team and attorney team for a global oil and gas client. Was afterwards requested to send to the client the methods I developed for modeling methylmercury biomagnification, to be shared with the in house science team. The methods are first of their kind and are not currently available through EPA.

APPENDIX B SITE PHOTOGRAPHS

15 March 2022

Appendix B-1

Vegetative Communities Observed at the Site

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field

Calcasieu and Jefferson Davis Parishes, Louisiana

Area 1: H-26

Manmade Waterbody

Area 1: H-26

Fringe Wetlands

Area 2: 12-A

Fringe Wetlands

Area 2: 12-A

Wetland Scrub-Shrub

South of Area 2: 13-A

Area 3: H-13

Area 3: H-13

Emergent Wetland

Emergent Wetland in Former Tank Battery

Area 5: 11-A

Emergent Wetland in Former Tank Battery

Area 5: 11-A

Emergent Wetland

Area 5: 11-A

Riparian Forest

East of Area 5: 11-F

Riparian Forest

East of Area 5: 11-F

Area 5: 6-D

West of Area 5: 8-A

West of Area 5: 8-A

West of Area 5: 8-B

Area 5: 11-C

Area 5: 11-D

Area 5: 11-D

Area 5: 11-E

Riparian Forest

East of Area 5: 10-A

Area 6: H-24

Area 6: H-24

Floating Aquatic Vegetation

East of Area 8: East of H-3

Fallow Rice Field

Area 8: H-4

Fallow Rice Field

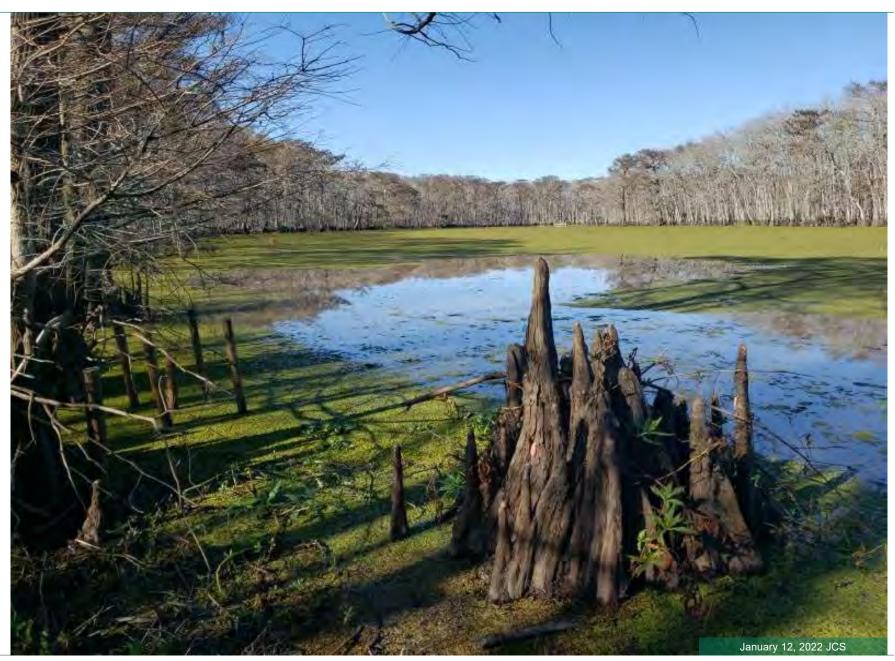
Area 8: H-4

Farm Burn Pile

Area 8: H-4

Rice Field

Area 8: 1-C


Open Water

Bayou Lacassine NE of H-32

Floating Aquatic Vegetation

Bayou Lacassine NE of H-32

Appendix B-2

Flora Observed at the Site

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.Hayes Oil & Gas FieldCalcasieu and Jefferson Davis Parishes, Louisiana

Yellow thistle

Cirsium horridulum

Wetland Class Facultative

Area 2: 12-A

Lowland rotala

Rotala ramosior

Wetland Class

Obligate

Area 4: 7-A

American pokeweed

Phytolacca americana

Wetland Class Facultative Upland

Area 4: 7-C

Vetch

Vicia sp.

Wetland Class Varies per species

Area 4: 7-E-F Area

Heartleaf nettle

Urtica chamaedryoides

Wetland Class Facultative

Area 4: 7-E-F Area

March 25, 2021 JCS

Ebony spleenwort

Asplenium platyneuron

Wetland Class Facultative Upland

Area 4: 7-H-G Area

Philadelphia Fleabane

Erigeron philadelphicus

Wetland Class Facultative

Area 4: 7-G-J Area

White mulberry

Morus alba

Wetland Class Facultative Upland

Area 4: 7-J Area

Possumhaw

llex decidua

Wetland Class Facultative Wetland

Area 4: 7-J-G-K Area

Lyreleaf sage

Salvia lyrata

Wetland Class Facultative Upland

Area 4: 7-G

Beaked cornsalad

Valerianella radiata

Wetland Class Facultative

Area 4: 7-J

Little quakinggrass

Briza minor

Wetland Class

Facultative

Area 4: 7-J

Stiff marsh bedstraw

Galium tinctorium

Wetland Class Facultative Wetland

Area 4: 7-J

Hairy buttercup

Ranunculus sardous

Wetland Class Facultative

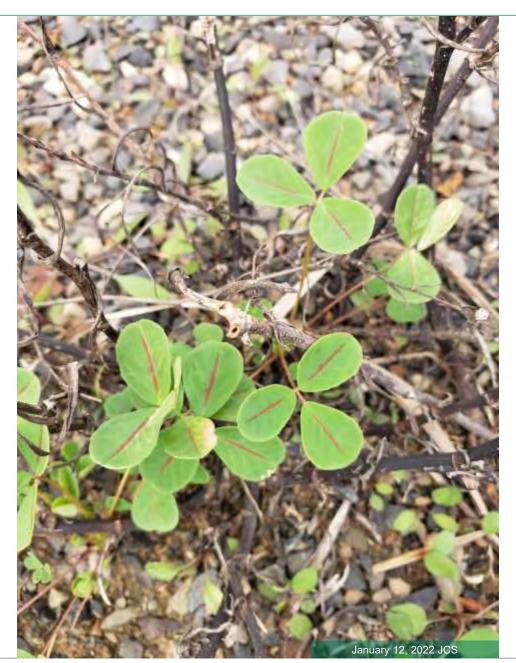
Area 4: 7-K

Flatsedge

Cyperus sp.

Wetland Class Varies per species

Area 5: 11-A



Burclover

Medicago polymorpha

Wetland Class Facultative Upland

Area 5: 11-A

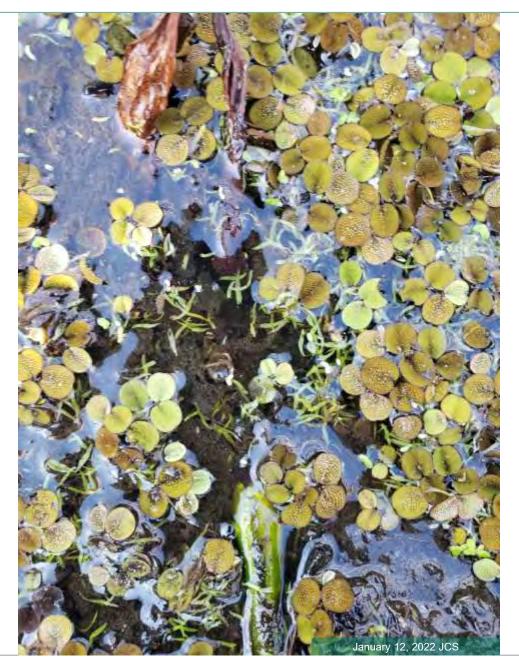
Southern cutgrass

Leersia hexandra

Wetland Class

Obligate

Area 5: 11-A


Water spangles

Salvinia minima

Wetland Class

Obligate

Area 6: H-28

Florida mudmidget

Wolffiella gladiata

Wetland Class

Obligate

Area 6: H-28

Bald cypress

Taxodium distichum

Wetland Class

Obligate

Area 7: 4-A

Canada toadflax

Nuttallanthus canadensis

Wetland Class Not Assigned

Area 8: 1-A

Aster

Aster sp.

Wetland Class Varies per species

Area 8: 1-B

Hairy buttercup

Ranunculus sardous

Wetland Class Facultative

Area 8: H-4

Grassy Arrowhead

Sagittaria graminea

Wetland Class Obligate

Area 8: H-4

Crowpoison

Nothoscordum bivalve

Wetland Class Facultative Upland

Area 8: H-4

Timothy canarygrass

Phalaris angusta

Wetland Class Facultative Wetland

9-D-E Area

Everlasting

Gamochaeta sp.

Wetland Class Varies per species

9-D-E Area

Reversed clover

Trifolium resupinatum

Wetland Class Facultative Upland

9-E Area

Bedstraw

Galium sp.

Wetland Class Varies per species

9-E

Appendix B-3

Birds Observed at the Site

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.Hayes Oil & Gas FieldCalcasieu and Jefferson Davis Parishes, Louisiana

Blue-gray Gnatcatcher January 11, 2022 JCS

Great Blue Heron


Ardea herodias

Diet Fish

Plegadis chihi

Diet Aquatic invertebrates

Plegadis chihi

Diet Aquatic invertebrates

Plegadis chihi

Diet Aquatic invertebrates

Plegadis chihi

Diet Aquatic invertebrates

Area 1: H-26

www.erm.com Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. | Birds Observed at the Site

Red-tailed Hawk

Buteo jamaicensis

Diet Small Animals

Area 1: H-26

Red-tailed Hawk

Buteo jamaicensis

Diet Small Animals

Area 1: H-26

Wilson's Snipe

Gallinago delicata

Diet Aquatic invertebrates

Area 1: H-26

Yellow-rumped Warbler

Setophaga coronata

Diet

Insects

Area 2: H-11

Anhinga

Anhinga anhinga

Diet Fish

Area 2: H-11 and 12-A

Boat-tailed Grackle

Quiscalus major

Diet Omnivore

Area 2: 12-A

Snow Goose

Anser caerulescens

Diet

Plants

Area 3: 12-B

Snow Goose

Anser caerulescens

Diet

Plants

Area 3: H-13


Greater White-fronted Goose

Anser albifrons

Diet

Plants

Area 3: H-13

Sedge Wren

Cistothorus stellaris

Diet Insects

Greater White-fronted Goose

Anser albifrons

Diet

Plants

Savannah Sparrow

Passerculus sandwichensis

Diet

Insects

Savannah Sparrow

Passerculus sandwichensis

Diet

Insects

Sandhill Crane

Antigone canadensis

Diet Omnivore

Area 5: H-1

1 1 1 1 1 + 1 January 12, 2022 JCS

Orange-crowned Warbler

Leiothlypis celata

Diet

Insects

Yellow-rumped Warbler

Setophaga coronata

Diet Insects

Yellow-rumped Warbler

Setophaga coronata

Diet

Insects

Ruby-crowned Kinglet

Corthylio calendula

Diet

Insects

Ruby-crowned Kinglet

Corthylio calendula

Diet

Insects

Snow Goose

Anser caerulescens

Diet

Plants

Area 5: H-18

Ruby-crowned Kinglet

Corthylio calendula

Diet

Insects

Great Egret

Ardea alba

Diet Fish

Gray Catbird

Dumetella carolinensis

Diet Insects

Blue-gray Gnatcatcher

Polioptila caerulea

Diet Insects

Greater White-fronted Goose

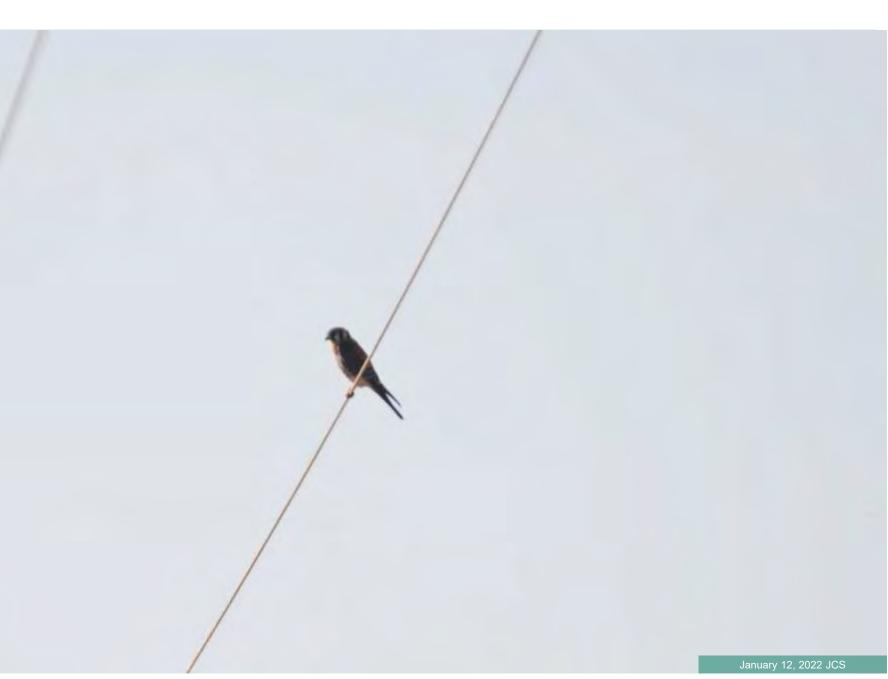
Anser albifrons

Diet

Plants

Turkey Vulture

Cathartes aura


Diet Carrion

American Kestrel

Falco sparveriu


Diet Small Animals

Neotropic Cormorant

Nannopterum brasilianum

Diet Fish

Neotropic Cormorant

Nannopterum brasilianum

Diet Fish

Snowy Egret

Egretta thula

Diet Fish

Area 8: H-3

www.erm.com Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. | Birds Observed at the Site

Great Blue Heron

Ardea herodias

Diet Fish

East of Area 8



Belted Kingfisher

Megaceryle alcyon

Diet Fish

Area 8: H-3

www.erm.com Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. | Birds Observed at the Site

Eastern Phoebe

Sayornis phoebe

Diet

Insects

lbis

Family Threskiornithinae

Diet Aquatic invertebrates

Family Threskiornithinae

Diet Aquatic invertebrates

Raptor

Order Accipitriformes

Diet Small mammals

White Ibis

Eudocimus albus

Diet Aquatic invertebrates

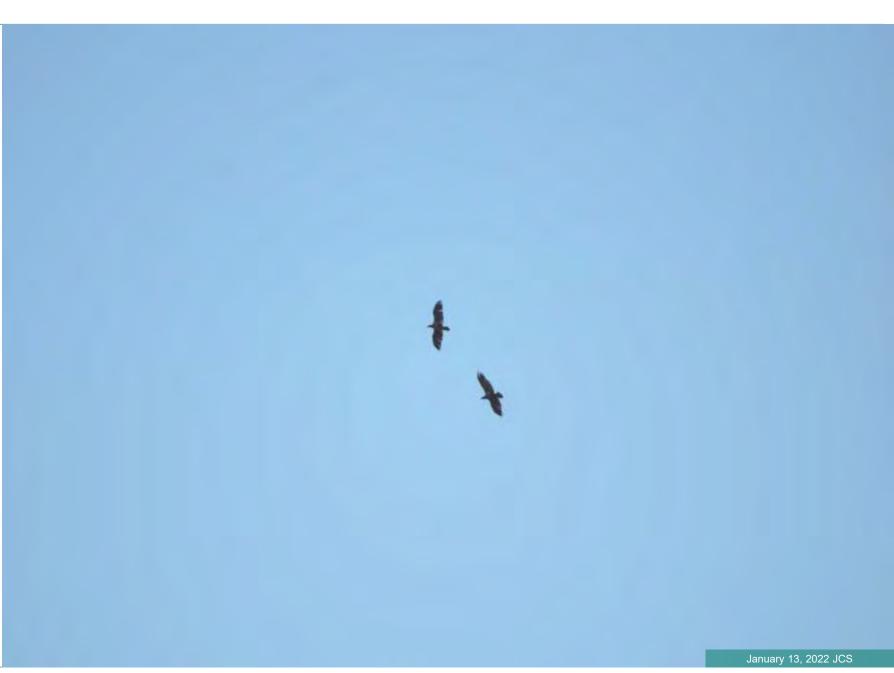
White-Faced Ibis

Plegadis chihi

Diet Aquatic invertebrates

White-Faced Ibis

Plegadis chihi


Diet Aquatic invertebrates

Bald Eagle

Haliaeetus leucocephalus

Diet Fish

American Pipit

Anthus rubescens

Diet Insects

Killdeer

Charadrius vociferus

Diet Insects

Appendix B-4

Non-Avian Fauna Observed at the Site

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.Hayes Oil & Gas FieldCalcasieu and Jefferson Davis Parishes, Louisiana

American alligator

Alligator mississippiensis

Trophic Level Apex Predator

Area 2: 12-A

Groundselbush Beetle Grub

Trirhabda bacharidis

Trophic Level Primary Consumer

Area 2: 12-A

Common Buckeye

Junonia coenia

Trophic Level Primary Consumer

Area 2: 12-A/H-11

Crawfish Tower

Family Cambaridae

Trophic Level Primary Consumer

East of Area 5: 8-A

White-Tail Deer Tracks

Odocoileus virginianus

Trophic Level Primary Consumer

Area 5: 11-A

Cricket

Superfamily Grylloidea

Trophic Level Secondary Consumer

Area 5: 11-E

Game Trail

Unknown Species

Trophic Level Varies

East of Area 5: 8-A

Snake Skin

Suborder Serpentine

Trophic Level Tertiary Consumer

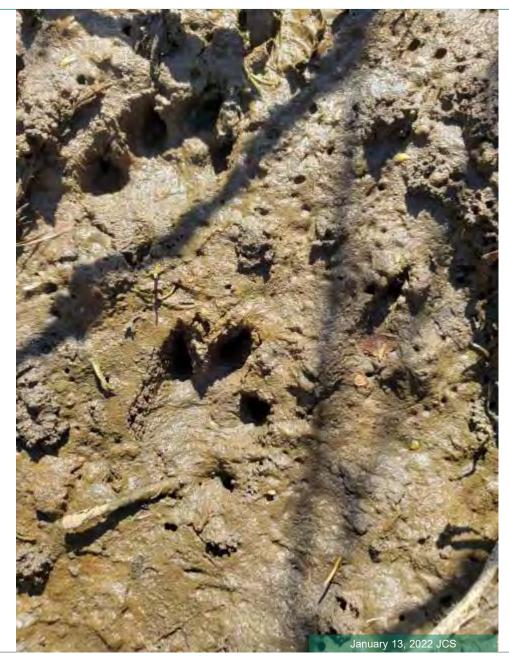
East of Area 5: 11-F

Mammal Tracks

Mammal tracks

Trophic Level Secondary or Tertiary Consumer

Area 6: H-24



Mammal Tracks

Mammal tracks

Trophic Level Secondary or Tertiary Consumer

Area 6: H-24

www.erm.com Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. | Non-Avian Fauna Observed at the Site

Checker Butterfly

Burnsius communis

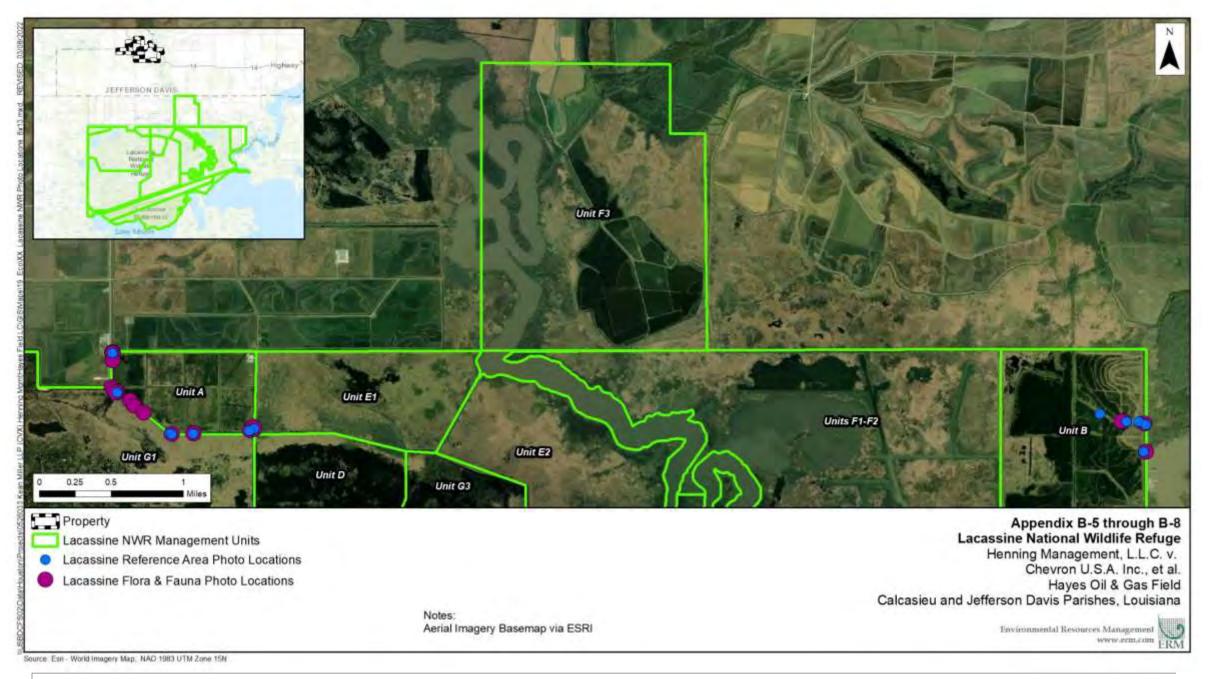
Trophic Level Primary Consumer

American Alligator

Alligator mississippiensis

Trophic Level Apex Predator

Bayou Lacassine



Appendix B-5

Vegetative Communities Observed at Lacassine National Wildlife Refuge

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.Hayes Oil & Gas FieldCalcasieu and Jefferson Davis Parishes, Louisiana

Mowed Berm

Mowed Berm

Fringe Scrub Wetland

Unit A

www.erm.com Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. | Vegetative Communities Observed at Lacassine National Wildlife Refuge

Open Water and Emergent Marsh

Open Water and Emergent Marsh

Open Water and Mowed Roadside

Early Successional Grassland

Unit A

www.erm.com Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. | Vegetative Communities Observed at Lacassine National Wildlife Refuge

Early Successional Grassland

Mowed Area

Mowed Area

Mowed Area

Early Successional Grassland

Early Successional Grassland

Unit B

www.erm.com Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. | Vegetative Communities Observed at Lacassine National Wildlife Refuge

Forested Scrub-Shrub Wetland

Early Successional Grassland

Emergent Marsh

Roadside Forest

Observation Deck

Early Successional Scrub-Shrub

Appendix B-6

Flora Observed at Lacassine National Wildlife Refuge


Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.Hayes Oil & Gas FieldCalcasieu and Jefferson Davis Parishes, Louisiana

Carolina Geranium

Geranium carolinianum

Wetland Class Not Assigned

Unit A

Mousesear

Stachys crenata

Wetland Class Facultative Upland

Unit A

Spiny Sowthistle

Sonchus asper

Wetland Class Facultative Upland

Unit A

Virginia Plantain

Plantago virginica

Wetland Class Facultative Upland

Unit A

Birdeye Speedwell

Veronica persica

Wetland Class Not Assigned

Unit A

Bald Cypress

Taxodium distichum

Wetland Class Obligate

Unit A

Black Medick

Medicago lupulina

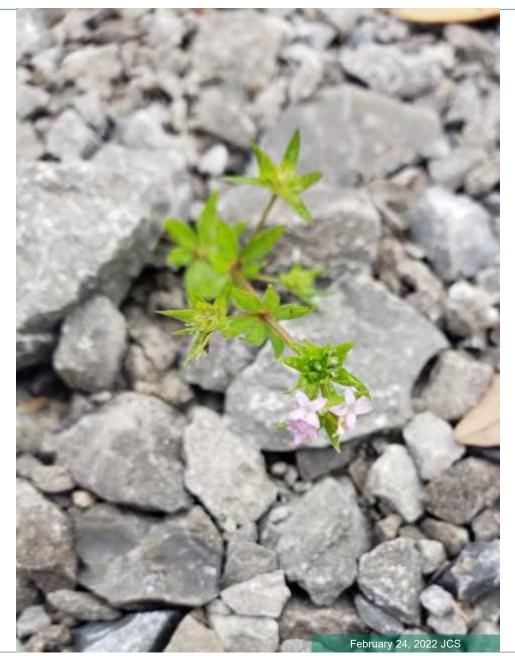
Wetland Class

Upland

Unit A

Bittercress

Cardamine sp.


Wetland Class Varies per Species

Blue fieldmadder

Sherardia arvensis

Wetland Class Not Assigned

Buttercup

Ranunculus sp.

Wetland Class Not Assigned

Unit B

California Bulrush

Schoenoplectus californicus

Wetland Class

Obligate

Unit B

Henbit Deadnettle

Lamium amplexicaule

Wetland Class Not Assigned

Unit B

Appendix B-7

Birds Observed at Lacassine National Wildlife Refuge

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.Hayes Oil & Gas FieldCalcasieu and Jefferson Davis Parishes, Louisiana

American Coot

Fulica americana

Diet Plants

Unit A

Greater White-fronted Goose

Anser albifrons

Diet Plants

Unit A

Ducks

Anatidae

Diet Varies per species

Unit A

Neotropic Cormorant

Phalacrocorax brasilianus

Fish

Diet

Unit A

Glossy Ibis

Plegadis falcinellus

Diet Aquatic Invertebrates

Unit A

White Ibis

Eudocimus albus

Diet Aquatic Invertebrates

Unit A

Common Gallinule

Gallinula galeata

Diet Plants

Unit A

Boat-tailed Grackle

Quiscalus major

Diet Omnivore

Unit A

Great Egret

Ardea alba

Diet Fish

Unit A

Northern Cardinal

Cardinalis cardinalis

Diet Seeds

Unit A

Pied-billed Grebe

Podilymbus podiceps

Diet Aquatic Invertebrates

Unit A

lbis

Plegadis

Diet Aquatic Invertebrates

Unit A

Roseate Spoonbill

Platalea ajaja

Diet Aquatic Invertebrates

Unit A

Snowy Egret

Egretta thula

Diet Fish

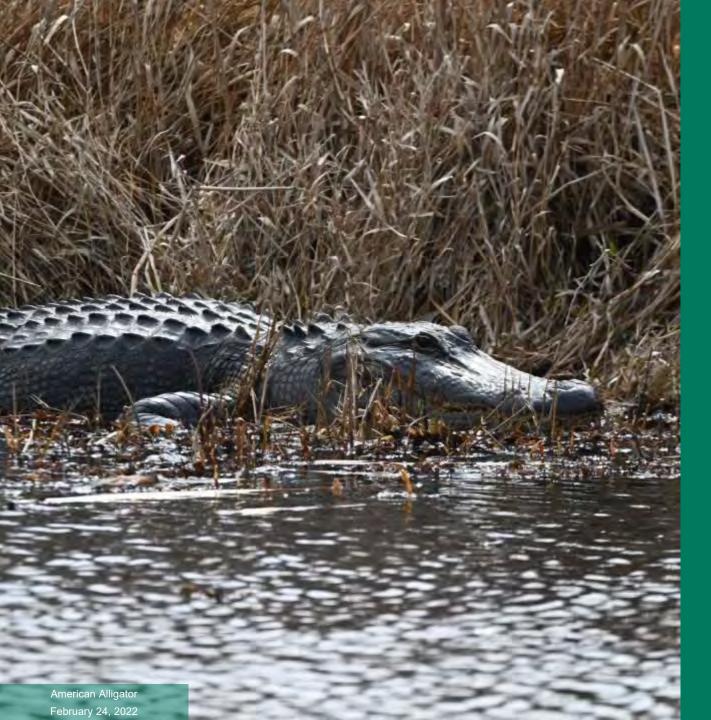
Unit A

Swamp Sparrow

Melospiza georgiana

Diet Insects

Common Yellowthroat


Geothlypis trichas

Diet Insects

Unit B

www.erm.com Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. | Birds Observed at Lacassine National Wildlife Refuge

Appendix B-8

Non-Avian Fauna Observed at Lacassine National Wildlife Refuge

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Field

Calcasieu and Jefferson Davis Parishes, Louisiana

Alligator

Alligator mississippiensis

Trophic Level Apex Predator

Unit A

www.erm.com Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. | Non-Avian Fauna Observed at Lacassine National Wildlife Refuge

Alligator

Alligator mississippiensis

Trophic Level Apex Predator

River Cooter

Pseudemys concinna

Trophic Level Secondary Consumer

Nutria

Myocastor coypus

Trophic Level Primary Consumer

Pillbug

Family Armadillidiidae

Trophic Level Primary Consumer

APPENDIX C FIELD NOTES

15 March 2022

0526033 Henning 3-24-2001 0430 Depart NOCA - P. Ritchic (ERM) 0745 Arrive on site - front gate, marked location sent by Walker Wilson W. Wilson on site - Observations noted are stated by WW. Isn 0810 8-A N30.081673 W92,912433-General habitat = Herbaceaus Deg - mix of wetland lupland spacies 2-3" of Standing water Pic 1) Crawlish chinney Picz) Game trail Pic 3.6) Habitat Cacing N-W-S-E Vegetation: Spartina paters, Eleocharis baldwinii, rubis sp. Brazilia latin -Andropogon of Bacchanis helischolia, Jancus ettusso 3 square, Bidens Sp., Grasse - Johnson & Chrotle Observation from probing = No sheen - No Odor N 30,081520° W 92,912396 General habitat = same field - SAA (Pics 7-10) Habiyat facing N-W-S-E Crows, Kill deer, game trail, crowfish Vegetation - SAA Gress shripMoquiralish, crawfish, ramshorn - dipnet HW14 ditch 10-A (Pic II) Facing W Texas Gas Value Site - Noprobin Vegetation_ Andropagon, Becchanis, Grass-P. Rilchie 0526033-3-24-2021

3.24.2021 Henning 6526033 6 N30.082062 W 92,912417 \$ 11-G 0915 General habitat = Mix horb + woody, bereground green mos 2-3" of standing water Vegetortion- Chinese tallow, smutgress, andropogos, brezilien verban -Mbus Juacus Bequere johnsongress (brechais Lange lancelot leat herb, Carex Sp. Craufish .. white spotted fishing spider - from dipnet Observation from probing - No sheen No odor N30.082113 N92.912567 \$ 11-F General habitat = mix Veg w/ herb, shrab, tree No water - abandoned motor /debris Regetation = Prickly ash, thistle, rubis, andropogon, chinese tallow Vines - 2species: opposite leaves reddishstern, hercales elab egrex spp., mut grass Snake skin - rat snake? Small nest inpipe, ants, bees Staining-Moderate odor Slight odor - Probing Potential water well? (Pic) Layne Placard Common Yellow threat N 30.082045 W 92,915089 11----Limestone area on side of entry road 3-4" of water in lower surrounding areas Vegetation - Vellow clover, endropogon, eleochanis, rubus, golden rod, gyperes 310 Pics) Facing N-W-S-E crawfish may Ay (Coluelgreer) (Pre 1-14 N 30.081937 W 92, 913350 Debris - cleared area 1-2" of water, Vegetation= Cypiens spp, cleacheris, Andiopogon, rubis, innews, white tail, Vine Green anole, crawfish - Probing . extensive very slight "sheep" stight entor Cricker

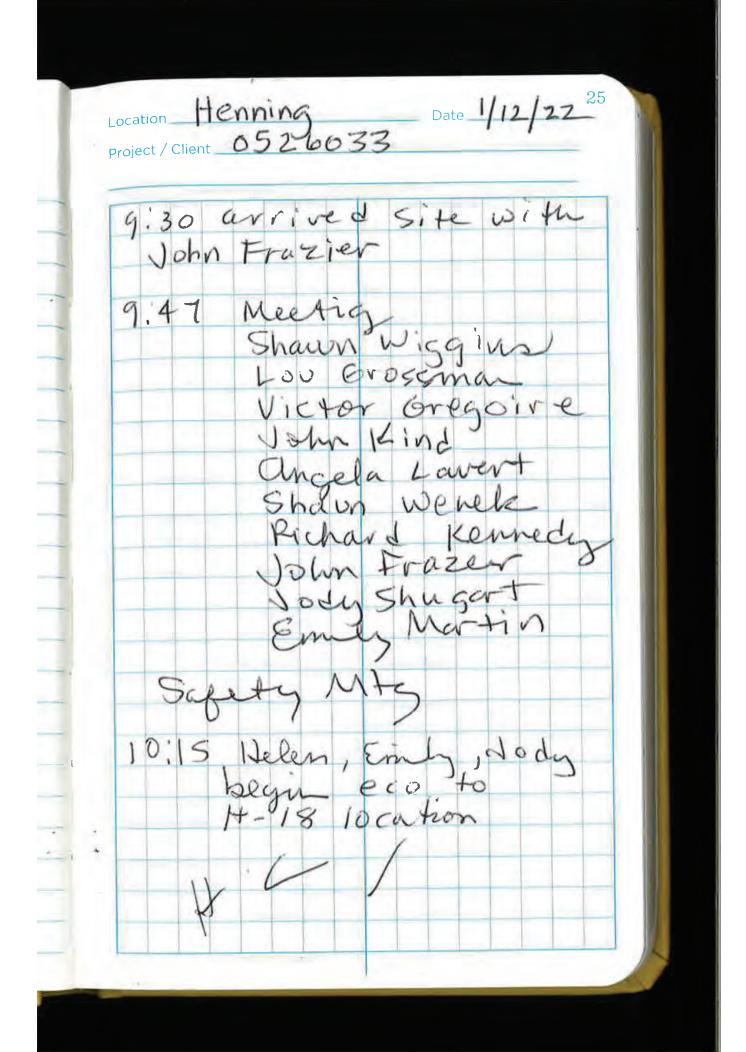
3-24-7021 0526033 Henning N 30, 08 1927 W92, 913131 \$ 11-B Limestone Covered area - water in lower parts of road Vegetation - small clumps of grass (purple) * paid inflorescence Covote scat on site 1015 Visitors on-site John Cook, Clay Kimbrell, Bubbu - ROW agent? - 4 Area between road + well pads 3-4" of standing water Regetation - Brecheris, eleocharis, yellow elover, juncus, andropogon catiail, cyperus spr, coasal bermuda, purple Clower for " Crowlish, native ladybug Observationa from probing - No Odor No sheer 1 30 N 30. 08 11 73 W 92. 913341 PICS Facing N-W-S-E Sparse vagetation, deer + coyote tracks - scatt, method ducks Yellow clover elecentaris experus spp, andrepagen green algae growing inthe Observations from proting NoSheen No Odos -N30.082121 W 92.914660 GB 4-18 well location sedge when Habitat - dominated by herb reg - occassional shrub Vegetation - Eleachanis, andropogan, goldenrod, thistle, grasss, bideas 1-21 of water in lower spots Observation from profing No Sheer No Odor JA TO 0526033 3-24-2021

3-24-2631 0526033 G-D N30, 081 694 W92. 714636 Itabitat a mix of herb + occassional shrub 1-2" of water on surface Pice N-W-S-E Vegetation = eleccharis, and popon, brazillian verbain large lancelot look, Corex spp, grasses Obervations. no odor no sheen G-C N 30,081690 W92,914933 (RG) NW-S-E Tegetation same as G=D add rabas Baccharis has catepillers cating new growth G-A N30,081708 W92,913481 Pics Habitat facing N-W-S-E 1-2" of water Vegetation = cleocharis, rubis, andropogon, junces, 2/2505 Brazilium Verbain, Bracharis, purple Obser Ami F Observations from probing No Sheen No Odor N 30, 08 21 93 W 92, 91 7978 Flowline crossing canal into field 15" 13A , Ponded the location - water depth unknown - toodeep to enter Vegetation = Cattail, maiden rane, juices, baccharis, hydrocotyl spatim patens alligator weed, rubins, hairy opposite leaf vine (no tendral) electeris, yellowgoother, thisle, tallow tree allowhed vin a On way to site = Visad on two white tailed deer (de), armadille rocks eastern neodow lark (all), when 3-24-2021 0526 033

Location Hennings Date 3/25/2) Location Hennings Date 3/25/21 Project / Client 0526033 project / Client 0526033 8:00 JES on-situ Site 12-B, scrubby field @ ICON H-B, H location CEI on-site wax nyntle, eleachris, robus trivielis, brazilian versag Wolker, Austa, Cora @ 9:37 F. w. bacchioris, juncus efficies, loursions witch, more. Site 12-A pund between ICON locations H-9,11, 312 \$8:49 F. NW @ pond. lorge alligation Site 7-M cottoils, solunia; black willow, chinese tallar low, suct sput in field typha domingeness, alligotorward, mikania scondons, juncus effusus, bushy bluestern, louisiona uctuby louisiens vitch, ludwigiz puploides alachus, juhasan gous, paspolum/us say grass \$9:01 f. n. cast side of pond Experies Sp., luduigia, rumax sp., rubus trivials Juncus affusus, wax mystle, cirsour hardelon, solidago sp -; milionia scandlers, backaner bushy blustery, solidogo 19:58 site f. E ICON H-10 will on e side €9:07 f. w. flouling on NE side of prid nuphor lutra, rubus trivialis, eleuchris sp. prozillion veryon swomp rabbit pullets, easts pundhant \$9:18 f. W, ICON H-12? well \$9:23 f S, ICON H-9 well \$9:24 f. E, pond black modist (1. pullinoi) 9:27 leaving sito 12-4 F

Location Hennings Date 3/25/21 113 Location Hennings Date 3/25/21 project / Client 0526033 Project / Client 0.526033 7-C 7-E cyperus sp., brozilian vervoin, sulidago samperiras, swamp dogwood, coroline guranium, bedstrow (goling sulidage altersing, rubus triurals, bushy alvesting sporma), sinchus aspor, rubus inviolis, peppirusan mimosa sp, cleachius sp, carex sp, cusium hurridulum, tallow, sugarlamy, butterward red maple, cyperus spj ekochnis, solidoge senpermus 7- D Jaw narrow feature omerican potimod (phile) cyperus sp, rubus triviolisz pepperulas SOM flowlings & volus western cuttornowy brozilion veryon, bouchars, salidago othesena 7-B herbacurs field Wostorn? pokurel, sugartury, red maple bushy bluston, lousinere with, embresiz sp. , corolina guranium, brazilion veryain, black modrich , me persu 75 scrubby area noon I can A-7 persica vironica, rubus + 3 a, grant lagued somple location Johnson gross, solidogo allossima, yallow taxtal (setonia) red swamp crawfird, bacchard, elevenings roining rubus trivialis, rubus argutes, the brazilion MIMOSE SP/ verus, 1, solidage server, as peparum, wax €10:23 F E 7-B orco my-1+le; fire onto, touth whe free, elder pang) neor ICON H-2 well purple possionflow curby docti, bidstrow, dog terne); sorchus asput, pokunel, oralis stricta ranuacious spy sesponio h-bacca, chipese taller green how there An

1. 3 1 1 A 61 1 1 1 1 _____ Date _____725 Date 3/25/21 Location Hennings Location Hennings Project / Client 0526033 Project / Client 0526033 7-G, H, 3 I overlap, I will record one 27-A shrubby environment plant list for all 3 H-16 well ICON chinese follow, juncus ethisus, bedstraw, eleachers, bushy bluster, solidago semplorulous; solidago ollissimo, brazilion verdan, baccharis, wax mathe ombrosia psilastachya rotalla (lowlord) OH:04 F. N 32-5 japanese hency suchle, preleat sage, corn satad, 27-L shrubby location near ICON H-15 brizz minor, purple passion Ruver, sonchus appoi soil somple rubus torvialis, subus argus, Butterweed bacchons, rubes triviolis, solidage sempervisens, bushy bushy bluestan, populaine, sugarburry beechans Bluestern, brazillion verusin condina geranium, golium hinctorium, solidage D14:28 F. N supervirons 3 altissima, white mulderry + technically out of one 7-6 shrubby one nonto of rood 7-K lorge wet ponded and conved in cottants solidago samparuras, robit privialis, wax myrter poppervises bacharis, rubus orgutus, philodephia Mubun 2 015 N shield Fern, cottouls, juncus, rubus argutus DA:41 F. W. 뉘 ronunculous sordius, on pinkladius, mouse-corod 7-H shrubby orea justeast of 7-G chickwood, white nymph solidago sempervirens, rubus trivialis, wax mentle, on road to sites rubus argutus 3 triviolis, soludago allussina $\langle \!\!\!/$


Date 3/25/2/ Location <u>Hennings</u>

9-B herbaceurs area beside limistance road (louisions with, horry buttoring, cyperus sp., rumex crispus, smilax sp. , grass sp. , chinsi tollar, churchers biazillion veryan, white clover, mach strawburg, rubes (orgutus, junas vallidus 016:02 N i 9-C hubbacous area near cull-phage tower support (cyperus sp, louisiona witch, brazilian urupin, juncus " - effuens, houry buttercup, chinese tolker, white down curly, gross go bernuda grass rubus homalis - few crussote pilles (see phate); persion alover + €16:07 S. E. 9-DEscribby one under oak tocs live oaks, chinese tollow, backons, juncus etfusus, noch strawburg, robus Privial; duduous holly, stinging outile; dwo-f palmutte; timethy conopy gross, giont log uced, stinging nottle, corolina geronium 0 16:18 . F. E. buising with, mouse-cored chickweid, budstrow biazilian viewoin buttoning and and a fiscos

Date 3/25/2/ Location Henrings Project / Client <u>0526033</u> cont. black midicile, scorlet procenall, rescue grass \$ 9E or ed SE 16:36 sunchus asper, carolina gerannon, hoiry buttorap gomochasta, white clover, persian abover, rubus argutus, annual spe grass, persona hydropiperordes, 92 A several broken-down cottle corrols w/ large concrete silo \$16:47 NE, E, SE 5-lined shinke, baccharis, louisiana vistor, white colover, persion clower, black madee, toxicodondron radicons, rubus triviolis sesbonia sp., pepperuina 17:00 off-site

and tall all - BILLING COM 119Date 3/26/21 Location Hennings Date 3/26/2/ Location Hennings Project / Client <u>0526033</u> Project / Client 0526033 drove east on word Ling & turn worth, son 8:00 JCS on-site Lonce Fontenal (Integra) well 31298 \$10:20 1-A pro f. NE Wolker, Cora, Austin (CEI) 1-A Pollow rice Prolo 3 6cm On Word Line Rd (street sign says Trave Rd) old field toxifian, LA witch, crosporsen, brazilian vervain, axolis cornioulale, purple possen 4-A flodded scrubby area south of Word Ling Trade Activery robus orgetus, robus trivialis Rd 3 leves to south sportina potens, chinese follow, puperune, bachense, scorlet pimpinull, coralina geronary, existern ribbens noter, judvigra spe, ponduced, picking ward, smortweed lody's think, juncus so, sagettorsa sp, bacopa monteri, gross sugarcon plumigross, poison y, solution, bold cyprosi SMILON bord-non cornus sp., wallia g. builfig, green tractog, green anole, eleuchnis, daciduuus 1-C rece Prold #9:21 f N \$ 18 39 or of E helly, red naph, wax yor Hu, rubus arguns rice, duckwood, unknown 1, 2 see plates 4-B 1-D rice Field red maph, chinese follor, mox months, duideaus hally, cyperus sp, persicana sp, ludwigro sp, \$10:44 f. N Fice, du chemical, unknown 1-2, buttericco ronunculus sp 1-B rice Field 3 barn aster p. \$ 1050 F. W rice, butterwood, unknower 3, lodingia spi -Ju conunculus sp, addied toodflog, mange-ear chickned gollow blue myed grass grass so, searly pindermil

fills 11 miles 121 Date <u>3/26/2/</u> 120Location Hennes Date 3/26/21 Location Hennings project / Client <u>0526033</u> Project / Client <u>0526033</u> 5-B scrubby area sollacent to rood 5-Ð D11:58 F. 5 rocte pod, porholly under woth bushy blustan, typhe donuguest, black millow Mar well 195098 louisrona vetch, chinese tallow, butterned #11:37 J. W western ribbensnake, black medrat, toll goldment Indugra so. black when, appenesso, dog fornel, alcochers pratinetwild 12:15 off-sit. 5-C wet port of poil, no very Wotor & 6" one aquatic species charna P/ Mush prass? 5-A cottoil potch south of rood 011:43 f. S' typha domingensis black willow, mitroniossondans, cleaching, puppervino broze Brog; cyperes spj azolla, red moply, spothod lody thumb, sestand, ludwagia so.

Location Mun D526033 Data 112/22	10:48 30.081733 erv	Seaside coldemod green blatsedge	such bluesten goldenod sp baccharia	Symphioticum Sp. clover se (burr clover) Sesbaria herbatia eleocharis Sp. anoto II-A regeterien	w Sp	
26 Location JULWWWLY Date 1/12/22 Project / Citent 0526033 Date 1/12/22		AC +	S. C.	10:37 water rear		

Date 1/12/223 Chrisse privet photo II.Fveg, Nele common yellouthroat gant ragweed Grass. japanuar honeyclele Rep deciduar (or 50? wooly roseth oran northen devolven brazicuin vervane 30.082096 . 92.912585 cardinal (bird) 301 survey talends allenrod Project / Client 0526033 curs 12 www. galliund sp. Jody photoling grave Project / Client 05260 33 Date 1 v2 22 We see a statut ble Variety Grass in wely vest brazilian vervane Sonchue aper Sp juncus sp. fallenvod Smell rubus spiritlen Photo 11-A 11:20 27 11-F euphonia The i and 20 Vetru sp. otond 28

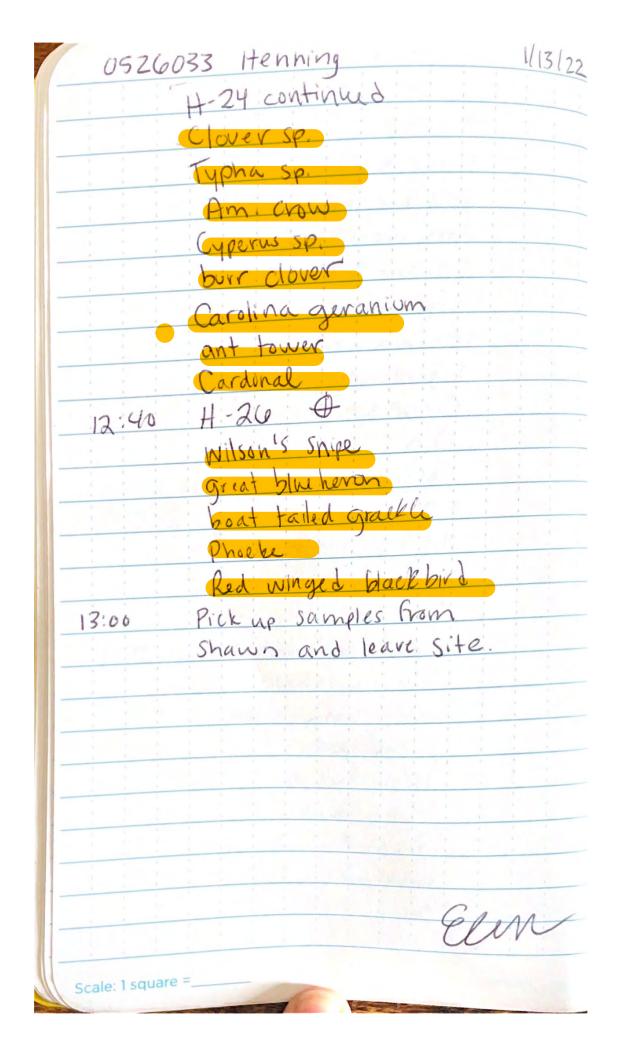
Location HEMMING Date 1/12/22 ³¹ Project / Client 0526033	Evercent alume gran burr clouer alume gran twitten vulture thirt heid to the littl litt 47 Heid to H-11 H-7, H-10 H-15 are H-11 H-10 H-15 are common buckeye butterfly valuing a path around water hole include H-11 and 13-A record path record voter hole include H-11 and 13-A record path record vegetation smilt record vegetation singlet
30 Location Newwine Date 1/2/22 Project / Client 0526033	baccherie poisen ivy crimeel taclow chineel taclow chineel taclow chineel taclow japanee contract japanee dimburg gown yoncues spreative supplicities of your poison NY yellow pristile y yellow phistile from estry. Simplicities for astron phistile from estry. Simplicities for any the phistile from estry.

Date 1/12 / 2.7 100 Kalike water hele Emily photo & mosquito -fish - oder water hel highbush blackberry Easiern phoebe Seaside goldentod Wax myrthe geldenod sp. gren Hatsedge revisionie spinartuerd bacopa monieri Wren (Project / Client 052 6033 Fox Solge PPochous Crawbear HEnring. Carters Sedar cattail spirat most in most united but water divine to Jody water divine Jogy water termen salvinia water eely sp spatter dock sp fed winged klubind Date 1/12 22 Northern Harrier pheto water hole chimae de de (yellow buch one len vincus religator weed cricket brogg Project / Client 052 6033 ANISY & hund 13

Date 1/12/2135 for seeal + ducker 2:10 Jedy photo'd. Bayon Lalazzie 1 auto near water pumps red bedered woodpeaked Bayou 1-1-3 chickedee red truled how Project / Client 052 603 3 Photo Egets Sapsucher Location - Le nning preperter Ncord Leycassine 00:00 3:15 white ibis areat eigned smort eignet nectropic trimarant Project / Client 0526633 Very photold killdown photold white faced ibis 3 photos Emelys difnesting blabind climbus houping Healing municies Spoke to "Henrywy reduriction bery compleyer fulles 1:48 at H-3 348

saggitaria latteitela spaugh mare com. elin nerto dway palmetto alligator weed salvinia (common) water hyacinth espector maculat Project Clar 53 10 03 3. 1/12/22 31 Bayou Lacassine location 30,078751 on Shard cottonas spider elipicas pritated wentpecker macivlat 52. 55625 0W red maple Bacchari Soch rupy crown hinglet Monet / Climin 052 6033 3 photos Bayon Lacassine but cypress subainta was to b p tant greater winte white tyted vires 2:34 Tried to access ditch tod 2 ertrance Cypreve 3:36

Project / Client 050 10 233 Date 112/23	3:34 at H-28 critical broog + -28 rabbit peccerts	0 0 2	certho cath	persicaria maculata ned maree	Climbing herrovine	dudkwerd sulving	Florida mud midget lecourd freg alligator weed
Project / Client 0526033 Date 112/22	ravolina seranion	peppervine juncus	hibiscus Spinune	Chindle tallows Suamp smartured	Am Restroy and sparred	her	


Project / Chemi 0526833 dog fennel swamp sparrow 3:59 photo 1+-28 yellow torumped workler 4:15 Acad out 1

1/13/22 0526033 Henning on site safety meeting 08:45 Jody + Emily 09:05 Check in W Shawn 09:12 Anninga near A-12 0 H-13 EM 09:20 09:19 + H-13 JS O snow geese 09:23 09:31 H-16 arrive 30.085077° N 92.915516°W 09:34 0 H-16 Bluegray gnat catcher Savanniah sparrow Carolina wren roby crowned kinglet eastern towhee blue jay red winged black bird ballharis wax mystle bushy bluestern yellow thistle Seaside golden i od Celler Rete in the Rain. rabbit's foot quass Scale: 1 square =

0526033 Henning 1/13/2	7 0576	033 Henning	1/13/22
The sugarcane plotted a rass	0000	H-15 continue	9
continued crawfish mound		American crow	
eleocharis		Seaside goldenri	9
V agray cat bird		tall golden rod	
green flat sedge		eleocharis	
Brazilian vervain		Brazilian Vervo	in
why dock		cad wing blac	K binds
Individia repens	1	acealer while	banked gent @ 9:50
tall goldenrod	- 1 - 1	bushy bluester	m
(abbit pellets		crow poison	
Note H-16 area was bush hogged		rubus sp.	
Sedar wien		why crowned	
Cardinal	•	wax myrtle	
09:47 thang hand dug soil - no invert obs		juncus sp.	
09:49 Orange butterfly 0		Cyperus Sp.	
		crawfish mo	
09:52 Arrive H 15		cabbit pellets	
30.084284°N		highbush back	
92.915600°W			row @ 10:05
€ 10.04		1	
the gray grat catcher	10:13	H-8	30.084759°N
Lane Jay		# 10:13 EM	
yellow rumped manshere.		bushy bluester	
bacharis		bacharis	
Sedur wien Canal		wax myrth	GAN
Show gust COM		@ 10:18 JS	Can
Scale: 1 square =	Scale: 1 square	0.1	Rete in as Ring

0526033 Henning 1/13/2	2 0520033 Henning 1/131
H-8 continued	and the second
Sedar wren 🕀 10:18	10:44 OH-7
ruby crowned kinglet	H-4 arrive
giant cane	rad bellied Woodpecter
fall golden ad	red should bred hawk
Southern durberry	Killdeer
Brazilian vervain	checkered butterfly
Stasthe golden rod	Am. crow
surpean honey be	Savannah Spavrow
Calex sp.	white ibis
e leocharis	white faced ibis
Japanese Climbing form	Snowy egret
northern devberry	Bald Eagt juvin 11e (2) 0
Juncus Sp	greater yellow legs
about pellets	30.084759 ° N
curly dack	92 916089°W
Sesbania herbacea	
balloon vine?	11:21 0'5
giant raqueed	buttering sp.
gray cathird.	Florida mulmiget
Am, crow	(in the second
Carolina wren	sagitaria (grass-leaved)
Cardinal	electraris
blue gray gnat cabler	bacopa monteri
10:32 hand dug soil = no inverts obs	raccon prints GII
dragontly GRIM	Scale: I square = Rete =

0526033 Henning 1/13/22	0526033 Henning 1/13/2:
H-4 continued	H-24 continue
deer tracks	⊕ 11 5¢
American pipit	1 inch surface water
Crawfish	yellow rumped warbler
crawfish tower	Am. crow
rathits toot grass	Sparting patens
Vetch	highbush blackberry
gallum Sr.	esbania herbacia
little guaking grass	Sugarciane dune gras
Brazilian vervain	Carex SP. Flies
Bermuda grass	
grass sp.	Judwigia reperis
carolina guranium	tall gotten red
Persian speedwelt am	dog fennel
highbush blackberry	bacharis live oak
Typha sp.	Small mammal track & 12:5
Southern dewberry	
Smartweed Sp.	Japanese honey suckle
drayonfiz	smilly bona-nox
Scarlet Pimpernell	
Clover sp.	black willow
Alivnsp	Bushy blueston
11.53 Arrive A-24	Brazilian vervain
30.081752°N	smartweed sp persicaria Maculal
92,910630°W GUM	verch Earth
tale: 1 square =	Scale 1 square = Rets in cir Rome

145 Date 2/24/22 144 Location Henning Date 2/29/22 Project / Client Location Henning Project / Client _ 8:40 on-site @ Lacousine NWR HQ 14:25 deport NWR. 9:00 accure @ Unit B on Streeter RJ west side of road has deep d the w/treed levee 15:00 and @ Boyou Locassine @ Lorrein: before old og fields. Port, small RU port w/ compground 3 recording birds on abird 3 plants on paper best launch beside Boyou Lacassines. Messening Boyon From bridge Top of bridge of \$10:03 common yellow throat @ Unit B w. trail porking lot. no GRS 10' above wother. Wother 9'8". Mesured using weighted rop to top measure. 1540 Jes off-sito 11:10 koving unit B 12:00 prove @ Unit F3 stapped by former \$ told I was not ollowed to be in this prep. There were no "no trespossing" signs posted. Left prea MAD SURVEY. 12:35 prove @ Unit A. Signs say hiking only alland from Mar 15 - Oct 15. Veg logged on road & trailhead area. Ports of Unit are very similar to site, but lacks shrubs. Some evidence of contralled burns presont

<pre>umam Maa_ venetic Nose Action apple Action Act</pre>					and the second	and the provide star	the second	And Actions	والمجارد الأراب والمورد التابير
	Common Name	Salantific Name		"B	- Comme	and an and manager	and a brand for the synthesis	the section in the	and analysis and
Machangeham Altern unakangen Anternal Anternal Aussend Anternal calescende Anternal Anternal Aussend Anternal Anternal Anternal Aussender Anternal Anternal Anternal Aussender Anternal Anternal Anternal Aussender Anternal Anternal Anternal Aussender Barternal Anternal Anternal Anternal Aussender Barternal Anternal Anternal Anternal Aussender Barternal Anternal Anternal Aussender Barternal Anternal Anternal Aussender <td></td> <td></td> <td>Unit A</td> <td>Unit</td> <td></td> <td></td> <td></td> <td></td> <td></td>			Unit A	Unit					
Albertoring and Mercanska generalized base Albertoring and Albertoring									
Bagend Arekens as Arekens as Arekens as Arekens as Utils stagend Anorgin lineaus Arekens as Arekens as Arekens as Utils stagend Anorgin lineaus Arekens as Arekens as Arekens as Utils stagend Anorgin lineaus Arekens as Arekens as Arekens as Utils stagend Arekens as Arekens as Arekens as Arekens as Utils stagend Arekens as Arekens as Arekens as Arekens as Utils stagend Brance askeden Arekens as Arekens askeden Arekens as Utils stagend Brance askeden Arekens askeden Arekens askeden Arekens askeden Utils stagend Brance askeden Arekens Arekens </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				-					
Chen ageneral Andexion tofika X<		Ambrosia psilostachya		-					
Bale node: Amorph finitions Amorph finitions Amorph finitions Wash Record Addressions Amorph finitions Amorph finitions Wash Record Addressions Amorph finitions Amorph finitions Unit a Section Machael Section Amorph finitions Amorph finitions Unit a Section Base Section Amorph finitions Amorph finitions Amorph finitions Unit a Section Base Section Amorph finitions Amorph finitions Amorph finitions Amorph finitions Machael Section Base Section Amorph finitions Amorph finitions Amorph finitions Amorph finitions Machael Section Calcebase Section Amorph finitions	Ragweed	Ambrosia sp.							
	Giant ragweed		X						
Babbo Autogene parents X X X X Cher care Anabatati parents X X X X Cher care Anabatati parents X X X X Cher care Anabatati parents X X X X Lacers hordwin Backers hordwin Backers hordwin Backers hordwin Anabatati parents Second Forgenetic X X X X X Second Forgenetic X X X X X Second Forgenetic X X X X X Second Forgenetic Anabatati parents X X X X X Recoregnetic Calman benchand X X X X X Before Construct Calman benchand X X X X X Before Construct Calman benchand X X X X X Second fore Construct Calman benchand	False indigo								
Machane Androgen au. Androgen au. Automa (data signates) Automa (data signates) Chen Insolution Automa (data signates) Automa (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Ush-drip sex Bacopa nonset Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Ush-drip sex Bacopa nonset Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Macchael (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Accentor Insolution (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Signates Chen Insolution (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Signates Chen Insolution (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data signates) Signates Chen Insolution (data signates) Image: Chen Insolution (data signates) Image: Chen Insolution (data si				-					
Unit own Andiana garden X Image of the second s			X	-A					
University Applement (data statum) Image: Construction Lacern beckniss Baccionn Inflaming Image: Construction Image: Construction Lacern beckniss Baccionn Inflaming Image: Construction Image: Construction March of acc Baccionn Inflaming Image: Construction Image: Construction March of acc Baccionn Inflaming Image: Construction Image: Construction March of acc Baccionn Inflaming Image: Construction Image: Construction Rescription Baloonne confloration Image: Construction Image: Construction Rescription Baloonne confloration Image: Construction Image: Construction Baloonne acc Construction Image: Construction Image: Construction Baloonne acc Construction Image: Construction Image: Construction Baloonne acc Construction Image: Construction Image: Construction Status Construction Image: Construction Image: Construction Status Construction Construction Image: Construction Status Const				LV					10
Construction Acolise confirmant Acolise confirmant Acolise confirmant Hard-regres Baccan instruction Acolise confirmant Acolise confirmant Hard-regres Baccan instruction Acolise confirmant Acolise confirmant Lind confirmant Baccan instruction Acolise confirmant Acolise confirmant Confirmant Confirmant Confirmant Acolise confirmant Confirmant Confirmant Confirmant Acolise confirmant State Confirmant Confirmant Acolise confirmant State Confirmant Confirmant Confirmant State Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant State Confirmant Confirmant Confirmant Confirmant Confirmant Confirmant				-					
basen sectors with the sectors of the sectors of the sectors of the sectors between t									
Unterstand Descap monitoria And and an anti-anti-anti-anti-anti-anti-anti-anti-			- V	X					
Converting Buten laws				10					
Warehold Breein scheden									C
Lift again genes Hora miner Image: Construction of the construc				112					
Recorgans Brown outbridge American back valar wite Dechand contrains Carlon fan verd Carlon fan verd Seger Ser Carlon fan verd fan verd Seger Ser Carlon fan verd fan verd Seger Ser Carlon fan verd fan		Briza minor	1						
American backwata vine Braunchi ovata Image: Second famore Image: Second famore Tavbedsko tardening op Calines op Image: Second famore Image: Second famore Balacie Carso famore Calines op Image: Second famore Image: Second famore Balacie Carso famore Carso famore Image: Second famore Image: Second famore Status Carso famore Carso famore Image: Second famore Image: Second famore Common mouse end chickee Carso famore Image: Second famore Image: Second famore Image: Second famore Stack chickeed Carsian forstamm Image: Second famore Image: Second famore Image: Second famore Image: Second famore Maskgras Carsa famore Image: Second famore Image: Second famore Image: Second famore Image: Second famore Maskgras Carsa famore Image: Second famore Ima		Bromus catharticus	-					6	
Carobin favord Calobank conducta Divelocidy user starword Calobank conducta Bitterstein Carobin pan Side Carobin pan Commo honologin Carobin pan Commo honologin Carobin pan Const pan Caraban forman Const pan Caraban forma forman Sift Gopoxod Const forma forman Car		Brunnichia ovata						100	-
Tuvbesola same-same of Calificial bestepsychia Calification Calificati) -						-
Ballow werk Cardiogenerational blocachem Ander Stern Sigder Cures sp. Ander Stern Sigderbry Celts larging Ander Stern Common brokeser dickeed Cerasium florenzin Ander Stern Sigderbry Control build for the sternin Ander Sterning florenzin Control build Control build for the sternin Ander Sterning florenzin Sigderbry Control build for the sternin Ander Sterning florenzin Sigderbry Control build for the sternin Ander Sterning florenzin Signer Hubble Cristian for florenzin Ander Sterning florenzin Signer Hubble Cristian for florenzin Ander Sterning florenzin Jamaica swarg assegrass Cladining florenzin Ander Sterning florenzin Jamaica sterdis florenzin Corena specific florenzi				£					-
Seder Cures sp. Non- Non- Common hordnobuck Cephatamina sociedatals Non- Non- Stack-citikveed Cerasium fortamam Non- Non- Stack-citikveed Cerasium fortamam Non- Non- Stack-citikveed Cerasium fortamam Non- Non- Maskgrass China sp. Non- Non- Stack-citikveed Creasium fortamam Non- Non- Stack-citikveed Creasium fortamam Non- Non- Starts-citikveed Creasium fortamam Non- Non- Startstarts-citikveed Creasium f	Bittercress			X		-			-
Signifyrion Cefus teorgata X Image: Central teorgata Common musee-er dickved Censtitun floatman Image: Censtitun floatman Image: Censtitun floatman Stacky chickwedd Censtitun floatman Image: Censtitun floatman Image: Censtitun floatman Stacky chickwedd Censtitun floatman Image: Censtitun floatman Image: Censtitun floatman Stacky chickwedd Censtatun floatman Image: Censtitun floatman Image: Censtitun floatman Stacky chickwedd Censtatun floatman Image: Censtitun floatman Image: Censtitun floatman Thaste Censtatun floatman Image: Censtatun floatman Image: Censtatun floatman Start floatman Image: Censtatun floatman Image: Censtatun floatman Image: Censtatun floatman Start floatman Image: Censtatun floatman Image: Censtatun floatman Image: Censtatun floatman Image: Censtatun floatman Start floatman Image: Censtatun floatman Image: Censtatun floatman Image: Censtatun floatman Image: Censtatun floatman Vellow natedge Cypera seculatus Image: Censtatun floatman Image: Censtatun floatman Image: Censtatun floatman Vellow natedge Cyperase seculatus Image: Censtatun f	Balloon vine								-
Commo hutoubuh Cephatamba occionalis A second and a second a second and a second an	Sedge				+				-
Common muses-err dickved Ceratum forman			X						-
Sticky oliviewed Ceratelyline meansum									-
Coords rail Center app. Darapayan windmill grass Cloins app. Darapayan windmill grass Cloins catterai Spin shisk Clristin borndulum Thisle Cloins in pp. Jankia sawing sawgrass Cloins manifestes Jogewold Cornus feemina Seven sisters Crimon mercinam Seven sisters Crimon president scaliniculum Green nakedee Cyperus seven Green nakede Contro seven									-
Muskgrass Chars ap.									-
Tancauva windmill grass Choirs canterai									-
Spins histle Cristim gp. Thistle Cristim gp. Lansies avæng sævgræs Claditun janaicense Stuff dörpwold Cornus deminendi Dörevold Cornus deminendi Stuff dörpwold Cornus deminendi Dörevold Cornus deminendi Stuff dörpwold Cornus sp. Green havdhom Crateges viråls Stuff dörpwold Crima marrieranum Bernudget Cypens secilentist Flatscolge Cypens secilentist Corten laskelge Cypens secilentist Contine portyfol Dechodra carolivensis Contino pryfol				-					-
Thick Circium sp. Iamacia svarg mayranss Cladium jamaicense Iamacia svarg mayranss Cladium jamaicense Stiff dayrood Cornus formina Dorsvoid Cornus sp. Coren handhom Crategos viridis Stess nikers Crimun americanum Bernudagras Cynon steadeylon Yellow nutsclige Cyperus scalenus Yellow nutsclige Cyperus scalenus Torsen fastodae Cornus formina Carolina ponyfasto Cornus formina Yellow nutsclige Cyperus scalenus Yellow nutsclige Cyperus virens Carolina ponyfasto Dichondra carolinensis Connon water hyocinth EthioneDicloa conna <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Jamisa svæng av grass Cladini jamienese			~		All Company				
Example d gowood Cornus Grummondii									
Stiff dispaced Cornus formina Dopeyood Cornus sp.p. Seven skers Crinus mericinaum Seven skers Crinus mericinaum Seven skers Crinus mericinaum Model Caperos sp. Tessedge Cyperus secuentus Filtesdage Cyperus secuentus Green flastedge Cyperus secuentus Green flastedge Cyperus secuentus Green flastedge Cyperus secuentus Cornus portier grass Dechondra continentis Carolina ponysfoot Dechondra continentis Carolina ponystoot Dechondra continentis Samayatargas Echonochioa consequili Samayatargas Echonochioa consequili Samayatargas Echonochioa consequili S			- 1						-
Dogwood Comus sp. Green havborn Cratages virids Bernudagrass Chroden deciven Vellow nusselge Cyperus sp. Flatsdige Cyperus sp. Green havborn Chroden deciven Vellow nusselge Cyperus sp. Flatsdige Cyperus sp. Green flatsdige Cyperus sp. Green flatsdige Cyperus sp. Green flatsdige Cyperus sp. Good na porsytool Dichoufar carolinensis Common persimmon Dissyros virgininan India strawberry Duckesnea indica Jumule Rice Echnonchioa crussglii Common were hypeinth Elecoharis partula Bartwirdgrass Echnonchioa walteri Common were hypeinth Elecoharis partula Badwir s gukerush Elecoharis guadrangulan Splarensh Elecoharis guadrangulan			1-		a de				- 10 m
Green lawthom Crataegus virids			1				1.1.1		a state of the sta
Seven siders Crinum americanum X X Yellow nutsedge Cyperus esculentus							25	da esta	
Bermudgarass Cynedou dactylon X X Yellov natisdje Cyperus sp.			1						
Yellow musedge Cyperus sexulentus		Cynodon dactylon	X	X			1		_
Flassdge Cyperus sp. Green flassdge Cyperus viens Woolly rosette grass Dichanthelium subbusculum Carolina ponysfoot Dichanthelium subbusculum Carolina ponysfoot Dichondhe carolinensis Common persimmon Dispyros virginiana Shield fern Dryopteris carlhuisiana Indian strawberry Ducheschein dica Jungle Rice Echinochloa envisignesi Goast cockspur grass Echinochloa envisignesi Coast cockspur grass Echinochloa envisignesi Coast sockspur grass Echinochloa envisignesi Common water hyacinth Eleocharis baldwinii Baldwini sighterush Eleocharis montevidensis Dwarf spikerush Eleocharis gaudinggulata Synarestem spikerush Eleocharis spiterus Spikerush Eleocharis spiterus Philadelphin Reabane Englifolium Dorgemel Eugatorium serifition Spikerush Eleusine indica Spikerush Eleusine indica Dida spiterush Eleocharis spiterus Spikerush Eleocharis spiterus Spikerush Eleusine indica <td></td> <td>Cyperus esculentus</td> <td>(ft)</td> <td></td> <td></td> <td></td> <td></td> <td>1. Alexandre</td> <td></td>		Cyperus esculentus	(ft)					1. Alexandre	
Green flatsedge Cyperus virens		Cyperus sp.							
Carolina ponysfoot Dickhondra earolinensis		Cyperus virens			-				_
Common persimmon Diospyros virgininan	Woolly rosette grass	Dichanthelium scabriusculum					-		C (1944
Shield fem Dropeters carhusiana Image Rice Image Rice Indian strawbery Duchesnea indica Image Rice Echinochloa crus-galli Barnvardgrass Echinochloa crus-galli Image Rice Image Rice Coast cockspur grass Echinochloa valleri Image Rice Image Rice Codit cockspur grass Echinochloa valleri Image Rice Image Rice Sad spikerush Eleocharis suldwinii Image Rice Image Rice Sad spikerush Eleocharis sparula Image Rice Image Rice Squarstem spikerush Eleocharis sparula Image Rice Image Rice Spikerush Eleocharis sparula Image Rice Image Rice Image Rice Spikerush Eleocharis sparula Image Rice Image Rice </td <td>Carolina ponysfoot</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Carolina ponysfoot			-					
Indian strawberry Duchesneai indica	Common persimmon	Diospyros virginiana	-						
India staveny Echinochloa colona	Shield fern	Dryopteris carthusiana							_
Banyardgrass Echinochloa crus-galli	Indian strawberry								_
Darking dig ass Echinochloa walteri X Image: Construction of the second of the s	Jungle Rice	Echinochioa cololia		-49		_			-
Common water jyacinth Eichhornia crassipes Image: Common water jyacinth Eleocharis badwini Baldwin's spikerush Eleocharis montevidensis Image: Common water jyacinth Image: Common water jyacinth Surd spikerush Eleocharis garvula Image: Common water jyacinth Image: Common water jyacinth Squarestem spikerush Eleocharis garvula Image: Common water jyacinth Image: Common water jyacinth Spikerush Eleocharis garvula Image: Common water jyacinth Image: Common water jyacinth Spikerush Eleocharis garvula Image: Common water jyacinth Image: Common water jyacinth Spikerush Eleocharis garvula Image: Common water jyacinth Image: Common water jyacinth Indian goosegrass Erigeron philadelphicus Image: Common water jyacinth Image: Common water jyacinth Dogfennel Eupatorium acpillifolium Image: Common water jyacinth Image: Common water jyacinth Image: Common water jyacinth Spurge Euphorbia sp. Image: Common water jyacinth Image: Common water jyacinth Image: Common water jyacinth Sitfmarsh bedstraw Galium aparine Image: Common water jyacinth Image: Common water jyacinth Image: Common water jyacinth Rosem									-
Baldwin's spikerush Eleocharis baldwinii Image: Constraint of the spikerush Image: Constraint of the spikerush Dwarf spikerush Eleocharis guadrangulata Image: Constraint of the spikerush Image: Constraint of the spikerush Squarestem spikerush Eleocharis guadrangulata Image: Constraint of the spikerush Image: Constraint of the spikerush Squarestem spikerush Eleocharis guadrangulata Image: Constraint of the spikerush Image: Constraint of the spikerush Squarestem spikerush Eleocharis spikerush Eleocharis spikerush Image: Constraint of the spikerush Squarestem spikerush Eleocharis spikerush Eleocharis spikerush Image: Constraint of the spikerush Squarestem spikerush Eleocharis spikerush Eleocharis spikerush Image: Constraint of the spikerush Spikerush Eleosine indica Image: Constraint of the spikerush Image: Constraint of the spikerush Dogfenel Eupatorium capilifolium Image: Constraint of the spikerush Image: Constraint of the spikerush Spurge Euphorbia sp. Image: Constraint of the spikerush Image: Constraint of the spikerush Stiff marsh bedstraw Galium spikerush Image: Constraint of the spikerush Image: Constraint of the spikerush		Eichhornia crassines		X					-
Davarf spikerush Eleocharis montevidensis		Eleocharis baldwinii		10					-
Salad Sprictasin Eleocharis parula		Eleocharis montevidensis	1	1.11					
Bytersish Eleocharis syde		Eleocharis parvula							
Splikerium Eleocharis sp. Image: Splikerium Image: Splikerium Image: Splikerium Indian goosegrass Eleusine indica Image: Splikerium Image: Splikerium Image: Splikerium Dogfennel Eupatorium capillifolium Image: Splikerium Image: Splikerium Image: Splikerium Lateflowering thoroughwort Eupatorium serotinum Image: Splikerium Image: Splikerium Image: Splikerium Spurge Euphorbia sp. Image: Splikerium Image: Splikerium Image: Splikerium Spurge Euphorbia sp. Image: Splikerium Image: Splikerium Image: Splikerium Spurge Euphorbia sp. Image: Splikerium Image: Splikerium Image: Splikerium Spurge Euphorbia sp. Image: Splikerium Image: Splikerium Image: Splikerium Spurge Euphorbia sp. Image: Splikerium Image: Splikerium Image: Splikerium Image: Splikerium Stiff marsh bedstraw Galium tinctorium Image: Splikerium Image: Splikerium Image: Splikerium Rosemallow Hibiscus sp. Image: Splikerium Image: Splikerium Image: Splikerium Image: Splikerium Waterthyme	Dwarf spikerush	Eleocharis quadrangulata			-				
Spiredusin Eleusine indica Image of the spire of		Eleocharis sp.	-	_					
Initial goosegrass Erigeron philadelphicus / / / / / / / / / / / / / / / / / / /		Elsusing indica		-					
Innaceptina necome Eupatorium capilifolium Innaceptina necome Innaceptina necome Dogfenel Eupatorium serotinum Innaceptina necome Innaceptina necome Innaceptina necome Thoroughwort Eupatorium sp. Innaceptina necome Innaceptina necome Innaceptina necome Spurge Euphorbia sp. Innaceptina necome Innaceptina necome Innaceptina necome Fimbry Galium aparine Innaceptina necome Innaceptina necome Innaceptina necome Stickywilly Galium sp. X Innaceptina necome Innaceptina necome Stiff marsh bedstraw Galium tinctorium X Innaceptina necome Innaceptina necome Pennsylvania everlasting Garonchaeta pensylvanica X Innaceptina necome Innaceptina necome Rosemallow Hibiscus sp. Innaceptina necome Innaceptina necome Innaceptina necome Waterthyme Hydrotyle ranunculoides X Innaceptina necome Innaceptina necome Hodrocotyle Hydrocotyle sp. X Innaceptina necome Innaceptina necome		Erigeron philadelphicus		_					
Dogenitation Eupatorium serotinum Lateflowering thoroughwort Eupatorium sp. Spurge Euphorbia sp. Fimbry Fimbristylis miliacea Stickywilly Galium aparine Bedstraw Galium tinctorium Stiff marsh bedstraw Galium tinctorium Pennsylvania everlasting Gamochaeta pensylvanica Carolina geranium Geranium carolinianum Rosemallow Hydricotyle ranunculoides Floating marshpennywort Hydrocotyle sp.		Eupatorium capillifolium	1						
Thoroughwort Euphonour sp. Image Image Spurge Euphonia sp. Image Image Fimbry Galium aparine Image Image Stickywilly Galium sp. Image Image Bedstraw Galium tinctorium Image Image Stiff marsh bedstraw Galium tinctorium Image Image Pennsylvania everlasting Gamochaeta pensylvanica Image Image Carolina geranium Geranium carolinianum Image Image Image Rosemallow Hbiseus sp. Image Image Image Image Waterthyme Hydrila verticillata Image Image Image Image Floating marshpennywort Hydrocotyle ranunculoides Image Image Image Image Hydrocotyle Hydrocotyle sp. Image Image Image Image Image Image		Eupatorium serotinum							
Spurge Euphoroid sp. Important sp. Fimbry Fimbristylis milacea Important sp. Stickywilly Galium aparine Important sp. Bedstraw Galium tinctorium Important sp. Stiff marsh bedstraw Galium tinctorium Important sp. Pennsylvania everlasting Gamochaeta pensylvanica Important sp. Carolina geranium Geranium carolinianum Important sp. Rosemallow Hydrila verticillata Important sp. Waterthyme Hydrila verticillata Important sp. Floating marshpennywort Hydrocotyle sp. Important sp. Hydrocotyle Hydrocotyle sp. Important sp.				-					_
Fimbry Fimbrity is minacea Image: Construction of the second of the		Euphorbia sp.							-
Stickywilly Galum aparite Image: Constraint of the system of the sy			38						-
Bedstraw Gaitum sp. X Image: Constraint of the sp. Stiff marsh bedstraw Gaium tinctorium Image: Constraint of the sp. Image: Constraint of the sp. Pennsylvania everlasting Geranium carolinianum Image: Constraint of the sp. Image: Constraint of the sp. Carolina geranium Geranium carolinianum Image: Constraint of the sp. Image: Constraint of the sp. Waterthyme Hydrila verticillata Image: Constraint of the sp. Image: Constraint of the sp. Floating marshpennywort Hydrocotyle ranunculoides Image: Constraint of the sp. Image: Constraint of the sp. Hydrocotyle Hydrocotyle sp. Image: Constraint of the sp. Image: Constraint of the sp.									-
Stiff marsh bedstraw Galium tinctorum Image: Constraint of the state of th	Bedstraw		X						-
Pennsylvania everlasting Gamochaeta pensylvanice X Image: Constraint of the second sec	Stiff marsh bedstraw	Galium tinctorium							-
Carolina geranium Geranium carolination Rosemallow Hibiscus sp. Waterthyme Hydrila verticillata Floating marshpennywort Hydrocotyle ranunculoides Hydrocotyle Hydrocotyle sp.	Pennsylvania everlasting	Gamochaeta pensylvanica	X	X					
Rosemallow Hibiscus sp. Image: Constraint of the sp. Waterthyme Hydrilla verticillata Image: Constraint of the sp. Floating marshpennywort Hydrocotyle ranunculoides Image: Constraint of the sp. Hydrocotyle Hydrocotyle sp. Image: Constraint of the sp.	Carolina geranium								
Waterthyme Hydrinia veritemata X Image: Constraint of the second	Rosemallow	Hibiscus sp.							
Hydrocotyle Hydrocotyle sp.	Waterthyme	Hydrina venienata	_						-
Hydrocotyle Hydrocotyle sp.	Floating marshpennywort	Hydrocotyle sp		_					
Possumhaw	Hydrocotyle	Ilex decidua							
	Possumhaw	They declam							and the second s

10

Common Name Saltmarsh m			and the second second	the second s	To be all		
Virmini	Science						
Annual marsh elder	Scientific Name						
esuit's bark	Ipomoca sagittata Iris virginica						
Ohn	Tva annua	Unit A	Unit B	Unit			
Veedlegrass rush	Iva fruteseen			Unit F3	Unit C		
Rush	Juncus official				Sun C		
Poverty rush	Juncus room						
Zirginia saltmarsh mallow Veedy dwarfdand y	Juncus tenui		X				
Veedy dwarfdandelion	Lunche and a						
outhous	inosic etal						
Ommon	Krigia caespitosa						
attle duckweed	Leersia hexandra						
ittle duckweed Duckweed	Lemna minor						
Beard	Lemna obscura						
Bearded sprangletop							
Aalabar sprangletop apanese primetop	Leptosh	-					
apanese privet	Leptochloa fascicularis						
	Leptochloa fusca						
differences and the second sec		- Aller					
weetgum	Ligustrum sinense						
apanesa h	Limnobium spongia Liquidambar	17					
loating primrose-willow	Liquidambar styraciflua Lonicera japonia						1
reeping primrose-willow timrose-willow	Lonicera japonica						
Timrose-willow	Ludwigia peploides						
apanese olimbi	Ludwigia repens	X	V				
apanese climbing fem			\rightarrow				
lack medick			\frown				
urclover	Lythrum alatum var lanceolatum Medicago lupulina	100					
Dhiel	Medicon in alatum var lanceolet	1925					
nnual yellow sweetclover	IVIC(IICan-	100					
hocolateweed	Melilotus Melilotus	X					
unding home i	Melilotus indicus	X	_X				
		9					
owderpuff	Mikania scandens						
ax myrtla							
hite mulh	Mimosa strigillosa						
ung forget	Morella cerif						
	MORUS alba						
pike watermilfoil	Myosotis verna		-X				
Duthern waternymph	IVI VI ODbylly						
ppervine							
		A	X				
merican lotus	rickennas arboro	11					
rowpoison	Inclumbo luten						
ellow pond-lily	Nothoscordum biast		~~~				
anada toadflax	Auguar lutea	X					
opical royalblue waterlily	Nuttalianthus canadan i		-X				
chow Waterlah	in ymphaea elegana		X				
inerican white water th	Nymphaea mexicana	7.85	,				
ater tupelo	Nymphaea odorata	1000					
ickey Mouse plant	Nyssa aquatica	72.402					
nkladies	Ochna serrrulata	1.10					
ice	Oenothera speciosa	,					
ucklettuce	Oryza sativa						
Cepipa was t	Ottelia alismoides	200					
reeping woodsorrel	Oxalis corniculata						
oodsorrel	Oxalis comiculata Oxalis sp.	X					
ominon yellow oxalis	Oxalis sp. Oxalis stricta						
utterweed	Packera glabella		~				
all panicgrass	Papioum distance in		-0-1				
laidencane	Panicum dichotomiflorum		X				
rownseed paspalum	Panicum hemitomon						
asey's grass	Paspalum plicatulum						
eashore paspalum	Paspalum urvillei						
urple passionflower	Paspalum vaginatum						
notweed (see Polygonum sp)	Passiflora incarnata						
imothy canarygrass	Persicaria sp.						
arolina canarygrass	Phalaris angusta					-	
ommon reed	Phalaris caroliniana						
	Phragmites australis					jul /	
urkey tangle fogfruit	Phyla nodiflora						1
merican pokeweed	Phytolacca americana						
ater lettuce	Pistia stratiotes					1	
	Plantago lanceolata						
arrowleaf plantain	p rantago idiceolara				T	1.4	
arrowleaf plantain esurrection fern	Pleopeltis polypodioides						
arrowleaf plantain	Pleopeltis polypodioides	X					
arrowleaf plantain esurrection fern	Pleopeltis polypodioides Poa annua Poaceae	X	X				

Common Name	Scientific Name		1	Unit F3		r	
	NAMES OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.	Unit A	Unit B	UnitE3	L nit C		-
Spotted lady's-thumb	Polygonum persicaria		X				
Knotweed (see Persicaria sp.)	Polygonum sp.						
Annual rabbitsfoot grass	Polypogon monspeliensis		TX				
Pickerelweed	Pontederia cordata		-				
Waterthread pondweed	Potamogeton diversifolius		_				
Longleaf pondweed	Potamogeton nodosus		_				
	Potamogeton pectinatus	_					
Ssago pondweed		_					
Small pondweed	Potamogeton pusillus	_					
Herbwilliam	Ptilimnium capillaceum						
Water oak	Quercus nigra			_			
Cherrybark oak	Quercus pagoda						
Willow oak	Quercus phellos						
	Quereus sp.	20.35	_				
Oak		100	X				
Live oak	Quercus virginiana	_	$\uparrow \land$				
Spinyfruit buttercup	Ranunculus muricatus						
low spearwort	Ranunculus pasillus						
Hairy buttercup	Ranunculus sardous	X	ΤX				
	Ranunculus sp.		X				
Buttercup	Rhynchospora colorata	1000					
Starrush whitetop			V				
Shortbristle horned beaksedge	Rhynchospora corniculata		$\perp \Delta$				
Macartney rose	Rosa bracteata			+			
owland rotala	Rotala ramosior						
Sawtooth blackberry	Rubus argutus	V					
Blackberry	Rubus sp.		+ ~				
Southern dewberry	Rubus trivialis	$\perp \Delta$	-0-				
urly dock	Rumex crispus	X	\land				
Dock	Rumex sp.						
	Ruppia maritima						+
Vidgeongrass							
warf palmetto	Sabal minor	_					
arrow plumegrass	Saccharum baldwinii						
ugarcane plumegrass	Saccharum giganteum		X				
ugarcane	Saccharum officinarum						
	Sagittaria graminea						
rassy arrowhead							
ulltongue arrowhead	Sagittaria lancifolia						
roadleaf arrowhead	Sagittaria latifolia						
elta arrowhead	Sagittaria platyphylla	7					
Towhead	Sagittaria sp.						
	Salix nigra	$-\times$	X				
ack willow							
releaf sage	Salvia lyrata		X				
ater spangles	Salvinia minima	- K	$-\infty$				
ant salvinia	Salvinia molesta	N.					
atermoss	Salvinia sp.						
	Sambucus nigra	X	X				
nerican black elderberry	Schoenoplectus californicus	X					
airmaker's bulrush	Schoenopicetus cumorino a						
mmon threesquare	Schoenoplectus pungens						
lifornia bulrush	Schoenoplectus tabernaemontani						
	Scirpus olnevi	1					
fistem bulrush	Scirpus spp.	ريکانۍ لی					
irush	Sesbania drummondii						
sonbean	Sestaina uraninonan						
pod sesbania	Sesbania herbacea		C				
pod sesbania	Sesbania macrocarpa						
	Sesbania sp.						
erhemp	Setaria pumila	-					
low foxtail				1			
stlegrass	Setaria sp.						
nual blue-eyed grass	Sisyrinchium rosulatum		X				
	Smilax bona-nox	20	-				
greenbrier	Smilax sp.	++					
enbrier	Smilax tamnoides						
stly greenbrier	Solidago altissina	X	X				
nada goldenrod		TXT	X				
side goldenrod	Solidago sempervirens	++	~				
denrod	Solidago sp.	+ -	~				
	Sonchus asper	A					
ny sowthistle	Sorghum halepense		X				
nsongrass		X					
tmeadow cordgrass	Spartina patens						
nt duckweed	Spirodela polyrhiza						
ut grass	Sporobolus indicus	++	~				
and the second	Symphyotrichum sp.	+ var					
er	Taxodium distichum	X	X				
d cypress							
vdery alligator-flag	Thalia dealbata		X				
tern marsh fern	Thelypteris palustris						
nish moss	Tillandsia usneoides						
lem poison ivy	Toxicodendron radicans						
itenympli	Trepocarpus aethusae						
	ricpocarpus actitusae		52				
nese tallow	Triadica sebifera	1 1	\times				

					11-14 C	Г	
				Unit F3	Unit C		
		Unit A	Unit B				
	Scientific Name	c ini A					
i lavar	activities						
astem gamagrass	Typha domingensis	X	X				
outhern cattail	m who sh						
attail							
merican elm	abamaed voides						
aartleaf nettle	a teriorilaria macroninas	×					
ommon bladderwort	a tamionella radiata	X					
eaked comsalad	Verbena brasiliensis	X	X				
razilian vervain	Varonica persica	X	X				
irdeve speedwell	Vicia ludoviciana						
ouisiana vetch	Vicia sp.						
etch	Mitio sp		100				
1200	Wolffia columbiana					_	
olumbian watermeal	Wolffia SD.						
Vatermeal	Wolffiella gladiata						
lorida mudmidget	Zanthoxylum clava-hercuits		10				
Jercules' club	Zizania aquatica	X	X				
Annual wildrice	Zizanionsis miliacea	X	X				
Giant cutgrass	Ludwige leptocorpo.		X				
	So.		X				
water/honey locust	oblicum spl.		12				
× 0:32	1		X				_
bullrush sp \$ 9:33			X				
		X	+ 0				_
The r tracks			1-2				
raccountractis			1-2				
111 SO (17:32	-herenta acuessis	X	10				
	shilox wolter?		1 A				
	SATION WOND	X	$+ \varepsilon$				
had to the dead as the Unit		2	X				
tradite daisy	d. regyptim ?	X	(B) (
row foot grass	di Negipton	X				_	
autria		X					
- lligator		X					_
	-	X					
UNKAGWA # 19:05		4	3				_
		4	1				
			1				
			· · · · · · · · · · · · · · · · · · ·		-		
			5				
		17	S				
			1. V.				

APPENDIX D RECAP FORM 18

15 March 2022

APPENDIX D

RECAP FORM 18 ECOLOGICAL CHECKLIST

Section 1 - Facility Information

- 1. Name of facility: <u>Henning Management L.L.C. property</u>
- 2. Location of facility: Sections 16, 17, 18, 19, 20, and 21 of Township 11 South, Range 05W, and Section 24 of Township 11 South, Range 06W within the Hayes Oil and Gas Field

Parish: Calcasieu and Jefferson Davis Parishes, Louisiana

- 3. Mailing address: NA
- Type of facility and/or operations associated with AOC: 4. Oil and gas exploration and production (E&P) and high pressure gas pipeline right-of-ways (ROWs)
- 5. Name of AOC or AOI: Site (Chevron former operational areas)
- 6. If available, attach a USGS topographic map of the facility and/or aerial or other photographs of the release site and surrounding areas.

Section 2 - Land Use Information

- Describe land use at and in the vicinity of the AOC/AOI: The Site consists of multiple tracts that are located 1. on both sides of Louisiana Highway 14. The approximate area of the Site is 1,262 acres and is primarily used for agriculture (rice and sugar cane farming), oil and gas E&P operations, high pressure gas pipeline ROWs, hunting leases, and undeveloped wetlands along Bayou Lacassine. In the vicinity of the Site, to the west of Highway 14, the land is undeveloped and to the east of Highway 14 the land is currently used for agricultural purposes, specifically rice fields. The US Fish and Wildlife Service (USFWS) has identified the land located to the north and east of the Site as freshwater emergent wetland or freshwater forested/shrub wetland.
- 2. Describe land use adjacent to the facility: Land use in the vicinity of the Site includes oil & gas E&P operations, high pressure gas pipeline ROWs, agriculture, and farther away, residential.
- Provide the following information regarding the nearest surface water body which has been impacted or has 3. the potential to be impacted by COC migrating from the AOC/AOC:
- Name of the surface water body: There are several surface water bodies located on Site including shallow field a) drainage canals that transect the Site, small ponds, and Bayou Lacassine located on the easternmost portion of the Property. One of the small ponds on Site is located at the oil and gas well, SN 25340, and was formed after a blowout that occurred in 1941. Additionally, there are USFWS designated freshwater emergent wetlands or freshwater forested/shrub wetlands in the northern and eastern portions of the Site.
- b) Type of surface water body:
 -] freshwater river or stream
 - [X] freshwater swamp/marsh/wetland
 - [] saltwater or brackish swamp/marsh/wetland
 - [X] lake or pond
 - [X] bayou or estuary
 - [X] drainage ditch] other: _____

Γ

- c) Designated use of the segment/subsegment of the surface water body (LAC33:IX): <u>The Site is located within</u> <u>the LDEQ Subsegment #LA050601 (Lacassine Bayou – From headwaters to Grand Lake) and has the</u> <u>following designated uses: primary and secondary contact recreation, fish and wildlife propagation, and</u> <u>agriculture. The LDEQ Subsegment #LA050601 is not designated as a drinking water supply and instead the</u> <u>City of Hayes and nearby communities rely on groundwater for their primary source of drinking water.</u>
- d) Distance from the AOC/AOI to nearest surface water body: <u>0 feet. The nearest named surface water body</u>, <u>Bayou Lacassine, is located on the easternmost portion of the Site. Field drainage canals and ponds are also</u> <u>present on the Site.</u>
- 4. Do any potentially sensitive environmental areas exist adjacent to or in proximity to the site, e.g., federal and state parks, national and state monuments, wetlands, etc? [X] Yes [] No

If yes, explain: Wetlands are present in portions of the Site, and adjacent to the Site.

Section 3 - Release Information

- 1. Nature of the release: Investigation of potential releases associated with Chevron former E&P operations.
- 2. Location of the release (within the facility): <u>Sampling was performed in Areas 1, 2, 4, 5, 6, and 8, associated</u> with Chevron former operational areas. Sampling was also performed in Areas 3 and 7, which are associated with E&P operations unrelated to Chevron, as well as Area 9, considered to be representative of natural conditions at the Site.
- 3. Location of the release with respect to the facility property boundaries: <u>Potential releases are limited within</u> the Site's boundaries.
- 4. Constituents known or suspected to have been released: <u>Constituents are associated with oil and gas</u> <u>exploration & production include salts, metals, and total petroleum hydrocarbons (TPH).</u>
- 5. Indicate which media are known or suspected to be impacted and if sampling data are available:

[X]	soil 0 - 3 feet bgs	[X] yes [] no	suspected, sampling data available
[X]	soil 0 - 15 feet bgs	[X] yes [] no	suspected, sampling data available
[X]	soil >15 feet bgs	[X] yes [] no	suspected, sampling data available
[X]	groundwater	[X] yes [] no	suspected, sampling data available
[X]	surface water/sediment	[X] yes [] no	suspected, sampling data available

6. Has migration occurred outside the facility property boundaries? [] yes [X] no If yes, describe the designated use of the offsite land impacted:

Section 4 - Criteria for Further Assessment

If the AOI meets **all** of the criteria presented below, then typically no further ecological evaluation shall be required. If the AOI **does not** meet **all** of the criteria, then a screening level ecological risk shall be conducted. The Submitter should make the initial decision regarding whether or not a screening level ecological risk assessment is warranted based on compliance of the AOI with criteria listed below. After review of the ecological checklist and other available site information, the Department will make a final determination on the need for a screening level ecological risk assessment. If site conditions at the AOI change such that one or more of the criteria are not met, then a screening level ecological risk assessment shall be conducted. Answers shall be based on current site conditions (i.e., shall not consider future remedial actions or institutional or engineering controls). Indicate if the AOI meets the following criteria:

- The area of impacted soil is approximately 5 acres or less in size (based on the AOI identified for the human (1)health assessment) and it is not expected that the COC will migrate such that the soil AOI becomes greater than 5 acres in size. [X] yes [] no
- (2) There is no current release or demonstrable long-term threat of release (via runoff or groundwater discharge) of COC from the AOI to a surface water body. [X] yes [] no
- (3) Recreational species, commercial species, threatened or endangered species, and/or their habitats are not currently being exposed, or expected to be exposed, to COC present at or migrating from the AOI. [] yes [X] no Recreational species are present and are included in the risk assessment.
- (4) There are no obvious impacts to ecological receptors or their habitats and none are expected in the future. [X] yes [] no

Is further ecological evaluation required at this AOI? [X] yes [] no An E&P-related ecological evaluation based on the data collected from the Site is being conducted as a part of this investigation.

Section 5 - Site Summary

Section 6 - Submitter Information

Date: January 12, 2022

Name of person submitting this checklist: Helen R. Connelly, Ph.D.

Affiliation: Environmental Resources Management

Signature: Date: January 12, 2022

Additional Preparers:

APPENDIX E FLORA AND FAUNA

15 March 2022

APPENDIX E-1

Comparison of Plants Documented on Site and at the Lacassine National Wildlife Refuge Reference Area Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Site Checklist	Lacassine NWR Checklist
Alligatorweed	Alternanthera philoxeroides	\checkmark	
American black elderberry	Sambucus nigra	\checkmark	\checkmark
American buckwheat vine	Brunnichia ovata	\checkmark	
American elm	Ulmus americana	\checkmark	
American lotus	Nelumbo lutea		\checkmark
American pokeweed	Phytolacca americana	\checkmark	
Anglestem primrose-willow	Ludwigia leptocarpa		\checkmark
Annual blue-eyed grass	Sisyrinchium rosulatum	\checkmark	
Annual bluegrass	Poa annua	\checkmark	\checkmark
Annual marsh elder	lva annua	\checkmark	
Annual rabbitsfoot grass	Polypogon monspeliensis	\checkmark	\checkmark
Annual yellow sweetclover	Melilotus indicus	\checkmark	
Arrowhead	Sagittaria sp.	\checkmark	
Aster	Symphyotrichum sp.	\checkmark	√
Bald cypress	Taxodium distichum		√
Baldwin's spikerush	Eleocharis baldwinii	√	
Balloon vine	Cardiospermum halicacabum		\checkmark
Beaked cornsalad	Valerianella radiata		
Bedstraw	Galium sp.		
Bermudagrass	Cynodon dactylon	 √	\checkmark
Bigpod sesbania	Sesbania herbacea	\	•
Birdeye speedwell	Veronica persica	 ✓	\checkmark
Bittercress	Cardamine sp.	 ✓	•
Black medick	Medicago lupulina	 ✓	\checkmark
Black willow	Salix nigra	 ✓	√
Blackberry	Rubus sp.	 ✓	v
Blue fieldmadder	Sherardia arvensis	V	√
Bluestem	Andropogon sp.	\checkmark	v
Brazilian vervain	Verbena brasiliensis		\checkmark
Bristlegrass	Setaria sp.	/	V
	Selana sp. Smilax tamnoides	√	
Bristly greenbrier Broadleaf arrowhead		\checkmark	
	Sagittaria latifolia	V	/
Bulrush	Scirpus sp.	/	√
Burclover	Medicago polymorpha	√	∕
Bushy bluestem	Andropogon glomeratus	∕	√
Buttercup	Ranunculus sp.	√	√
Butterweed	Packera glabella	√	<i>√</i>
Canada goldenrod	Solidago altissima	\checkmark	\checkmark
Canada toadflax	Nuttallanthus canadensis	√	
Carolina canarygrass	Phalaris caroliniana	\checkmark	
Carolina geranium	Geranium carolinianum	√	\checkmark
Carolina mosquitofern	Azolla caroliniana	\checkmark	
Carolina ponysfoot	Dichondra carolinensis	\checkmark	
Cattail	Typha sp.		√
Chairmaker's bulrush	Schoenoplectus californicus		\checkmark

Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and state status data are not always applicable to taxa identified to genus. Lacassine National Wildlife Refuge species recorded by Mr. Jody Shugart (ERM, February 24, 2022).

References

Common Name	Scientific Name	Site Checklist	Lacassine NWR Checklist
Cherrybark oak	Quercus pagoda	\checkmark	
Chinese privet	Ligustrum sinense	\checkmark	
Chinese tallow	Triadica sebifera	\checkmark	\checkmark
Climbing hempvine	Mikania scandens	\checkmark	
Columbian watermeal	Wolffia columbiana	\checkmark	
Common persimmon	Diospyros virginiana	\checkmark	
Common rush	Juncus effusus	\checkmark	\checkmark
Common threesquare	Schoenoplectus pungens	\checkmark	
Common water hyacinth	Eichhornia crassipes	\checkmark	\checkmark
Common yellow oxalis	Oxalis stricta	\checkmark	\checkmark
Creeping primrose-willow	Ludwigia repens	\checkmark	
Creeping woodsorrel	Oxalis corniculata	\checkmark	\checkmark
Crowpoison	Nothoscordum bivalve		\checkmark
Cuman ragweed	Ambrosia psilostachya	\checkmark	
Curly dock	Rumex crispus	\checkmark	\checkmark
Delta arrowhead	Sagittaria platyphylla	\checkmark	
Dock	Rumex sp.		
Dogfennel	Eupatorium capillifolium	\checkmark	
Dogwood	Cornus sp.	√	
Drummond red maple	Acer rubrum var drummondii	 √	
Ducklettuce	Ottelia alismoides	√	
Duckweed	Lemna sp.	√	
Dwarf palmetto	Sabal minor	 √	
Eastern baccharis	Baccharis halimifolia	\checkmark	\checkmark
Eastern marsh fern	Thelypteris palustris	 √	√
Eastern poison ivy	Toxicodendron radicans	 √	
Ebony spleenwort	Asplenium platyneuron	 √	
Egyptian grass	Dactyloctenium aegyptium		√
Everlasting	Gamochaeta sp.	\checkmark	
Flatsedge	Cyperus sp.	\checkmark	
Floating marshpennywort	Hydrocotyle ranunculoides	√	√
Floating primrose-willow	Ludwigia peploides	\checkmark	\checkmark
Florida mudmidget	Wolffiella gladiata	\checkmark	
Giant cane	Arundinaria gigantea	\checkmark	√
Giant cutgrass	Zizaniopsis miliacea	\checkmark	\checkmark
Giant duckweed	Spirodela polyrhiza	\checkmark	
Giant ragweed	Ambrosia trifida	\checkmark	√
Giant salvinia	Salvinia molesta		· · · · · · · · · · · · · · · · · · ·
Goldenrod	Solidago sp.	\checkmark	
Grape	Vitis sp.	\checkmark	
Grass	Poaceae	\checkmark	
Grassy arrowhead	Sagittaria graminea	 √	
Green flatsedge	Cyperus virens	 ✓	
Green hawthorn	Crataegus viridis	 ✓	
Greenbrier	Smilax sp.	 ✓	

Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and state status data are not always applicable to taxa identified to genus. Lacassine National Wildlife Refuge species recorded by Mr. Jody Shugart (ERM, February 24, 2022).

References

Common Name	Scientific Name	Site Checklist	Lacassine NWR Checklist
Hairy buttercup	Ranunculus sardous	\checkmark	\checkmark
Heartleaf nettle	Urtica chamaedryoides	\checkmark	
Henbit deadnettle	Lamium amplexicaule		\checkmark
Herb-of-grace	Bacopa monnieri	\checkmark	
Herbwilliam	Ptilimnium capillaceum	\checkmark	
Hercules' club	Zanthoxylum clava-herculis	\checkmark	
Honey locust	Gleditsia triacanthos		\checkmark
Hydrocotyle	Hydrocotyle sp.	\checkmark	
Indian goosegrass	Eleusine indica	\checkmark	
Indian strawberry	Duchesnea indica	\checkmark	
Japanese climbing fern	Lygodium japonicum	\checkmark	
Japanese honeysuckle	Lonicera japonica	√	\checkmark
Japanese privet	Ligustrum japonicum	\checkmark	
Johnsongrass	Sorghum halepense	√	\checkmark
Jungle Rice	Echinochloa colona	\checkmark	
Knotweed (see Persicaria sp.)	Polygonum sp.	√	
Knotweed (see Polygonum sp)	Persicaria sp.	√	
Lanceleaf greenbrier	Smilax smallii		√
Lateflowering thoroughwort	Eupatorium serotinum	\checkmark	
Little duckweed	Lemna obscura	√	
Little quakinggrass	Briza minor	\checkmark	
Live oak	Quercus virginiana	\checkmark	√
Longleaf pondweed	Potamogeton nodosus	 √	
Louisiana vetch	Vicia Iudoviciana		√
Low spearwort	Ranunculus pasillus	√	
Lowland rotala	Rotala ramosior	`_`	
Lyreleaf sage	Salvia lyrata	√	
Maidencane	Panicum hemitomon	√	
Malabar sprangletop	Leptochloa fusca	√	
Meadow garlic	Allium canadense	√	
Mousesear	Stachys crenata		\checkmark
Muskgrass	Chara sp.	\checkmark	
Narrow plumegrass	Saccharum baldwinii	 ✓	
Narrowleaf plantain	Plantago lanceolata		
Oak	Quercus sp.		
Panic grass	Panicum spp.	•	\checkmark
Paraguayan windmill grass	Chloris canterai	\checkmark	
Parrot feather watermilfoil	Myriophyllum aquaticum	v	\checkmark
Pennsylvania everlasting	Gamochaeta pensylvanica	\checkmark	
Peppervine	Nekemias arborea	 ✓	
Persian clover	Trifolium resupinatum	 ✓	
Philadelphia fleabane	Erigeron philadelphicus	√	\checkmark
Pickerelweed	Pontederia cordata	 ✓	v
Pinkladies	Oenothera speciosa	\checkmark	
Possumhaw	llex decidua	\checkmark	\checkmark
r ussullillaw		V	\checkmark

Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and state status data are not always applicable to taxa identified to genus. Lacassine National Wildlife Refuge species recorded by Mr. Jody Shugart (ERM, February 24, 2022).

References

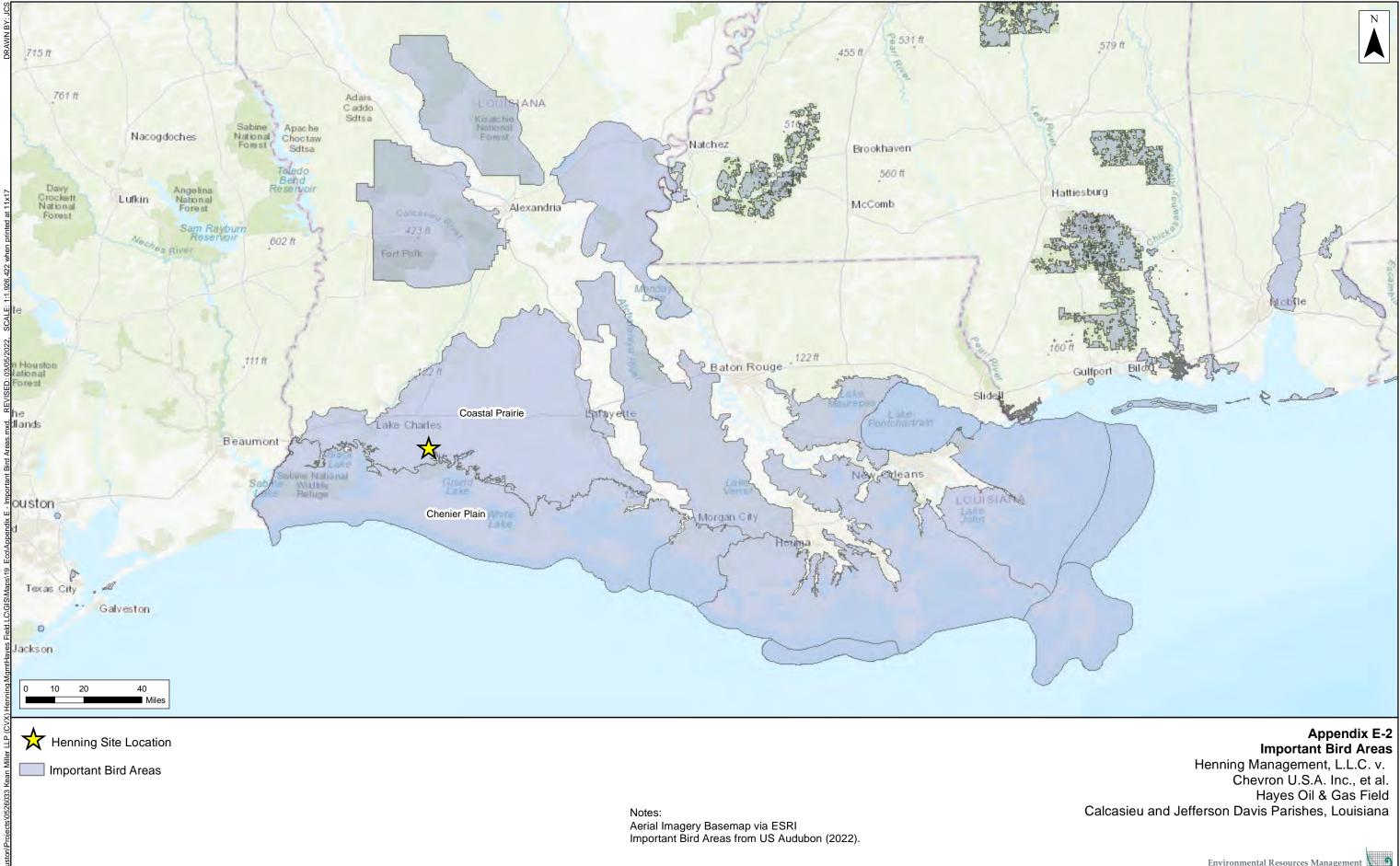
Common Name	Scientific Name	Site Checklist	Lacassine NWR Checklist
Poverty rush	Juncus tenuis	\checkmark	
Powderpuff	Mimosa strigillosa	\checkmark	
Primrose-willow	Ludwigia sp.	\checkmark	
Purple passionflower	Passiflora incarnata	\checkmark	
Ragweed	Ambrosia sp.	\checkmark	
Red maple	Acer rubrum	\checkmark	
Rescuegrass	Bromus catharticus	\checkmark	
Resurrection fern	Pleopeltis polypodioides	\checkmark	
Rice	Oryza sativa	\checkmark	
Riverhemp	Sesbania sp.	\checkmark	
Rosemallow	Hibiscus sp.	\checkmark	
Roughleaf dogwood	Cornus drummondii	\checkmark	
Roundfruit hedgehyssop	Gratiola virginiana	\checkmark	
Roundhead rush	Juncus validus	\checkmark	
Rush	Juncus sp.	\checkmark	
Saltmeadow cordgrass	Spartina patens	\checkmark	√
Sand spikerush	Eleocharis montevidensis	√	
Saw greenbrier	Smilax bona-nox		√
Sawtooth blackberry	Rubus argutus		 ✓
Scarlet pimpernel	Anagallis arvensis	 √	
Seaside goldenrod	Solidago sempervirens	√	√
Sedge	Carex sp.		
Sensitive plant	Mimosa sp.	√	
Seven sisters	Crinum americanum	√	
Shield fern	Dryopteris carthusiana		
Smooth beggartick	Bidens laevis	√	
Smut grass	Sporobolus indicus		
Southern cattail	Typha domingensis		
Southern cutgrass	Leersia hexandra		
Southern dewberry	Rubus trivialis		√
Spanish moss	Tillandsia usneoides	√	
Spikerush	Eleocharis sp.	√	√
Spiny sowthistle	Sonchus asper		 ✓
Spinyfruit buttercup	Ranunculus muricatus		
Spotted lady's-thumb	Polygonum persicaria	√	\checkmark
Spring forget-me-not	Myosotis verna	√	
Spurge	Euphorbia sp.		
Starrush whitetop	Rhynchospora colorata	•	\checkmark
Sticky chickweed	Cerastium glomeratum	\checkmark	
Stickywilly	Galium aparine	 √	
Stiff dogwood	Cornus foemina	 √	
Stiff marsh bedstraw	Galium tinctorium	 √	\checkmark
Straggler daisy	Calyptocarpus vialis	V	\checkmark
Sugarberry	Celtis laevigata	\checkmark	\checkmark
Sugarcane	Saccharum officinarum	√	v
Suyarcane	Saccharum omcilidium	V	

Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and state status data are not always applicable to taxa identified to genus. Lacassine National Wildlife Refuge species recorded by Mr. Jody Shugart (ERM, February 24, 2022).

References


Common Name	Scientific Name	Site Checklist	Lacassine NWR Checklist
Sugarcane plumegrass	Saccharum giganteum	\checkmark	\checkmark
Swamp smartweed	Polygonum hydropiperoides	\checkmark	
Sweetgum	Liquidambar styraciflua	\checkmark	
Thistle	Cirsium sp.	\checkmark	
Thoroughwort	Eupatorium sp.	\checkmark	
Timothy canarygrass	Phalaris angusta	\checkmark	
Twoheaded water-starwort	Callitriche heterophylla	\checkmark	
Vasey's grass	Paspalum urvillei	\checkmark	
Vetch	Vicia sp.	\checkmark	
Water oak	Quercus nigra	\checkmark	\checkmark
Water spangles	Salvinia minima	\checkmark	\checkmark
Water tupelo	Nyssa aquatica	\checkmark	
Watermeal	Wolffia sp.	\checkmark	
Watermoss	Salvinia sp.	\checkmark	
Waterthread pondweed	Potamogeton diversifolius	\checkmark	
Wax myrtle	Morella cerifera	\checkmark	\checkmark
Weedy dwarfdandelion	Krigia caespitosa	\checkmark	
White clover	Trifolium repens	\checkmark	
White mulberry	Morus alba	\checkmark	
Whitenymph	Trepocarpus aethusae	\checkmark	
Willow oak	Quercus phellos	\checkmark	
Winged lythrum	Lythrum alatum var lanceolatum	\checkmark	
Woodsorrel	Oxalis sp.	\checkmark	
Woolly rosette grass	Dichanthelium scabriusculum	\checkmark	
Yellow foxtail	Setaria pumila	\checkmark	
Yellow nutsedge	Cyperus esculentus	\checkmark	
Yellow pond-lily	Nuphar lutea	\checkmark	\checkmark
Yellow thistle	Cirsium horridulum	\checkmark	\checkmark
Total Documented	256	193	71

Notes

Wetland classification and growth habit is provided by the USDA (2022) PLANTS database.

NA : Data not available. Wetland classification, growth habit, and state status data are not always applicable to taxa identified to genus. Lacassine National Wildlife Refuge species recorded by Mr. Jody Shugart (ERM, February 24, 2022).

References

Environmental Resources Management www.erm.com

ERM

APPENDIX E-3

Comparison of Birds Documented on Site and at the Lacassine National Wildlife Refuge Reference Area Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Site Checklist	Lacassine NWR Checklist
American Avocet	Recurvirostra americana		\checkmark
American Coot	Fulica americana		\checkmark
American Crow	Corvus brachyrhynchos	\checkmark	
American Golden-Plover	Pluvialis dominica		\checkmark
American Goldfinch	Spinus tristis	\checkmark	
American Kestrel	Falco sparverius	\checkmark	
American Pipit	Anthus rubescens	\checkmark	\checkmark
American White Pelican	Pelecanus erythrorhynchos		\checkmark
American Woodcock	Scolopax minor		\checkmark
Anhinga	Anhinga anhinga	\checkmark	
Bald Eagle	Haliaeetus leucocephalus	\checkmark	
Barred Owl	Strix varia	\checkmark	\checkmark
Belted Kingfisher	Megaceryle alcyon	\checkmark	\checkmark
Black Rail	Laterallus jamaicensis		\checkmark
Black Tern	Chlidonias niger		\checkmark
Black Vulture	Coragyps atratus	\checkmark	
Black-necked Stilt	Himantopus mexicanus		\checkmark
Blue Jay	Cyanocitta cristata	\checkmark	\checkmark
Blue-gray Gnatcatcher	Polioptila caerulea	\checkmark	\checkmark
Boat-tailed Grackle	Quiscalus major	\checkmark	\checkmark
Brown-headed Cowbird	Molothrus ater	\checkmark	
Buff-breasted Sandpiper	Calidris subruficollis		\checkmark
Carolina Chickadee	Poecile carolinensis	\checkmark	\checkmark
Carolina Wren	Thryothorus Iudovicianus	\checkmark	\checkmark
Caspian Tern	Hydropogne caspia		\checkmark
Cedar Waxwing	Bombycilla cedrorum	\checkmark	
Clapper Rail	Rallus crepitans		\checkmark
Common Gallinule	Gallinula galeata	\checkmark	
Common Grackle	Quiscalus quiscula	\checkmark	
Common Moorhen	Gallinula chloropus		\checkmark
Common Yellowthroat	Geothlypis trichas	\checkmark	\checkmark
Cooper's Hawk	Accipiter cooperii	\checkmark	
Crested Caracara	Caracara plancus	\checkmark	
Double-crested Cormorant	Nannopterum auritum		\checkmark
Downy Woodpecker	Dryobates pubescens	\checkmark	
Dunlin	Calidris alpina		\checkmark
Eastern Meadowlark	Sturnella magna	\checkmark	
Eastern Phoebe	Sayornis phoebe	\checkmark	\checkmark
Eastern Towhee	Pipilo erythrophthalmus	\checkmark	
Fish Crow	Corvus ossifragus	\checkmark	
Forster's Tern	Sterna forsteri		\checkmark
Glossy Ibis	Plegadis falcinellus		\checkmark
Gray Catbird	Dumetella carolinensis	\checkmark	\checkmark

Notes

Diet data provided by the The Cornell Lab (2022).

Lacassine NWR checklist combines field data from Mr. Jody Shugarts reference area survey (ERM, Feburary 24, 2022) with habitat-specific data from the USFWS (2011) Refuge Habitat Management Plan (moist soil, unimpounded marsh, and agricultural).

References

The Cornell Lab. 2022. All About Birds. Available: https://www.allaboutbirds.org/news/. Accessed February 2022.

U.S. Fish and Wildlife Service. 2011. Lacassine National Wildlife Refuge Habitat Management Plan. U.S. Department of the Interior, Fish and Wildlife Service, Southeast Region.

APPENDIX E-3 (Cont'd)

Comparison of Birds Documented on Site and at the Lacassine National Wildlife Refuge Reference Area Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Common Name	Scientific Name	Site Checklist	Lacassine NWR Checklist
Great Blue Heron	Ardea herodias	\checkmark	\checkmark
Great Egret	Ardea alba	\checkmark	\checkmark
Greater White-fronted Goose	Anser albifrons	\checkmark	
Greater Yellowlegs	Tringa melanoleuca	\checkmark	\checkmark
Green Heron	Butorides virescens	\checkmark	
Gull-billed Tern	Gelochelidon nilotica		\checkmark
Herring Gull	Larus argentatus		\checkmark
House Wren	Troglodytes aedon	\checkmark	
Killdeer	Charadrius vociferous	\checkmark	\checkmark
King Rail	Rallus elegans	\checkmark	\checkmark
Laughing Gull	Leucophaeus atricilla	\checkmark	\checkmark
Least Sandpiper	Calidris minutilla		\checkmark
Lesser Yellowlegs	Tringa flavipes		\checkmark
Limpkin	Aramus guarauna		\checkmark
Little Blue Heron	Egretta caerulea	\checkmark	
Long-billed Dowitcher	Limnodromus scolopaceus		\checkmark
Mottled duck	Anas fulvigula	\checkmark	
Mourning Dove	Zenaida macroura	\checkmark	
Neotropic Cormorant	Phalacrocorax brasilianus	\checkmark	\checkmark
Northern Bobwhite	Colinus virginianus	\checkmark	
Northern Cardinal	Cardinalis cardinalis	\checkmark	\checkmark
Northern Harrier	Circus hudsonius	\checkmark	\checkmark
Northern Mockingbird	Mimus polyglottos	\checkmark	
Orange-crowned Warbler	Leiothlypis celata	\checkmark	
Pectoral Sandpiper	Calidris melanotos		\checkmark
Peregrine Falcon	Falco peregrinus	√	
Pied-billed Grebe	Podilymbus podiceps		\checkmark
Pileated Woodpecker	Dryocopus pileatus	\checkmark	
Purple Gallinule	Porphyrio porphyrio		\checkmark
Purple Martin	Progne subis	\checkmark	
Red-bellied Woodpecker	Melanerpes carolinus	√	\checkmark
Red-shouldered Hawk	Buteo lineatus	\checkmark	\checkmark
Red-tailed Hawk	Buteo jamaicensis	\checkmark	
Red-winged Blackbird	Agelaius phoeniceus	\checkmark	\checkmark
Ring-billed Gull	Larus delawarensis		\checkmark
Ring-necked Duck	Aythya collaris		\checkmark
Roseate Spoonbill	Platalea ajaja		\checkmark
Royal Tern	Thalasseus maximus		\checkmark
Ruby-crowned Kinglet	Regulus calendula	√	\checkmark
Ruddy Turnstone	Arenaria interpres		\checkmark
Sandhill Crane	Antigone canadensis	√	
Savannah Sparrow	Passerculus sandwichensis	\checkmark	\checkmark
Sedge Wren	Cistothorus platensis	√	

Notes

Diet data provided by the The Cornell Lab (2022).

Lacassine NWR checklist combines field data from Mr. Jody Shugarts reference area survey (ERM, Feburary 24, 2022) with habitat-specific data from the USFWS (2011) Refuge Habitat Management Plan (moist soil, unimpounded marsh, and agricultural).

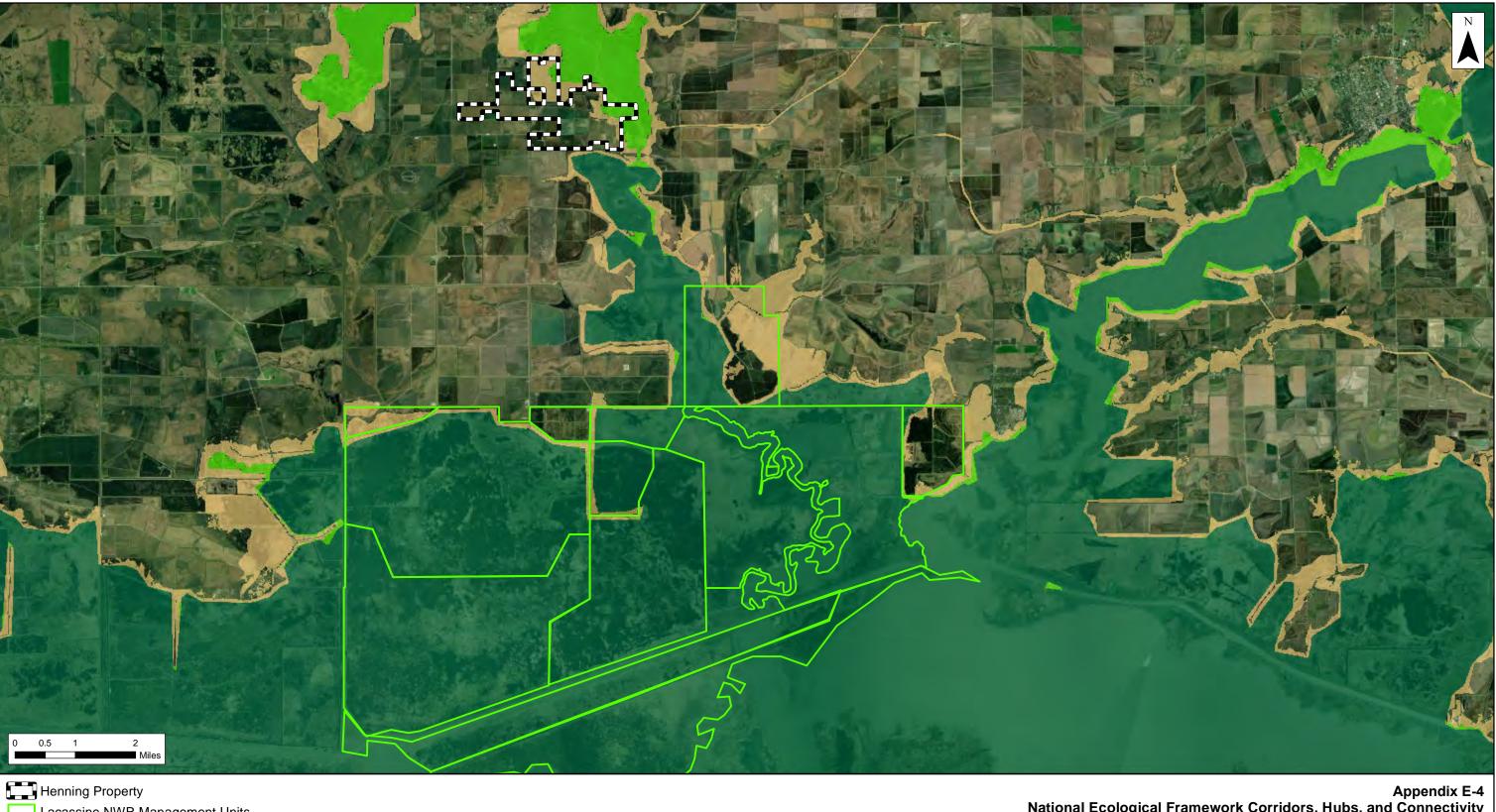
References

The Cornell Lab. 2022. All About Birds. Available: https://www.allaboutbirds.org/news/. Accessed February 2022.

U.S. Fish and Wildlife Service. 2011. Lacassine National Wildlife Refuge Habitat Management Plan. U.S. Department of the Interior, Fish and Wildlife Service, Southeast Region.

Common Name	Scientific Name	Site Checklist	Lacassine NWR Checklist
Semipalmated Plover	Charadrius semipalmatus		\checkmark
Semipalmated Sandpiper	Calidris pusilla		\checkmark
Short-billed Dowitcher	Limnodromus griseus		\checkmark
Snow Goose	Anser caerulescens	\checkmark	
Snowy Egret	Egretta thula	\checkmark	\checkmark
Solitary Sandpiper	Tringa solitaria		\checkmark
Song Sparrow	Melospiza melodia	\checkmark	
Sora	Porzana carolina		\checkmark
Spotted Sandpiper	Actitis macularius		\checkmark
Stilt Sandpiper	Calidris himantopus		\checkmark
Swamp Sparrow	Melospiza georgiana	\checkmark	\checkmark
Tree Swallow	Tachycineta bicolor	\checkmark	\checkmark
Turkey Vulture	Cathartes aura	\checkmark	
Virginia Rail	Rallus limicola	\checkmark	\checkmark
Western Sandpiper	Calidris mauri		\checkmark
Whimbrel	Numenius hudsonicus		\checkmark
White Ibis	Eudocimus albus	\checkmark	\checkmark
White-eyed Vireo	Vireo griseus	\checkmark	
White-faced Ibis	Plegadis chihi	\checkmark	\checkmark
White-throated Sparrow	Zonotrichia albicollis		\checkmark
Willet	Tringa semipalmata		\checkmark
Wilson's Plover	Charadrius wilsonia		\checkmark
Wilson's Snipe	Gallinago delicata	\checkmark	\checkmark
Wood duck	Aix sponsa	\checkmark	
Yellow Rail	Coturnicops noveboracensis		\checkmark
Yellow-bellied Sapsucker	Sphyrapicus varius	\checkmark	
Yellow-rumped Warbler	Setophaga coronata	\checkmark	\checkmark
Total S	species 115	72	78

Notes


Diet data provided by the The Cornell Lab (2022).

Lacassine NWR checklist combines field data from Mr. Jody Shugarts reference area survey (ERM, Feburary 24, 2022) with habitat-specific data from the USFWS (2011) Refuge Habitat Management Plan (moist soil, unimpounded marsh, and agricultural).

References

The Cornell Lab. 2022. All About Birds. Available: https://www.allaboutbirds.org/news/. Accessed February 2022.

U.S. Fish and Wildlife Service. 2011. Lacassine National Wildlife Refuge Habitat Management Plan. U.S. Department of the Interior, Fish and Wildlife Service, Southeast Region.

Lacassine NWR Management Units NEF Hubs NEF Corridors Auxiliary connections

Notes: Aerial Imagery Basemap via ESRI NEF: National Ecological Framework from US EPA.

33 K

Appendix E-4 National Ecological Framework Corridors, Hubs, and Connectivity Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Environmental Resources Management www.erm.com

APPENDIX F BARIUM SOIL SCREENING VALUE

15 March 2022

TABLE F-1 Barium Invertebrate NOEC for Barite Henning Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measure- ment	NOEC/LOEC	Concentration	Concentrati on Units (dw)	рН	Authors	Title	Source	Publication Year
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	Adult	NR	Acid Digestion, ICP/MS	Barium	Soil	Lab	NR	NR	Growth	Weight loss	No effect	NOEC	2,033	mg/kg	6.1 - 8.3	Lamb, D., Matanitobua, V., Palanisami, T., Megharaj, M. and Naidu, R.	Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite	Environmental Science and Technology, No. 47, pp. 4670-4676	2013
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	Adult	NR	Acid Digestion, ICP/MS	Barium	Soil	Lab	NR	NR	Survival	Mortality	No effect	NOEC	3,367	mg/kg	6.1 - 8.3	Lamb, D., Matanitobua, V., Palanisami, T., Megharaj, M. and Naidu, R.	Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite	Environmental Science and Technology, No. 47, pp. 4670-4676	2013
Barium sulfate	Eisenia andrei	Earthworm	Invertebrate	Adult	NR	E3073A aqua regia digest	Barium	Soil	Lab	14	Days	Survival	Mortality	No Effect	NOEC	2,080	mg/kg	8.01-8.48	ESG International, Guelph, Ontario	Site Soils Amended with Barium	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003

TABLE F-2 Barium Plant NOEC for Barite Henning Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight		Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measure- ment	NOEC/LOEC	Concentration	Concentrati on Units (dw)	рН	Authors	Title	Source	Publicatio Year
Barium sulfate	Lactuca sativa L.	Great Lakes lettuce	Plant	Seed	Juvenile	Acid Digestion, ICP/MS	Barium	Soil	Lab	56	Days	Growth	Shoot Biomass	Lowest Effect	LOEC	483	mg/kg	6.5		Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite	Environmental Science and Technology, No. 47, pp. 4670-4676	2013
Barium sulfate	Lolium perenne	Ryegrass	Plant	Seed	Juvenile	E3073A aqua regia digest	Barium	Soil	Lab	14	Days	Growth	Root length	No Effect	NOEC	1,910	mg/kg	7.98-8.65		Ecotoxicity Evaluation of Referenc Site Soils Amended with Barium Sulphate	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003

TABLE F-3 Nominally Measured Barium Sulfate Invertebrate Effects Due to Barite Henning Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight		Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measure- ment	NOEC/LOEC	Concentration	Concentrati on Units (dw)	рН	Authors	Title	Source	Publication Year
Barium sulfate	Onychiurus folsomi	Springtail insect	Invertebrate	Adult	NR	Nominal	Barium sulfate	Soil	Lab	7	Days	Survival	Mortality	No Effect	NOEC	1,000,000	mg/kg	7.8-8.01	ESG International, Guelph, Ontario	Ecotoxicity Evaluation of Referenc Site Soils Amended with Barium Sulphate	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003
Barium sulfate	Eisenia andrei	Earthworm	Invertebrate	Adult	NR	Nominal	Barium sulfate	Soil	Lab	14	Days	Survival	Mortality	No Effect	NOEC	1,000,000	mg/kg	8.01-8.48	ESG International, Guelph, Ontario	Ecotoxicity Evaluation of Referenc Site Soils Amended with Barium Sulphate	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003

TABLE F-4	
Nominally Measured Barium Sulfate Plant Effects Due to Barite	
Henning Henning Management, L.L.C. v. Chevron U.S.A. Inc., et a	1.
Hayes Oil & Gas Field	
Colonairy and Joffaroan Davia Pariahaa Laviairaa	

Chemical Name	Species Scientific Name	Davis Parishes, I Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measure- ment	NOEC/LOEC	Concentration	Concentrati on Units (dw)	рН	Authors	Title	Source	Publicatio Year
Barium	Phaseolus	Green beans	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	56	Days	Growth	Biomass	No effect	NOEC	795,833	mg/kg	6.0 - 6.2	Honarvar, S. Miller R. Honarvar S. and Hunsaker B.	Effect of Drilling Fluid Components and Mixtures on Plants and Soils Effects of Drilling Fluids on Soils and Plants: I.	Utah State University DigitalCommons, Masters Degree J. Environ. Quai., Vol. 9, no. 4	1975 1980
sulfate	vulgaris										2 4 9 0					,				Individual Fluid Components		
Barium	Phaseolus	Orașe ha sere	Diant	Quad	hu sa tin	Nausinal		0	Lab	50	Davis	Orresth	Diamage	No. offered	NOFO	007 500			Honarvar, S.		Utah State University DigitalCommons, Masters Degree	1975
sulfate	vulgaris	Green beans	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	56	Days	Growth	Biomass	No effect	NOEC	227,500	mg/kg	6.0 - 6.2	Miller, R., Honarvar, S., and Hunsaker, B.	Effects of Drilling Fluids on Soils and Plants: I. Individual Fluid Components	J. Environ. Quai., Vol. 9, no. 5	1980
Parium	Zea mays																		Honarvar, S.	Effect of Drilling Fluid Components and Mixtures on Plants and Soils	Utah State University DigitalCommons, Masters Degree	1975
Barium sulfate	succharate	Sweet corn	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	56	Days	Growth	Biomass	No effect	NOEC	227,500	mg/kg	6.0 - 6.2	Miller, R., Honarvar, S., and Hunsaker, B.	Effects of Drilling Fluids on Soils and Plants: I. Individual Fluid Components	J. Environ. Quai., Vol. 9, no. 5	1980
Barium	Trifolium												Root						ESG International, Guelph, Ontario	Ecotoxicity Evaluation of Referenc Site Soils Amended with Barium Sulphate	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003
sulfate	hybridum	Alsike Clover	Plant	Seed	Juvenile	Nominal	Barium Sulfate	Soil	Lab	21	Days	Growth	Biomass	No Effect	NOEC	30,000	mg/kg	7.98-9.06				
																			ESG International, Guelph, Ontario	Ecotoxicity Evaluation of Referenc Site Soils Amended with Barium Sulphate	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003
Barium sulfate	Dactylis glomerata	Orchardgrass	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	14	Days	Growth	Shoot Biomass	No Effect	NOEC	1,000	mg/kg	7.86-8.58				
																			ESG International, Guelph, Ontario	Ecotoxicity Evaluation of Referenc Site Soils Amended with Barium Sulphate	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003
Barium sulfate	Dactylis glomerata	Orchardgrass	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	14	Days	Survival	Emergence	No Effect	NOEC	1,000,000	mg/kg	7.86-8.58				
																			ESG International, Guelph, Ontario	Ecotoxicity Evaluation of Referenc Site Soils Amended with Barium Sulphate	Technical Appendices for Barite Soil Remediation Guidelines, Alberta, Canada	2003
Barium sulfate	Lolium perenne	Ryegrass	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	14	Days	Growth	Root length	No Effect	NOEC	300,000	mg/kg	7.98-8.65				
														20%					Honarvar, S.	Effect of Drilling Fluid Components and Mixtures on Plants and Soils	Utah State University DigitalCommons, Masters Degree	1975
Barium sulfate	Zea mays succharate	Sweet corn	Plant	Seed	Juvenile	Nominal	Barium sulfate	Soil	Lab	56	Days	Growth	Biomass	Reduction in weight	LOEC	795,833	mg/kg	6.0 - 6.2	Miller, R., Honarvar, S., and Hunsaker, B.	Effects of Drilling Fluids on Soils and Plants: I. Individual Fluid Components	J. Environ. Quai., Vol. 9, no. 4	1980

Calcasieu and Jefferson Davis Parishes, Louisiana

TABLE F-5 Total Barium Invertebrate Effects Due to Barite Henning Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

alcasieu an	nd Jefferson D	Davis Parishe	s, Louisiana			-							-			•				1		-
Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate		Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measure- ment	NOEC/LOEC	Concentration	Concentrati on Units (dw)	рН	Authors	Title	Source	Publication Year
														70%					Simini, M. Checkai, R., Kuperman, R., an Phillips, C.	d Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening Levels (ECO-SSL) Using Earthworm (<i>Eisenia fetida</i>) Benchmark Values	U.S. Army Soldier and Biological Chemical Command	2002
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	0.3 - 0.6 gms	Adult	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	21	Days	Reproduction	Cocoons	Reduction in number	LOEC	100 - 1,000	mg/kg	5.0	Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	Environmental Toxicology and Chemistry, Vol. 25, No. 3 pp. 754-762	^{3,} 2006
																			Kuperman, R., Simini, M., Checkai, R., and Phillips, C.	Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Screening Levels (ECO SSL) Using Enchytraeid Reproduction Benchmark Values		
Barium sulfate	Enchytraeus crypticus	Potworm	Invertebrate	Adult	Adult 1 cm long, with eggs	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	28	Days	Reproduction	No. of offspring	EC20	LOEC	5,000	mg/kg	5.0	Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	Environmental Toxicology and Chemistry, Vol. 25, No. 3 pp. 754-762	2006
					Adult 1 cm														Kuperman, R., Simini, M., Checkai, R., and Phillips, C.	Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Screening Levels (ECO SSL) Using Enchytraeid Reproduction Benchmark Values		
Barium sulfate	Enchytraeus crypticus	Potworm	Invertebrate	Adult	long, with eggs	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	28	Days	Reproduction	No. of offspring	Lowest Effect	LOEC	500 - 1,000	mg/kg	5.0	Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	Environmental Toxicology and Chemistry, Vol. 25, No. 3 pp. 754-762	^{3,} 2006
Barium	Eisenia					USEPA Method					_			10%					Simini, M., Checkai, R., Kuperman, R., and Phillips, C.	Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening Levels (ECO-SSL) Using Earthworm (<i>Eisenia fetida</i>) Benchmark Values	U.S. Army Soldier and Biological Chemical Command	2002
sulfate	fetida	Earthworm	Invertebrate	0.3 - 0.6 gms	Adult	200.8, ICP-MS	Total barium	Soil	Lab	21	Days	Reproduction	Cocoons	Reduction in number	NOEC	500 - 5000	mg/kg	5.0	Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	Environmental Toxicology and Chemistry, Vol. 25, No. 3 pp. 754-762	^{3,} 2006
Desire	En de terrere				Adult 1 cm														Kuperman, R., Simini, M., Checkai, R., and Phillips, C.	Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Screening Levels (ECO SSL) Using Enchytraeid Reproduction Benchmark Values	U.S. Army Soldier and Biological Chemical Command Environmental Toxicology and Chemistry, Vol. 25, No. 3	
Barium sulfate	Enchytraeus crypticus	Potworm	Invertebrate	Adult	long, with eggs	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	14	Days	Survival	Mortality	No effect	NOEC	10,000	mg/kg	5.0	Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	pp. 754-762	2006
Barium sulfate	Folsomia candida	Springtail insect	Invertebrate	Adult	NR	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	14	Days	Survival	Mortality	No effect	NOEC	10,000	mg/kg	5.29	Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> , <i>Eisenia fetida</i> , and <i>Enchytraeus crypticus</i>	Environmental Toxicology and Chemistry, Vol. 25, No. 3 pp. 754-762	3, 2006
Deriver	Folgomia	Coninetail											No. of						Kuperman, R., Simini, M., Checkai, R., Phillips, C., Speicher, J., and Barclift, D.	Toxicity Benchmarks for Antimony, Barium, and Beryllium Determined Using Reproduction Endpoints for <i>Folsomia candida</i> ,	Environmental Toxicology and Chemistry, Vol. 25, No. 3 pp. 754-762	3, 2006
Barium sulfate	Folsomia candida	Springtail insect	Invertebrate	Adult	NR	USEPA Method 200.8, ICP-MS	Total barium	Soil	Lab	28	Days	Reproduction	No. of offspring	No effect	NOEC	10,000	mg/kg	5.29		Eisenia fetida , and Enchytraeus crypticus		
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	Adult	NR	XRF	Total Barium	Soil	Lab	NR	NR	Survival	Mortality	No effect	NOEC	29,200	mg/kg	6.1 - 8.3	Lamb, D., Matanitobua, V., Palanisami, T Megharaj, M. and Naidu, R.	, Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite	Environmental Science and Technology, No. 47, pp. 4670-4676	2013
Barium sulfate	Eisenia fetida	Earthworm	Invertebrate	Adult	NR	XRF	Total Barium	Soil	Lab	NR	NR	Growth	Weight loss	No effect	NOEC	5,700	mg/kg	6.1 - 8.3	Lamb, D., Matanitobua, V., Palanisami, T Megharaj, M. and Naidu, R.	, Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite	Environmental Science and Technology, No. 47, pp. 4670-4676	2013

TABLE F-6 Total Barium Plant Effects Due to Barite Henning Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Chemical Name	Species Scientific Name	Species Common Name	Species Group	Organism Age/Weight	Organism Lifestage	Chemical Concentration	Total Barium/ Barium Sulfate	Media Type	Test Location	Observed Duration (Days)	Observed Duration Units (Days)	Endpoint	Effect	Effect Measure- ment	NOEC/LOEC	Concentration	Concentrati on Units (dw)	рН	Authors	Title	Source	Publication Year
Barium sulfate	Lactuca sativa L.	Great Lakes lettuce	Plant	Seed	Juvenile	XRF	Total Barium	Soil	Lab	56	Days	Growth	Shoot Biomass	Lowest Effect	LOEC	1300	mg/kg	6.5	Lamp, D., Malamobua, V., Palamsami, T., Mogbarai, M. and Naidu, P.	Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite	Environmental Science and Technology, No. 47, pp. 4670-4676	2013

APPENDIX G BACKGROUND CALCULATIONS

15 March 2022

APPENDIX G-1 Background Data Collected by USGS Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

SiteID	StateID	CollDate	Depth (cm)	Aa (ma/ka)	D Aa (ma/ka)	As (ma/ka)	D As (ma/ka)	Ba (mg/kg)	D Ba (mg/kg)
120	LA	7/30/2008	0-5	1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	0	4.9	<u> </u>	<u>514</u>	<u> </u>
140	LA	8/6/2008	0-5	1	0	2	1	111	1
204	LA	7/26/2008	0-5	1	0	5.7	1	296	1
332	LA	8/2/2008	0-5	1	0	2.5	1	187	1
460	LA	7/26/2008	0-5	1	0	3	1	210	1
588	LA	8/6/2008	0-5	1	0	4.8	1	138	1
824	LA	7/30/2008	0-5	1	0	4.2	1	448	1
1072	LA	7/28/2008	0-5	1	0	10	1	652	1
1144	LA	7/30/2008	0-5	1	0	11.4	1	654	1
1356	LA	8/2/2008	0-5	1	0	2.1	1	232	1
1612	LA	8/5/2008	0-5	1	0	5.1	1	520	1
1740	LA	8/3/2008	0-5	1	0	5.4	1	641	1
1848	LA	7/28/2008	0-5	1	0	5.5	1	542	1
2168	LA	7/29/2008	0-5	1	0	10.7	1	765	1
2380	LA	8/4/2008	0-5	1	0	1.9	1	236	1
2636	LA	8/6/2008	0-5	1	0	1.7	1	304	1
2872	LA	7/28/2008	0-5	1	0	7.4	1	712	1
2892	LA	8/6/2008	0-5	1	0	3.2	1	231	1
3404	LA	8/4/2008	0-5	1	0	2.9	1	425	1
3640	LA	7/31/2008	0-5	1	0	6.9	1	576	1
3896	LA	7/27/2008	0-5	1	0	1.3	1	104	1
3980	LA	8/1/2008	0-5	1	0	9.4	1	514	1
4216	LA	7/30/2008	0-5	1	0	5.4	1	648	1
4236	LA	8/6/2008	0-5	1	0	3.6	1	180	1
4300	LA	8/1/2008	0-5	1	0	4.3	1	624	1
4428	LA	8/2/2008	0-5	1	0	3.3	1	102	1
4492	LA	8/6/2008	0-5	1	0	5.6	1	342	1
4664	LA	7/31/2008	0-5	1	0	3.9	1	471	1
4684	LA	8/6/2008	0-5	1	0	2.6	1	75	1
4920	LA	7/31/2008	0-5	1	0	1	1	283	1
5240	LA	8/1/2008	0-5	1	0	10.1	1	2690	1
5452	LA	8/2/2008	0-5	1	0	4	1	363	1
5688	LA	7/31/2008	0-5	1	0	1.5	1	228	1
5708	LA	8/6/2008	0-5	1	0	6.8	1	378	1
5836	LA	8/4/2008	0-5	1	0	10.8	1	603	1
5944		7/26/2008		1	0	3.8	1	264	1
6264	LA	7/29/2008	0-5	1	0	7	1	842	1
6476	LA	8/2/2008	0-5 0-5	1	0	2.8	1	103 376	1
6712	LA	7/31/2008	0-5	1 1	0	5.9	1	728	1
6968 7500	LA LA	7/28/2008	0-5	1	0	5.8 2.9	1	196	1
7500	LA LA	8/4/2008 7/31/2008	0-5	1	0	2.9 5.6	1	269	1
7992	LA	7/28/2008	0-5	1	0	5.6 11.5	1	632	1
8012	LA	8/6/2008	0-5	1	0	3.8	1	368	1
8076	LA	8/0/2008	0-5	1	0	5.0 6.9	1	688	1
8312	LA	7/30/2008	0-5	1	0	7.6	1	692	1
8332	LA	8/6/2008	0-5	1	0	10.1	1	471	1
8396	LA	8/3/2008	0-5	1	0	9.3	1	606	1
8524		8/4/2008	0-5	1	0	4.4	1	348	1
8780	LA	8/6/2008	0-5	1	0	3.2	1	273	1
8908	LA	8/4/2008	0-5	1	0	8.7	1	484	1
9016	LA	7/30/2008	0-5	1	0	3.3	1	687	1
9336	LA	7/30/2008	0-5	1	0	5.4	1	599	1
9548	LA	8/3/2008	0-5	1	0	1.6	1	408	1
9804	LA	8/6/2008	0-5	1	0	1.0	1	88	1
0004	LA	5/0/2000	0-0	I	0	1.3	I	00	1

APPENDIX G-1 Background Data Collected by USGS Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

SiteID	StateID	CollDate	Depth (cm)	Aa (ma/ka)	D Aa (ma/ka)	As (ma/ka)	D As (ma/ka)	Ba (mg/kg)	D Ba (mg/kg)
9932	LA	8/4/2008	0-5	1	0	12.7	<u> </u>	649	<u> </u>
10040	LA	7/29/2008	0-5	1	0	8.2	1	638	1
10060	LA	8/6/2008	0-5	1	0	1.2	1	64	1
10572	LA	7/31/2008	0-5	1	0	6.3	1	185	1
10808	LA	7/31/2008	0-5	1	0	4.4	1	203	1
11064	LA	7/28/2008	0-5	1	0	14.5	1	606	1
11148	LA	8/1/2008	0-5	1	0	4.3	1	634	1
11340	LA	8/4/2008	0-5	1	0	5.6	1	452	1
11468	LA	7/26/2008	0-5	1	0	3.4	1	206	1
11596	LA	8/4/2008	0-5	1	0	1.1	1	156	1
11724	LA	8/4/2008	0-5	1	0	17.4	1	710	1
11832	LA	7/30/2008	0-5	1	0	5.1	1	217	1
11852	LA	8/2/2008	0-5	1	0	32.6	1	198	1
12088	LA	7/29/2008	0-5	1	0	8.4	1	703	1
12408	LA	7/30/2008	0-5	1	0	8.7	1	710	1
12620	LA	8/2/2008	0-5	1	0	2	1	149	1
12856	LA	7/31/2008	0-5	1	0	2	1	144	1
12876	LA	8/6/2008	0-5	1	0	4.1	1	211	1
13004	LA	8/3/2008	0-5	1	0	6.5	1	731	1
13112	LA	7/31/2008	0-5	1	0	3.7	1	163	1
120	LA	7/30/2008	0-15	1	0	4.8	1	448	1
140	LA	8/6/2008	0-30	1	0	1.8	1	132	1
204 332	LA LA	7/26/2008 8/2/2008	0-5 0-15	<u>1</u>	0	6.1 1	1	271 147	1
460	LA	7/26/2008	0-15	1	0	3.1	1	147	1
588	LA	8/6/2008	0-10	1	0	5.3	1	199	1
824		7/30/2008	0-20	1	0	4	1	353	1
1072	LA	7/28/2008	0-20	1	0	6.8	1	474	1
1144	LA	7/30/2008	0-20	1	0	11	1	667	1
1356	LA	8/2/2008	0-20	1	0	1.4	1	226	1
1612	LA	8/5/2008	0-30	1	0	6.8	1	503	1
1740	LA	8/3/2008	0-20	1	0	7.9	1	624	1
1848	LA	7/28/2008	0-10	1	0	5	1	607	1
2168	LA	7/29/2008	0-8	1	0	9.6	1	775	1
2380	LA	8/4/2008	0-20	1	0	2.5	1	254	1
2636	LA	8/6/2008	0-15	1	0	1.4	1	267	1
2872	LA	7/28/2008	0-10	1	0	5.7	1	565	1
2892	LA	8/6/2008	0-20	1	0	3	1	234	1
3404	LA	8/4/2008	0-30	1	0	3.2	1	447	1
3640	LA	7/31/2008	0-30	1	0	6.9	1	468	1
3896	LA	7/27/2008	0-20	1	0	2.3	1	111	1
3980	LA	8/1/2008	0-10	1	0	8.7	1	535	1
4216	LA	7/30/2008	0-20	1	0	5.7	1	629	1
4236	LA	8/6/2008	0-20	1	0	3.8	1	154	1
4300	LA	8/1/2008	0-5	1	0	5.6	1	592	1
4428	LA	8/2/2008	0-20	1	0	1.8	1	86	1
4492	LA	8/6/2008	0-10	1	0	5.3	1	291	1
4664	LA	7/31/2008	0-15	1	0	3.9	1	432	1
4684	LA	8/6/2008	0-30	1	0	5.7	1	68	1
4920	LA	7/31/2008	0-5	1	0	1.4	1	364	1
5240	LA	8/1/2008	0-15	1	0	14	1	2530	1
5452	LA	8/2/2008	0-20	1	0	4	1	339	1
5688	LA	7/31/2008	0-30	1	0	2.7	1	242	1
5708	LA	8/6/2008	0-20	1	0	6.6	1	318	1
5836	LA	8/4/2008	0-20	1	0	13.7	1	686	1

APPENDIX G-1 Background Data Collected by USGS Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

SiteID	StateID	CollDate	Depth (cm)	Ag (mg/kg)	D Ag (mg/kg)	As (mg/kg)	D As (mg/kg)	Ba (mg/kg)	D_Ba (mg/kg)
5944	LA	7/26/2008	0-20	1	0	4.5	1	304	1
6264	LA	7/29/2008	0-20	1	0	7.5	1	847	1
6476	LA	8/2/2008	0-20	1	0	2.9	1	97	1
6712	LA	7/31/2008	0-25	1	0	6.7	1	354	1
6968	LA	7/28/2008	0-25	1	0	8.4	1	667	1
7500	LA	8/4/2008	0-15	1	0	3	1	205	1
7736	LA	7/31/2008	0-15	1	0	5.6	1	287	1
7992	LA	7/28/2008	0-8	1	0	11.4	1	647	1
8012	LA	8/6/2008	0-20	1	0	3.9	1	370	1
8076	LA	8/1/2008	0-20	1	0	7.3	1	694	1
8312	LA	7/30/2008	0-30	1	0	4.9	1	657	1
8332	LA	8/6/2008	0-70	1	0	10.4	1	536	1
8396	LA	8/3/2008	0-30	1	0	8.9	1	597	1
8524	LA	8/4/2008	0-20	1	0	3.9	1	387	1
8780	LA	8/6/2008	0-10	1	0	3.8	1	232	1
8908	LA	8/4/2008	0-20	1	0	8.8	1	479	1
9016	LA	7/30/2008	0-30	1	0	3.3	1	238	1
9336	LA	7/30/2008	0-20	1	0	6.9	1	646	1
9548	LA	8/3/2008	0-20	1	0	5.8	1	403	1
9804	LA	8/6/2008	0-15	1	0	2	1	74	1
9932	LA	8/4/2008	0-30	1	0	11.1	1	648	1
10040	LA	7/29/2008	0-30	1	0	9.6	1	708	1
10060	LA	8/6/2008	0-25	1	0	1.2	1	74	1
10572	LA	7/31/2008	0-10	1	0	6.3	1	187	1
10808	LA	7/31/2008	0-10	1	0	3.4	1	162	1
11064	LA	7/28/2008	0-8	1	0	13.9	1	654	1
11148	LA	8/1/2008	0-20	1	0	4.8	1	575	1
11340	LA	8/4/2008	0-30	1	0	6.4	1	402	1
11468	LA	7/26/2008	0-30	1	0	3.4	1	223	1
11596	LA	8/4/2008	0-30	1	0	1.9	1	170	1
11724	LA	8/4/2008	0-50	1	0	18	1	617	1
11832	LA	7/30/2008	0-20	1	0	4.9	1	243	1
11852	LA	8/2/2008	0-20	1	0	38.2	1	180	1
12088	LA	7/29/2008	0-30	1	0	8	1	638	1
12408	LA	7/30/2008	0-30	1	0	8.6	1	749	1
12620	LA	8/2/2008	0-25	1	0	1.8	1	159	1
12856	LA	7/31/2008	0-20	1	0	1.9	1	141	1
12876	LA	8/6/2008	0-10	1	0	3.3	1	218	1
13004	LA	8/3/2008	0-20	1	0	6.7	1	701	1
13112	LA	7/31/2008	0-20	1	0	3.8	1	169	1

SiteID	StateID	CollDate	Depth (cm)	Cd (mg/kg)	D_Cd (mg/kg)	Cr (mg/kg)	D_Cr (mg/kg)	Pb (mg/kg)	D_Pb (mg/kg)
120	LA	7/30/2008	0-5	0.3	1	66	1	90.8	1
140	LA	8/6/2008	0-5	0.1	0	19	1	6.7	1
204	LA	7/26/2008	0-5	0.3	1	35	1	18.7	1
332	LA	8/2/2008	0-5	0.1	0	20	1	10.7	1
460	LA	7/26/2008	0-5	0.1	0	27	1	15.3	1
588	LA	8/6/2008	0-5	0.1	0	31	1	10.1	1
824	LA	7/30/2008	0-5	0.1	0	39	1	18.3	1
1072	LA	7/28/2008		0.6	1	70	1	47.2	1
1144	LA	7/30/2008	0-5	0.4	1	71	1	20.9	1
1356	LA	8/2/2008	0-5	0.1	0	18	1	10.9	1
1612	LA	8/5/2008	0-5	0.3	1	62	1	35	1
1740	LA	8/3/2008	0-5	1.1	1	65	1	25.4	1
1848	LA	7/28/2008	0-5	0.4	1	38	1	26	1
2168	LA	7/29/2008	0-5	0.3	1	40	1	19.6	1
2380	LA	8/4/2008	0-5	0.1	0	30	1	14.1	1
2636	LA	8/6/2008	0-5	0.1	0	23	1	11.3	1
2872	LA	7/28/2008	0-5	0.3	1	52	1	24.1	1
2892	LA	8/6/2008	0-5	0.1	0	34	1	9.8	1
3404	LA	8/4/2008	0-5	0.1	0	24	1	17.5	1
3640	LA	7/31/2008	0-5	0.2	1	48	1	24.8	1
3896	LA	7/27/2008	0-5	0.1	1	12	1	25.7	1
3980	LA	8/1/2008	0-5	0.4	1	80	1	41.7	1
4216	LA	7/30/2008	0-5	0.2	1	39	1	18.9	1
4236	LA	8/6/2008	0-5	0.2	1	28	1	26.3	1
4300	LA	8/1/2008	0-5	0.2	1	58	1	19.2	1
4428	LA	8/2/2008	0-5	0.1	0	21	1	11.1	1
4492	LA	8/6/2008	0-5	0.1	0	32	1	21.3	1
4664	LA	7/31/2008		0.1	0	20	1	13.9	1
4684	LA	8/6/2008	0-5	0.1	0	22	1	7.6	1
4920	LA	7/31/2008	0-5	0.1	0	5	1	9.3	1
5240	LA	8/1/2008	0-5	0.3	1	23	1	31.8	1
5452	LA	8/2/2008	0-5	0.1	1	34	1	19.2	1
5688	LA	7/31/2008	0-5	0.1	0	25	1	13.6	1
5708	LA	8/6/2008	0-5	0.1	1	66	1	27.6	1
5836	LA	8/4/2008	0-5	1	1	67	1	30.5	1
5944		7/26/2008		0.2	1	15	1	26.2	1
6264	LA	7/29/2008		0.2	1	38	1	13.6	1
6476	LA	8/2/2008	0-5	0.1	0	18	1	11.3	1
6712	LA	7/31/2008		0.2	1	19	1	12.7	1
6968	LA	7/28/2008		0.4	1	60	1	27.9	1
7500	LA	8/4/2008	0-5	0.1	0	15	1	10.8	1
7736	LA	7/31/2008	0-5	0.1	0	30	1	16.4	1
7992	LA	7/28/2008	0-5	0.5	1	47	1	46.7	1
8012	LA	8/6/2008	0-5	0.1	0	28	1	17.8	1
8076	LA	8/1/2008	0-5	0.5	1	57	1	22.2	1
8312	LA	7/30/2008	0-5	0.3	1	54	1	17.5	1
8332	LA	8/6/2008	0-5	0.1	1	72	1	19.6	1
8396	LA	8/3/2008	0-5	0.4	1	75	1	25.9	1
8524	LA	8/4/2008	0-5	0.1	0	31	1	18.9	1
8780	LA	8/6/2008	0-5	0.1	1	19	1	14.6	1
8908	LA	8/4/2008	0-5	0.1	1	39	1	19.7	1
9016	LA	7/30/2008	0-5	0.1	0	27	1	17.2	1
9336	LA	7/30/2008	0-5	0.1	1	37	1	31.3	1
9548	LA	8/3/2008	0-5	0.1	0	22	1	22.2	1
9804	LA	8/6/2008	0-5	0.1	0	25	1	10	1

SiteID	StateID	CollDate	Depth (cm)	Cd (mg/kg)	D Cd (mg/kg)	Cr (mg/kg)	D Cr (mg/kg)	Pb (mg/kg)	D Pb (mg/kg)
9932	LA	8/4/2008	0-5	0.2	1	46	1	17.5	1
10040	LA	7/29/2008	0-5	1.1	1	55	1	80.6	1
10060	LA	8/6/2008	0-5	0.1	0	10	1	8.1	1
10572	LA	7/31/2008	0-5	0.1	0	38	1	16	1
10808	LA	7/31/2008	0-5	0.1	0	31	1	22.4	1
11064	LA	7/28/2008	0-5	0.8	1	61	1	34.1	1
11148	LA	8/1/2008	0-5	0.2	1	55	1	32.1	1
11340	LA	8/4/2008	0-5	0.1	0	22	1	11.8	1
11468	LA	7/26/2008	0-5	0.1	0	35	1	19.8	1
11596	LA	8/4/2008	0-5	0.1	0	19	1	9.3	1
11724	LA	8/4/2008	0-5	0.1	1	32	1	11.8	1
11832	LA	7/30/2008	0-5	0.1	0	33	1	13.3	1
11852	LA	8/2/2008	0-5	0.1	0	77	1	36.2	1
12088	LA	7/29/2008	0-5	0.3	1	60	1	19.8	1
12408	LA	7/30/2008	0-5	0.5	1	59	1	23.2	1
12620	LA	8/2/2008	0-5	0.1	0	18	1	9.3	1
12856	LA	7/31/2008	0-5	0.1	0	24	1	8.8	1
12876	LA	8/6/2008	0-5	0.1	0	27	1	11.4	1
13004	LA	8/3/2008	0-5	0.1	0	44	1	13.3	1
13112	LA	7/31/2008	0-5	0.1	0	23	1	16.2	1
120	LA	7/30/2008	0-15	0.2	1	67	1	35.2	1
140	LA	8/6/2008	0-30	0.1	0	11	1	8.1	1
204	LA	7/26/2008	0-5	0.3	1	37	1	22.5	1
332	LA	8/2/2008	0-15	0.1	0	16	1	9.3	1
460	LA	7/26/2008	0-10	0.1	0	33	1	13.4	1
588	LA	8/6/2008	0-20	0.1	0	25	1	11.5	1
824	LA	7/30/2008	0-20	0.1	0	32	1	16.8	1
1072	LA	7/28/2008	0-20	0.6	1	57	1	35.7	1
1144	LA	7/30/2008	0-20	0.4	1	61	1	22.5	1
1356	LA	8/2/2008	0-20	0.1	0	21	1	11.1	1
1612	LA	8/5/2008	0-30	0.2	1	84	1	31	1
1740	LA	8/3/2008	0-20	0.8	1	62	1	28	1
1848	LA	7/28/2008	0-10	0.3	1	45	1	26.8	1
2168	LA	7/29/2008	0-8	0.3	1	53	1	15.5	1
2380	LA	8/4/2008	0-20	0.1	0	23	1	13.6	1
2636	LA	8/6/2008	0-15	0.1	0	19	1	9.4	1
2872	LA	7/28/2008	0-10	0.3	1	37	1	23.4	1
2892	LA	8/6/2008	0-20	0.1	0	19	1	11.2	1
3404	LA	8/4/2008	0-30	0.1	0	29	1	16	1
3640	LA	7/31/2008	0-30	0.2	1	37	1	20.8	1
3896	LA	7/27/2008	0-20	0.1	1	19	1	23.6	1
3980	LA	8/1/2008	0-10	0.4	1	79	1	33.3	1
4216	LA	7/30/2008	0-20	0.2	1	51	1	18.4	1
4236	LA	8/6/2008	0-20	0.2	1	30	1	25.5	1
4300	LA	8/1/2008	0-5	0.2	1	60	1	20	1
4428	LA	8/2/2008	0-20	0.1	0	18	1	9.7	1
4492	LA	8/6/2008	0-10	0.1	0	31	1	20.3	1
4664	LA	7/31/2008	0-15	0.1	0	6	1	16.4	1
4684	LA	8/6/2008	0-30	0.1	0	13	1	8.2	1
4920	LA	7/31/2008	0-5	0.1	0	7	1	10.9	1
5240	LA	8/1/2008	0-15	0.3	1	35	1	18.4	1
5452	LA	8/2/2008	0-20	0.1	1	31	1	17.5	1
5688	LA	7/31/2008	0-30	0.1	0	22	1	16.3	1
5708	LA	8/6/2008	0-20	0.1	0	69	1	24.6	1
5836	LA	8/4/2008	0-20	0.8	1	78	1	31.4	1

SiteID	StateID	CollDate	Depth (cm)	Cd (mg/kg)	D_Cd (mg/kg)	Cr (mg/kg)	D_Cr (mg/kg)	Pb (mg/kg)	D_Pb (mg/kg)
5944	LA	7/26/2008	0-20	0.2	1	28	1	31.9	1
6264	LA	7/29/2008	0-20	0.3	1	37	1	18.5	1
6476	LA	8/2/2008	0-20	0.1	0	24	1	10.4	1
6712	LA	7/31/2008	0-25	0.2	1	35	1	12.1	1
6968	LA	7/28/2008	0-25	0.3	1	47	1	27	1
7500	LA	8/4/2008	0-15	0.1	0	17	1	11.6	1
7736	LA	7/31/2008	0-15	0.1	0	26	1	18	1
7992	LA	7/28/2008	0-8	0.4	1	53	1	44.2	1
8012	LA	8/6/2008	0-20	0.1	0	39	1	19.6	1
8076	LA	8/1/2008	0-20	0.4	1	47	1	22.2	1
8312	LA	7/30/2008	0-30	0.3	1	52	1	16	1
8332	LA	8/6/2008	0-70	0.1	1	84	1	20.5	1
8396	LA	8/3/2008	0-30	0.3	1	60	1	24.5	1
8524	LA	8/4/2008	0-20	0.1	0	22	1	16.2	1
8780	LA	8/6/2008	0-10	0.1	1	24	1	12.8	1
8908	LA	8/4/2008	0-20	0.1	0	35	1	16.1	1
9016	LA	7/30/2008	0-30	0.1	0	25	1	10.9	1
9336	LA	7/30/2008	0-20	0.1	0	51	1	19	1
9548	LA	8/3/2008	0-20	0.1	0	21	1	14	1
9804	LA	8/6/2008	0-15	0.1	0	19	1	7.2	1
9932	LA	8/4/2008	0-30	0.2	1	39	1	20.1	1
10040	LA	7/29/2008	0-30	1	1	78	1	41.6	1
10060	LA	8/6/2008	0-25	0.1	0	16	1	4.4	1
10572	LA	7/31/2008	0-10	0.1	0	38	1	17.4	1
10808	LA	7/31/2008	0-10	0.1	0	26	1	20.3	1
11064	LA	7/28/2008	0-8	0.8	1	56	1	38	1
11148	LA	8/1/2008	0-20	0.2	1	65	1	20.9	1
11340	LA	8/4/2008	0-30	0.1	0	23	1	14.1	1
11468	LA	7/26/2008	0-30	0.1	0	24	1	19.7	1
11596	LA	8/4/2008	0-30	0.1	0	13	1	10.5	1
11724	LA	8/4/2008	0-50	0.2	1	22	1	13.2	1
11832	LA	7/30/2008	0-20	0.1	0	32	1	15.2	1
11852	LA	8/2/2008	0-20	0.1	0	75	1	37.4	1
12088	LA	7/29/2008	0-30	0.3	1	41	1	19	1
12408	LA	7/30/2008	0-30	0.5	1	63	1	23.9	1
12620	LA	8/2/2008	0-25	0.1	0	17	1	8.8	1
12856	LA	7/31/2008	0-20	0.1	0	17	1	9.6	1
12876	LA	8/6/2008	0-10	0.1	0	22	1	13.2	1
13004	LA	8/3/2008	0-20	0.1	0	47	1	13.8	1
13112	LA	7/31/2008	0-20	0.1	0	33	1	15.2	1

SiteID	StateID	CollDate	Depth (cm)	Se (mg/kg)	D_Se (mg/kg)	Sr (mg/kg)	D Sr (mg/kg)	Zn (mg/kg)	D Zn (mg/kg)
120	LA	7/30/2008		1	1	87.3	1	87	1
140	LA	8/6/2008	0-5	0.2	0	11	1	8	1
204	LA	7/26/2008	0-5	0.7	1	45	1	38	1
332	LA	8/2/2008	0-5	0.2	0	15.6	1	10	1
460	LA	7/26/2008	0-5	0.3	1	22.8	1	21	1
588	LA	8/6/2008	0-5	0.2	0	14.2	1	24	1
824	LA	7/30/2008	0-5	0.4	1	82.8	1	28	1
1072	LA	7/28/2008	0-5	0.7	1	122	1	135	1
1144	LA	7/30/2008	0-5	0.5	1	121	1	98	1
1356	LA	8/2/2008	0-5	0.2	0	21.2	1	15	1
1612	LA	8/5/2008	0-5	0.7	1	95.5	1	119	1
1740	LA	8/3/2008	0-5	1	1	96.4	1	111	1
1848	LA	7/28/2008		0.4	1	149	1	90	1
2168	LA	7/29/2008	0-5	0.4	1	167	1	70	1
2380	LA	8/4/2008	0-5	0.2	0	25.7	1	9	1
2636	LA	8/6/2008	0-5	0.2	0	32.4	1	9	1
2872	LA	7/28/2008	0-5	0.2	1	177	1	77	1
2892	LA		0-5	0.3	0	30.8	1	11	1
3404	LA	8/6/2008 8/4/2008	0-5	0.2	1	50.0 52	1	38	1
			0-5		1	52 142	1		1
3640	LA	7/31/2008		0.5	-		-	140 19	
3896	LA	7/27/2008	0-5	0.5	1	112	1		1
3980	LA	8/1/2008	0-5	0.7	1	96.3	1	112	1
4216	LA	7/30/2008	0-5	0.5	1	150	1	71	1
4236	LA	8/6/2008	0-5	0.2	0	24.6	1	98	1
4300	LA	8/1/2008	0-5	0.4	1	114	1	73	1
4428	LA	8/2/2008	0-5	0.2	0	12.9	1	25	1
4492	LA	8/6/2008	0-5	0.4	1	48	1	18	1
4664	LA	7/31/2008	0-5	0.2	0	203	1	55	1
4684	LA	8/6/2008	0-5	0.2	0	9.1	1	16	1
4920	LA	7/31/2008	0-5	0.2	0	31.2	1	8	1
5240	LA	8/1/2008	0-5	0.2	0	160	1	54	1
5452	LA	8/2/2008	0-5	0.2	0	75.5	1	33	1
5688	LA	7/31/2008	0-5	0.4	1	34.7	1	15	1
5708	LA	8/6/2008	0-5	0.9	1	78.3	1	75	1
5836	LA	8/4/2008	0-5	1.2	1	92.3	1	121	1
5944	LA	7/26/2008	0-5	0.3	1	104	1	37	1
6264	LA	7/29/2008	0-5	0.2	0	182	1	45	1
6476	LA	8/2/2008	0-5	0.2	0	11.3	1	10	1
6712	LA	7/31/2008	0-5	0.2	1	275	1	53	1
6968	LA	7/28/2008		0.6	1	124	1	95	1
7500	LA	8/4/2008	0-5	0.2	0	21.6	1	17	1
7736	LA	7/31/2008	0-5	0.3	1	37.2	1	21	1
7992	LA	7/28/2008	0-5	0.7	1	127	1	119	1
8012	LA	8/6/2008	0-5	0.4	1	44.7	1	32	1
8076	LA	8/1/2008	0-5	0.8	1	135	1	87	1
8312	LA	7/30/2008	0-5	0.4	1	160	1	75	1
8332	LA	8/6/2008	0-5	0.3	1	98	1	76	1
8396	LA	8/3/2008	0-5	0.9	1	104	1	118	1
8524	LA	8/4/2008	0-5	0.2	0	69.9	1	34	1
8780	LA	8/6/2008	0-5	0.2	0	30.6	1	76	1
8908	LA	8/4/2008	0-5	0.3	1	70.7	1	51	1
9016	LA	7/30/2008	0-5	0.3	1	27.9	1	14	1
9336	LA	7/30/2008	0-5	0.4	1	143	1	55	1
9548	LA	8/3/2008	0-5	0.2	0	74.9	1	17	1
9804	LA	8/6/2008	0-5	0.2	0	11.9	1	7	1
	LA	5,5,2000	0-0	0.2	v	11.9	1	'	I

SiteID	StateID	CollDate	Depth (cm)	Se (mg/kg)	D_Se (mg/kg)	Sr (mg/kg)	D Sr (mg/kg)	Zn (mg/kg)	D Zn (mg/kg)
9932	LA	8/4/2008	0-5	0.4	1	136	1	56	1
10040	LA	7/29/2008	0-5	1.1	1	124	1	148	1
10060	LA	8/6/2008	0-5	0.2	0	7	1	4	1
10572	LA	7/31/2008	0-5	0.3	1	20.1	1	13	1
10808	LA	7/31/2008	0-5	0.4	1	32.7	1	65	1
11064	LA	7/28/2008	0-5	0.7	1	152	1	385	1
11148	LA	8/1/2008	0-5	0.5	1	131	1	88	1
11340	LA	8/4/2008	0-5	0.2	0	83.5	1	19	1
11468	LA	7/26/2008	0-5	0.6	1	20.5	1	24	1
11596	LA	8/4/2008	0-5	0.2	0	15.4	1	8	1
11724	LA	8/4/2008	0-5	0.2	0	213	1	30	1
11832	LA	7/30/2008	0-5	0.3	1	27.4	1	20	1
11852	LA	8/2/2008	0-5	1	1	28.1	1	55	1
12088	LA	7/29/2008	0-5	0.4	1	145	1	79	1
12000	LA	7/30/2008	0-5	0.4	1	143	1	86	1
12400	LA	8/2/2008	0-5	0.2	0	12.6	1	5	1
12856	LA	7/31/2008	0-5	0.2	0	12.0	1	11	1
12876	LA	8/6/2008	0-5	0.2	0	30.5	1	73	1
13004	LA	8/3/2008	0-5	0.2	0	136	1	40	1
13112	LA	7/31/2008	0-5	0.2	1	19.3	1	15	1
120	LA	7/30/2008		0.4	1	98.8	1	92	1
					•	90.0 13	-	92 10	1
140	LA	8/6/2008	0-30	0.2	0		1		
204	LA	7/26/2008	0-5	0.7	1	49.6	1	38	1
332	LA	8/2/2008	0-15	0.2	0	18	1	10	1
460	LA	7/26/2008	0-10	0.3	1	23.4	1	15	1
588	LA	8/6/2008	0-20	0.2	0	16.8	1	27	1
824	LA	7/30/2008	0-20	0.4	1	65.5	1	23	1
1072	LA	7/28/2008	0-20	0.4	1	82.5	1	228	1
1144	LA	7/30/2008		0.4	1	114	1	105	1
1356	LA	8/2/2008	0-20	0.2	1	26.1	1	10	1
1612	LA	8/5/2008	0-30	0.7	1	96.4	1	121	1
1740	LA	8/3/2008	0-20	1	1	104	1	123	1
1848	LA	7/28/2008	0-10	0.3	1	181	1	70	1
2168		7/29/2008	0-8	0.2	0	173	1	71	1
2380	LA	8/4/2008	0-20	0.2	0	26.3	1	9	1
2636	LA	8/6/2008		0.2	0	28.1	1	7	1
2872	LA	7/28/2008		0.4	1	172	1	72	1
2892	LA	8/6/2008	0-20	0.2	0	31.5	1	11	1
3404	LA	8/4/2008	0-30	0.3	1	53.1	1	36	1
3640	LA	7/31/2008	0-30	0.3	1	139	1	127	1
3896	LA	7/27/2008		0.5	1	128	1	18	1
3980	LA	8/1/2008	0-10	0.6	1	101	1	114	1
4216	LA	7/30/2008	0-20	0.4	1	144	1	65	1
4236	LA	8/6/2008	0-20	0.3	1	21.2	1	88	1
4300	LA	8/1/2008	0-5	0.4	1	124	1	72	1
4428	LA	8/2/2008	0-20	0.2	0	16.3	1	13	1
4492	LA	8/6/2008	0-10	0.6	1	52	1	19	1
4664	LA	7/31/2008	0-15	0.2	0	225	1	60	1
4684	LA	8/6/2008	0-30	0.2	0	8.9	1	18	1
4920	LA	7/31/2008	0-5	0.2	1	32.4	1	9	1
5240	LA	8/1/2008	0-15	0.2	0	156	1	52	1
5452	LA	8/2/2008	0-20	0.2	1	82.9	1	37	1
5688	LA	7/31/2008	0-30	0.4	1	40.3	1	15	1
5708	LA	8/6/2008	0-20	0.6	1	78.7	1	67	1
5836	LA	8/4/2008	0-20	1.1	1	115	1	134	1

SiteID	StateID	CollDate	Depth (cm)	Se (mg/kg)	D Se (mg/kg)	Sr (mg/kg)	D Sr (mg/kg)	Zn (mg/kg)	D Zn (mg/kg)
5944	LA	7/26/2008	0-20	0.3	1	100	1	31	1
6264	LA	7/29/2008	0-20	0.3	1	159	1	63	1
6476	LA	8/2/2008	0-20	0.2	0	10	1	6	1
6712	LA	7/31/2008	0-25	0.3	1	290	1	46	1
6968	LA	7/28/2008	0-25	0.7	1	133	1	93	1
7500	LA	8/4/2008	0-15	0.2	0	21.4	1	14	1
7736	LA	7/31/2008	0-15	0.3	1	38	1	21	1
7992	LA	7/28/2008	0-8	0.7	1	117	1	123	1
8012	LA	8/6/2008	0-20	0.4	1	47	1	31	1
8076	LA	8/1/2008	0-20	0.9	1	133	1	90	1
8312	LA	7/30/2008	0-30	0.4	1	174	1	74	1
8332	LA	8/6/2008	0-70	0.2	1	113	1	86	1
8396	LA	8/3/2008	0-30	1	1	93.9	1	117	1
8524	LA	8/4/2008	0-20	0.2	0	75.2	1	34	1
8780	LA	8/6/2008	0-10	0.2	0	29.1	1	80	1
8908	LA	8/4/2008	0-20	0.3	1	68.2	1	32	1
9016	LA	7/30/2008	0-30	0.2	0	26	1	12	1
9336	LA	7/30/2008	0-20	0.5	1	139	1	71	1
9548	LA	8/3/2008	0-20	0.2	0	85.7	1	23	1
9804	LA	8/6/2008	0-15	0.2	0	10.3	1	6	1
9932	LA	8/4/2008	0-30	0.3	1	134	1	68	1
10040	LA	7/29/2008	0-30	1	1	132	1	140	1
10060	LA	8/6/2008	0-25	0.2	0	8.1	1	4	1
10572	LA	7/31/2008	0-10	0.3	1	20.4	1	14	1
10808	LA	7/31/2008	0-10	0.4	1	31.7	1	57	1
11064	LA	7/28/2008	0-8	0.6	1	143	1	220	1
11148	LA	8/1/2008	0-20	0.5	1	115	1	80	1
11340	LA	8/4/2008	0-30	0.2	0	87.1	1	22	1
11468	LA	7/26/2008	0-30	0.5	1	21.5	1	23	1
11596	LA	8/4/2008	0-30	0.2	0	18.9	1	8	1
11724	LA	8/4/2008	0-50	0.2	0	196	1	36	1
11832	LA	7/30/2008	0-20	0.4	1	28.9	1	14	1
11852	LA	8/2/2008	0-20	1.2	1	31.6	1	61	1
12088	LA	7/29/2008	0-30	0.4	1	152	1	78	1
12408	LA	7/30/2008	0-30	0.6	1	151	1	93	1
12620	LA	8/2/2008	0-25	0.2	0	12.2	1	5	1
12856	LA	7/31/2008	0-20	0.2	1	14.3	1	9	1
12876	LA	8/6/2008	0-10	0.3	1	27	1	50	1
13004	LA	8/3/2008	0-20	0.2	0	132	1	49	1
13112	LA	7/31/2008	0-20	0.4	1	19.9	1	17	1

APPENDIX G-2 ProUCL Output: Outlier Test Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Outlier Tests

Outlier Tests for Selected Variables excluding nondetects

User Selected Options Date/Time of Computation ProUCL 5.17/14/2020 1:20:12 PM From File ProUCL data_USGS Bkg_Top 5 cm and A horizon_LA.xls Full Precision OFF

Rosner's Outlier Test for 5 Outliers in As (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	5.988
SD of Detects	4.832
Number of data	150
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value <i>r</i> a	lue (5%) <i>r</i> a	lue (1%)
1	5.988	4.816	38.2	143	6.689	3.52	3.89
2	5.772	4.056	32.6	68	6.615	3.51	3.89
3	5.591	3.41	18	141	3.639	3.51	3.89
4	5.506	3.263	17.4	66	3.645	3.51	3.88
5	5.425	3.121	14.5	61	2.908	3.51	3.88

For 5% significance level, there are 4 Potential Outliers 38.2, 32.6, 18, 17.4

For 1% Significance Level, there are 2 Potential Outliers 38.2, 32.6

APPENDIX G-2 ProUCL Output: Outlier Test Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Outlier Tests

Rosner's Outlier Test for 5 Outliers in Ba (mg/kg)

Total N	150	
Number NDs	0	
Number Detects	150	
Mean of Detects	429.3	
SD of Detects	333.7	
Number of data	150	
Number of suspected outliers	5	
NDs not included in the following:		

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value/a	alue (5%) <i>r</i> a	alue (1%)
1	429.3	332.6	2690	31	6.798	3.52	3.89
2	414.1	278.1	2530	106	7.609	3.51	3.89
3	399.8	217.2	847	112	2.059	3.51	3.89
4	396.8	214.8	842	37	2.073	3.51	3.88
5	393.7	212.3	775	89	1.796	3.51	3.88

For 5% significance level, there are 2 Potential Outliers 2690, 2530

For 1% Significance Level, there are 2 Potential Outliers 2690, 2530

Rosner's Outlier Test for 5 Outliers in Cd (mg/kg)

Total N	150
Number NDs	77
Number Detects	73
Mean of Detects	0.34
SD of Detects	0.243
Number of data	73
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value /	alue (5%)/a	alue (1%)
1	0.34	0.241	1.1	6	3.149	3.275	3.635
2	0.329	0.227	1.1	33	3.391	3.265	3.635
3	0.318	0.209	1	19	3.257	3.265	3.625
4	0.309	0.194	1	68	3.565	3.255	3.618
5	0.299	0.176	0.8	34	2.847	3.255	3.615

For 5% significance level, there are 4 Potential Outliers 1.1, 1.1, 1, 1

For 1% Significance Level, there is no Potential Outlier

APPENDIX G-2 ProUCL Output: Outlier Test Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Field Calcasieu and Jefferson Davis Parishes, Louisiana

Outlier Tests

Rosner's Outlier Test for 5 Outliers in Cr (mg/kg)

Total N	150	
Number NDs	0	
Number Detects	150	
Mean of Detects	37.67	
SD of Detects	19.3	
Number of data	150	
Number of suspected outliers	5	
NDs not included in the following:		

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value/a	alue (5%) <i>r</i> a	alue (1%)
1	37.67	19.24	84	86	2.408	3.52	3.89
2	37.36	18.99	84	122	2.456	3.51	3.89
3	37.05	18.66	80	22	2.302	3.51	3.89
4	36.76	18.38	79	97	2.298	3.51	3.88
5	36.47	18.1	78	110	2.294	3.51	3.88

For 5% Significance Level, there is no Potential Outlier

For 1% Significance Level, there is no Potential Outlier

Rosner's Outlier Test for 5 Outliers in Pb (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	20.12
SD of Detects	11.61
Number of data	150
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value /a	alue (5%) <i>r</i> a	alue (1%)
1	20.12	11.57	90.8	1	6.107	3.52	3.89
2	19.64	10.09	80.6	57	6.042	3.51	3.89
3	19.23	8.776	47.2	8	3.187	3.51	3.89
4	19.04	8.495	46.7	43	3.256	3.51	3.88
5	18.85	8.206	44.2	118	3.089	3.51	3.88

For 5% significance level, there are 2 Potential Outliers 90.8, 80.6

For 1% Significance Level, there are 2 Potential Outliers 90.8, 80.6

Outlier Tests

Rosner's Outlier Test for 5 Outliers in Hg (mg/kg)

Total N	150	
Number NDs	7	
Number Detects	143	
Mean of Detects	0.114	
SD of Detects	0.634	
Number of data	143	
Number of suspected outliers	5	
NDs not included in the following:		

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value <i>r</i>	alue (5%)/a	alue (1%)
1	0.114	0.631	6.24	103	9.702	3.5	3.87
2	0.0708	0.369	4.43	30	11.81	3.492	3.87
3	0.0399	0.0242	0.13	24	3.719	3.492	3.87
4	0.0393	0.0231	0.11	42	3.066	3.49	3.86
5	0.0388	0.0223	0.11	96	3.188	3.49	3.86

For 5% significance level, there are 3 Potential Outliers 6.24, 4.43, 0.13

For 1% Significance Level, there are 2 Potential Outliers 6.24, 4.43

Rosner's Outlier Test for 5 Outliers in Se (mg/kg)

Total N	150
Number NDs	53
Number Detects	97
Mean of Detects	0.511
SD of Detects	0.253
Number of data	97
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value/a	alue (5%) <i>r</i> a	alue (1%)
1	0.511	0.252	1.2	21	2.733	3.371	3.741
2	0.504	0.244	1.2	92	2.846	3.368	3.738
3	0.497	0.235	1.1	36	2.567	3.368	3.738
4	0.49	0.228	1.1	70	2.677	3.361	3.728
5	0.484	0.22	1	1	2.348	3.358	3.728

For 5% Significance Level, there is no Potential Outlier

For 1% Significance Level, there is no Potential Outlier

Outlier Tests

Rosner's Outlier Test for 5 Outliers in Sr (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	81.84
SD of Detects	61.29
Number of data	150
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value/a	alue (5%) <i>r</i> a	alue (1%)
1	81.84	61.08	290	114	3.408	3.52	3.89
2	80.44	59.05	275	39	3.295	3.51	3.89
3	79.13	57.02	225	103	2.558	3.51	3.89
4	78.13	55.92	213	66	2.412	3.51	3.88
5	77.21	54.97	203	28	2.288	3.51	3.88

For 5% Significance Level, there is no Potential Outlier

For 1% Significance Level, there is no Potential Outlier

Rosner's Outlier Test for 5 Outliers in Zn (mg/kg)

Total N	150
Number NDs	0
Number Detects	150
Mean of Detects	55.21
SD of Detects	51.06
Number of data	150
Number of suspected outliers	5
NDs not included in the following:	

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	alue (5%)/a	alue (1%)
1	55.21	50.89	385	61	6.481	3.52	3.89
2	52.99	43.42	228	83	4.031	3.51	3.89
3	51.81	41.08	220	136	4.094	3.51	3.89
4	50.67	38.79	148	57	2.509	3.51	3.88
5	50	38.07	140	20	2.364	3.51	3.88

For 5% significance level, there are 3 Potential Outliers 385, 228, 220

For 1% Significance Level, there are 3 Potential Outliers 385, 228, 220

Background Threshold Values

Background Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation	ProUCL 5.17/14/2020 1:22:06 PM
From File	ProUCL data_USGS Bkg_Top 5 cm and A horizon_LA.xls
Full Precision	OFF
Confidence Coefficient	95%
Coverage	95%
ent or Future K Observations	1
ber of Bootstrap Operations	2000

As (mg/kg)

General Statistics

Total Number of Observations	150	Number of Distinct Observations	86
Minimum	1	First Quartile	3.2
Second Largest	32.6	Median	5.05
Maximum	38.2	Third Quartile	7.375
Mean	5.988	SD	4.832
Coefficient of Variation	0.807	Skewness	3.415
Mean of logged Data	1.557	SD of logged Data	0.683

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 1.868

d2max (for USL) 3.343

Normal GOF Test

Shapiro Wilk Test Statistic	0.738	Normal GOF Test		
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.158	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.0727	Data Not Normal at 5% Significance Level		
Data Not Normal at 5% Significance Level				

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	15.01	90% Percentile (z)	12.18
95% UPL (t)	14.01	95% Percentile (z)	13.94
95% USL	22.14	99% Percentile (z)	17.23

Gamma GOF Test

A-D Test Statistic	0.659	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.764	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.0636	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.0774	Detected data appear Gamma Distributed at 5% Significance Level		
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics

k hat (MLE)	2.302	k star (bias corrected MLE)	2.261
Theta hat (MLE)	2.601	Theta star (bias corrected MLE)	2.649
nu hat (MLE)	690.7	nu star (bias corrected)	678.2
MLE Mean (bias corrected)	5.988	MLE Sd (bias corrected)	3.983

Background Statistics Assuming Gamma Distribution

13.56	90% Percentile	11.32
13.73	95% Percentile	13.67
15.02	99% Percentile	18.85
15.31		
28.48	95% HW USL	30.91
	13.73 15.02 15.31	13.73 95% Percentile 15.02 99% Percentile 15.31 95% Percentile

Back	ground Tl	hreshold Values	
	_		
	Lognorma 0.979	al GOF Test Shanira Wilk Lagnarmal COE Taat	
Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value	0.334	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0534	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0304	Data appear Lognormal at 5% Significance Level	
		at 5% Significance Level	
Background Statis	stics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	17	90% Percentile (z)	11.39
95% UPL (t)	14.76	95% Percentile (z)	14.6
95% USL	46.59	99% Percentile (z)	23.26
Nonparametric D	istributior	Free Background Statistics	
Data appear Gamr	na Distrib	uted at 5% Significance Level	
Nonparametric Uppe	r Limits fo	r Background Threshold Values	
Order of Statistic, r	146	95% UTL with 95% Coverage	14.5
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
		Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	14.5	95% BCA Bootstrap UTL with 95% Coverage	14.5
95% UPL	13.79	90% Percentile	10.71
90% Chebyshev UPL	20.53	95% Percentile	13.25
95% Chebyshev UPL 95% USL	27.12 38.2	99% Percentile	25.45
Therefore, one may use USL to estimate a BTV o and consists of observati The use of USL tends to provide a balanc	nly when tl ons collect e between	of BTV, especially when the sample size starts exceeding 20. The data set represents a background data set free of outliers and from clean unimpacted locations. In false positives and false negatives provided the data ansite observations need to be compared with the BTV.	
Seneral Statistics			
Total Number of Observations	150	Number of Distinct Observations	134
Minimum	64	First Quartile	207

Minimum	64	First Quartile	207
Second Largest	2530	Median	373
Maximum	2690	Third Quartile	624
Mean	429.3	SD	333.7
Coefficient of Variation	0.777	Skewness	3.749
Mean of logged Data	5.832	SD of logged Data	0.697

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 1.868 d2max (for USL) 3.343

Normal GOF Test

Shapiro Wilk Test Statistic **Normal GOF Test** 0.704 5% Shapiro Wilk P Value 0 Data Not Normal at 5% Significance Level Lilliefors Test Statistic **Lilliefors GOF Test** 0.138 Data Not Normal at 5% Significance Level 5% Lilliefors Critical Value 0.0727 Data Not Normal at 5% Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage 1053 90% Percentile (z) 856.9 95% UPL (t) 983.4 95% Percentile (z) 978.1 95% USL 1545 99% Percentile (z) 1206

HOU\Projects\0526033\DM\29970H(AppG-3).xlsx

Back	ground Th	nreshold Values	
	Gamma	GOF Test	
A-D Test Statistic	1.966	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.764	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.0888	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.0774	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gamma	a Distribut	ed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	2.328	k star (bias corrected MLE)	2.285
Theta hat (MLE)	184.4	Theta star (bias corrected MLE)	187.8
nu hat (MLE)	698.3	nu star (bias corrected)	685.6
MLE Mean (bias corrected)	429.3	MLE Sd (bias corrected)	284
Background Sta	tistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	971	90% Percentile	809.4
95% Hawkins Wixley (HW) Approx. Gamma UPL	988.3	95% Percentile	976.8
95% WH Approx. Gamma UTL with 95% Coverage	1075		1345
95% HW Approx. Gamma UTL with 95% Coverage	1102	33% recentile	1040
95% WH USL		95% HW USL	2225
Shapiro Wilk Test Statistic	Lognorma 0.944	II GOF Test Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value		Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0997	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0337	Data Not Lognormal at 5% Significance Level	
		t 5% Significance Level	
Pooleground Stati		ming Lognormal Distribution	
_		ming Lognormal Distribution	022 5
95% UTL with 95% Coverage		90% Percentile (z)	833.5
95% UPL (t) 95% USL	1086	95% Percentile (z) 99% Percentile (z)	1074 1727
95% USE	3506		1727
-		Free Background Statistics	
Data do not fol	low a Disc	ernible Distribution (0.05)	
	r Limits fo	r Background Threshold Values	
Order of Statistic, r	146	95% UTL with 95% Coverage	775
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
		Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	775	95% BCA Bootstrap UTL with 95% Coverage	775
95% UPL	739.1	90% Percentile	694.7
90% Chebyshev UPL	1434	95% Percentile	729.7
	1000		1 - 0 -

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

95% Chebyshev UPL 1889

95% USL 2690

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

99% Percentile 1705

Background Threshold Values

Cd (mg/kg)

	Conorol Ct		
Total Number of Observations	General St 150	Number of Missing Observations	0
Number of Distinct Observations	9	Number of Missing Observations	0
Number of Distinct Observations	9 73	Number of Non-Detects	77
Number of Distinct Detects	9	Number of Distinct Non-Detects	1
Minimum Detect	9 0.1	Minimum Non-Detect	0.1
Maximum Detect	1.1	Maximum Non-Detect	0.1
Variance Detected	0.0591	Percent Non-Detects	51.33%
Mean Detected	0.0391	SD Detected	0.243
Mean of Detected Logged Data	-1.291	SD of Detected Logged Data	0.646
Critical Values for	Backgroun	d Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.868	d2max (for USL)	3.343
Normal	GOF Test o	on Detects Only	
Shapiro Wilk Test Statistic	0.786	Normal GOF Test on Detected Observations Only	,
5% Shapiro Wilk P Value 1	.266E-14	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.25	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.104	Data Not Normal at 5% Significance Level	
Data Not N	ormal at 5%	Significance Level	
		tics Assuming Normal Distribution	
KM Mean	0.217	KM SD	0.207
95% UTL95% Coverage	0.603	95% KM UPL (t)	0.56
90% KM Percentile (z)	0.482	95% KM Percentile (z)	0.557
99% KM Percentile (z)	0.698	95% KM USL	0.908
DL/2 Substitution Backgro	ound Statist	ics Assuming Normal Distribution	
Mean	0.191	SD	0.223
95% UTL95% Coverage	0.607	95% UPL (t)	0.561
90% Percentile (z)	0.477	95% Percentile (z)	0.558
99% Percentile (z)	0.709	95% USL	0.936
DL/2 is not a recommended method	. DL/2 provi	ded for comparisons and historical reasons	
Commo COE To	sts on Dota	ated Observations Only	
A-D Test Statistic	2.18	cted Observations Only Anderson-Darling GOF Test	
5% A-D Critical Value	0.76	Data Not Gamma Distributed at 5% Significance Leve	1
K-S Test Statistic	0.70	Kolmogorov-Smirnov GOF	1
5% K-S Critical Value	0.177	Data Not Gamma Distributed at 5% Significance Leve	1
		-	1
Data Not Gamma	Distributed	l at 5% Significance Level	

Gamma Statistics on Detected Data Only

		······································	
k hat (MLE)	2.521	k star (bias corrected MLE)	2.426
Theta hat (MLE)	0.135	Theta star (bias corrected MLE)	0.14

- - nu star (bias corrected) 354.3
- 95% Percentile of Chisquare (2kstar) 10.84
- 0.155 nu hat (MLE) 368.1 MLE Mean (bias corrected) 0.34
 - MLE Sd (bias corrected) 0.218

Background Threshold Values

Gam	nma ROS St	atistics u	sing Imputed Non-Detects	
GROS may not be used wh	nen data set	has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of c	letects is sm	nall such a	is <1.0, especially when the sample size is small (e.g., <15-20)	
For such situation	s, GROS m	ethod may	yield incorrect values of UCLs and BTVs	
This	s is especial	ly true whe	en the sample size is small.	
	-	•	ay be computed using gamma distribution on KM estimates	
-	Minimum	0.01	Mean	0.173
	Maximum	1.1	Median	0.0531
	SD	0.235	CV	1.363
k	hat (MLE)	0.548	k star (bias corrected MLE)	0.542
Theta	hat (MLE)	0.315	Theta star (bias corrected MLE)	0.318
nu	hat (MLE)	164.5	nu star (bias corrected)	162.6
MLE Mean (bias	corrected)	0.173	MLE Sd (bias corrected)	0.234
95% Percentile of Chisqua	re (2kstar)	4.045	90% Percentile	0.459
95%	Percentile	0.644	99% Percentile	1.096
The following statisti	cs are com	puted usi	ng Gamma ROS Statistics on Imputed Data	
Upper Limits usi	ng Wilson H	- Hilferty (W	/H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.718	0.777	95% Approx. Gamma UPL 0.604	0.637
95% Gamma USL	1.968	2.548		
			meters using KM Estimates	
	Mean (KM)	0.217	SD (KM)	0.207
	iance (KM)	0.0427	SE of Mean (KM)	0.017
	k hat (KM)	1.099	k star (KM)	1.081
	u hat (KM)	329.6	nu star (KM)	324.4
	a hat (KM)	0.197	theta star (KM)	0.2
80% gamma perce	()	0.346	90% gamma percentile (KM)	0.489
95% gamma perce	entile (KM)	0.631	99% gamma percentile (KM)	0.96
The following statist			ing comme distribution and KM estimates	
-		-	ing gamma distribution and KM estimates /H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.572	0.571	95% Approx. Gamma UPL 0.512	0.509
95% KM Gamma Percentile	0.508	0.504	95% Gamma USL 1.129	1.197
3570 NW Gamma recentile	0.000	0.004	33 % Gamma OSE 1.123	1.137
Logn	ormal GOF	Test on D	Detected Observations Only	
Shapiro Wilk Approximate Te	st Statistic	0.915	Shapiro Wilk GOF Test	
5% Shapiro W	ilk P Value 4	4.3261E-5	Data Not Lognormal at 5% Significance Level	
Lilliefors Te	st Statistic	0.147	Lilliefors GOF Test	
5% Lilliefors Cri	tical Value	0.104	Data Not Lognormal at 5% Significance Level	
D	ata Not Log	gnormal a	t 5% Significance Level	
Peelsereund Leanermel DOO	Statistics A		Lognormal Distribution Using Imputed New Detects	
Background Lognormal ROS		-	Lognormal Distribution Using Imputed Non-Detects	0 171

-	-			
	Mean in Original Scale	0.195	Mean in Log Scale	-2.171
	SD in Original Scale	0 221	SD in Log Scale	1 071

	0.221	SD III EOg Scale	1.071
95% UTL95% Coverage	0.843	95% BCA UTL95% Coverage	0.8
95% Bootstrap (%) UTL95% Coverage	0.8	95% UPL (t)	0.675
90% Percentile (z)	0.45	95% Percentile (z)	0.664
99% Percentile (z)	1.377	95% USL	4.089

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean of Logged Data	-1.81	95% KM UTL (Lognormal)95% Coverage	0.578
KM SD of Logged Data	0.676	95% KM UPL (Lognormal)	0.502
KM Percentile Lognormal (z)	0.497	95% KM USL (Lognormal)	1.565

95%

Background Threshold Values

Background DL/2 Sta	tistics As	suming Lognormal Distribution	
Mean in Original Scale	0.191	Mean in Log Scale	-2.166
SD in Original Scale	0.223	SD in Log Scale	0.966
95% UTL95% Coverage	0.696	95% UPL (t)	0.57
90% Percentile (z)	0.395	95% Percentile (z)	0.561
99% Percentile (z)	1.084	95% USL	2.895
DL/2 is not a Recommended Method	l. DL/2 pro	ovided for comparisons and historical reasons.	
Nonparametric Di	stributior	n Free Background Statistics	
-		cernible Distribution (0.05)	
Nonparametric Upper Limits for BTV	/s(no dist	inction made between detects and nondetects)	
Order of Statistic, r	146	95% UTL with95% Coverage	0.8
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
Approximate Sample Size needed to achieve specified CC	181	95% UPL	0.8
95% USL	1.1	95% KM Chebyshev UPL	1.121
and consists of observation The use of USL tends to provide a balanc	ons collec e betweer	he data set represents a background data set free of outliers ted from clean unimpacted locations. In false positives and false negatives provided the data Insite observations need to be compared with the BTV.	
Cr (mg/kg)			
General Statistics			
Total Number of Observations	150	Number of Distinct Observations	64
Minimum	5	First Quartile	22
Second Largest	84	Median	33
Maximum	84	Third Quartile	52.75
Mean	37.67	SD	19.3
Coefficient of Variation	0.512	Skewness	0.637
Mean of logged Data	3.488	SD of logged Data	0.557
Critical Values for	Backgro	und Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.868	d2max (for USL)	3.343
	Normal	GOF Test	
Shaniro Wilk Test Statistic	0 018	Normal GOF Test	

Shapiro Wilk Test Statistic 0).918	Normal GOF Test
5% Shapiro Wilk P Value 5.049	9E-11	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0).126	Lilliefors GOF Test
5% Lilliefors Critical Value 0.	.0727	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage 73 73

90% Percentile (z) 62.41

3570 OTE WILL 3570 COVERAGE	10.10	30 /01 ercentile (Z)	02.41
95% UPL (t)	69.73	95% Percentile (z)	69.43
95% USL	102.2	99% Percentile (z)	82.58

Gamma GOF Test

A-D Test Statistic1.034Anderson-Darling Gamma GOF Test5% A-D Critical Value0.757Data Not Gamma Distributed at 5% Significance LevelK-S Test Statistic0.0655Kolmogorov-Smirnov Gamma GOF Test5% K-S Critical Value0.0769Detected data appear Gamma Distributed at 5% Significance LevelDetected data follow Appr. Gamma Distribution at 5% Significance Level

	Gamma	Statistics	
k hat (MLE)	3.707	k star (bias corrected MLE)	3.63
Theta hat (MLE)	10.16	Theta star (bias corrected MLE)	10.36
nu hat (MLE)	1112	nu star (bias corrected)	1091
MLE Mean (bias corrected)	37.67	MLE Sd (bias corrected)	19.75
Background Sta	tistics Ass	suming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	75.05	90% Percentile	64.16
95% Hawkins Wixley (HW) Approx. Gamma UPL	76.4	95% Percentile	74.92
95% WH Approx. Gamma UTL with 95% Coverage	81.67	99% Percentile	98
95% HW Approx. Gamma UTL with 95% Coverage	83.64		
95% WH USL	140.4	95% HW USL	151
	Lognorma	al GOF Test	
Shapiro Wilk Test Statistic	0.957	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	9.2132E-4	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0673	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0727	Data appear Lognormal at 5% Significance Level	
Data appear Approxi	mate Log	normal at 5% Significance Level	
Background Statis	stics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	92.55	90% Percentile (z)	66.78
95% UPL (t)	82.47	95% Percentile (z)	81.7
95% USL	210.4	99% Percentile (z)	119.5
Nonparametric D	istributior	Free Background Statistics	
Data appear Approximate	e Gamma I	Distribution at 5% Significance Level	
Nonparametric Uppe	r Limits fo	r Background Threshold Values	
Order of Statistic, r	146	95% UTL with 95% Coverage	78
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.87
		Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	78	95% BCA Bootstrap UTL with 95% Coverage	78
95% UPL	75.9	90% Percentile	66.1
	95.78	95% Percentile	75
90% Chebyshev UPL			
90% Chebyshev UPL 95% Chebyshev UPL	122.1	99% Percentile	82.04

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Total Number of Observations	150	Number of Distinct Observations	114
Minimum	4.4	First Quartile	12.73
Second Largest	80.6	Median	18.15
Maximum	90.8	Third Quartile	24.05
Mean	20.12	SD	11.61
Coefficient of Variation	0.577	Skewness	2.792
Mean of logged Data	2.878	SD of logged Data	0.484

Background Threshold Values Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.868 d2max (for USL) 3.343 **Normal GOF Test** Shapiro Wilk Test Statistic 0.794 **Normal GOF Test** 5% Shapiro Wilk P Value 0 Data Not Normal at 5% Significance Level **Lilliefors GOF Test** Lilliefors Test Statistic 0.146 5% Lilliefors Critical Value 0.0727 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level **Background Statistics Assuming Normal Distribution** 95% UTL with 95% Coverage 90% Percentile (z) 41.81 35 95% UPL (t) 39.4 95% Percentile (z) 39.22 95% USL 58.94 99% Percentile (z) 47.13 Gamma GOF Test A-D Test Statistic 1.111 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.756 Data Not Gamma Distributed at 5% Significance Level K-S Test Statistic 0.0779 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.0768 Data Not Gamma Distributed at 5% Significance Level Data Not Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) k star (bias corrected MLE) 4.217 4.137 Theta hat (MLE) 4.771 Theta star (bias corrected MLE) 4.863 nu hat (MLE) 1265 nu star (bias corrected) 1241 MLE Mean (bias corrected) 20.12 MLE Sd (bias corrected) 9.891 **Background Statistics Assuming Gamma Distribution** 95% Wilson Hilferty (WH) Approx. Gamma UPL 38.55 90% Percentile 33.37 95% Hawkins Wixley (HW) Approx. Gamma UPL 38.71 95% Percentile 38.65 95% WH Approx. Gamma UTL with 95% Coverage 41.77 99% Percentile 49.91 95% HW Approx. Gamma UTL with 95% Coverage 42.12 95% WH USL 69.98 95% HW USL 73.25 Lognormal GOF Test Shapiro Wilk Test Statistic 0.988 Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level 0.873 5% Shapiro Wilk P Value

Data appear Logitorniar at 5% Significance Leve	0.075
Lilliefors Lognormal GOF Test	0.0427
Data appear Lognormal at 5% Significance Leve	0.0727

Data appear Lognormal at 5% Significance Level

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	43.92	90% Percentile (z)	33.07
95% UPL (t)	39.73	95% Percentile (z)	39.43
95% USI	89.68	99% Percentile (z)	54 83

Lilliefors Test Statistic 5% Lilliefors Critical Value

Nonparametric Distribution Free Background Statistics

Data appear Lognormal at 5% Significance Level

Background Threshold Values

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	146	95% UTL with 95% Coverage	44.2
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
		Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	44.2	95% BCA Bootstrap UTL with 95% Coverage	44.2
95% UPL	39.62	90% Percentile	32.22
90% Chebyshev UPL	55.07	95% Percentile	37.73
95% Chebyshev UPL	70.9	99% Percentile	64.23
95% USL	90.8		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Hg (mg/kg)

	General Stat	istics	
Total Number of Observations	150	Number of Missing Observations	0
Number of Distinct Observations	14		
Number of Detects	143	Number of Non-Detects	7
Number of Distinct Detects	14	Number of Distinct Non-Detects	1
Minimum Detect	0.01	Minimum Non-Detect	0.01
Maximum Detect	6.24	Maximum Non-Detect	0.01
Variance Detected	0.401	Percent Non-Detects	4.667%
Mean Detected	0.114	SD Detected	0.634
Mean of Detected Logged Data	-3.34	SD of Detected Logged Data	0.874
Critical Values for	Background 1	Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.868	d2max (for USL)	3.343
Norma	GOF Test on	Detects Only	
Shapiro Wilk Test Statistic	0.143	Normal GOF Test on Detected Observations Only	/
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.482	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0745	Data Not Normal at 5% Significance Level	
Data Not N	ormal at 5% S	ignificance Level	
Kaplan Meier (KM) Backgr	ound Statistic	s Assuming Normal Distribution	
KM Mean	0.109	KM SD	0.617
95% UTL95% Coverage	1.261	95% KM UPL (t)	1.134
90% KM Percentile (z)	0.9	95% KM Percentile (z)	1.124
90% Kivi Percentile (Z)			

DL/2 Substitution Background Statistics Assuming Normal Distribution

Mean	0.109	SD	0.619
95% UTL95% Coverage	1.265	95% UPL (t)	1.137
90% Percentile (z)	0.902	95% Percentile (z)	1.127
99% Percentile (z)	1.549	95% USL	2.178

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

Background Threshold Values Gamma GOF Tests on Detected Observations Only A-D Test Statistic 26.29 Anderson-Darling GOF Test 5% A-D Critical Value Data Not Gamma Distributed at 5% Significance Level 0.816 K-S Test Statistic 0.347 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.0827 Data Not Gamma Distributed at 5% Significance Level Data Not Gamma Distributed at 5% Significance Level Gamma Statistics on Detected Data Only k hat (MLE) 0.538 k star (bias corrected MLE) 0.531 Theta hat (MLE) Theta star (bias corrected MLE) 0.212 0.215 nu hat (MLE) 153.8 nu star (bias corrected) 151.9 MLE Mean (bias corrected) 0.114 MLE Sd (bias corrected) 0.156 95% Percentile of Chisquare (2kstar) 3.994 **Gamma ROS Statistics using Imputed Non-Detects** GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 0.01 Mean 0.109 Maximum 6.24 Median 0.03 SD 0.619 CV 5.672 k star (bias corrected MLE) k hat (MLE) 0.532 0.525 Theta hat (MLE) 0.205 Theta star (bias corrected MLE) 0.208 nu hat (MLE) 159.5 nu star (bias corrected) 157.6 MLE Mean (bias corrected) 0.109 MLE Sd (bias corrected) 0.151 95% Percentile of Chisquare (2kstar) 3.966 90% Percentile 0.292 95% Percentile 0.412 99% Percentile 0.705 The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WΗ ΗW WΗ ΗW 95% Approx. Gamma UTL with 95% Coverage 0.307 0.253 95% Approx. Gamma UPL 0.259 0.213 95% Gamma USL 0.824 0.722 **Estimates of Gamma Parameters using KM Estimates**

Mean (KM)	0.109	SD (KM)	0.617
Variance (KM)	0.381	SE of Mean (KM)	0.0505
k hat (KM)	0.0313	k star (KM)	0.0351
nu hat (KM)	9.389	nu star (KM)	10.53
theta hat (KM)	3.487	theta star (KM)	3.108
80% gamma percentile (KM)	0.00312	90% gamma percentile (KM)	0.0919
95% gamma percentile (KM)	0.481	99% gamma percentile (KM)	2.692

The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods

	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.305	0.252	95% Approx. Gamma UPL	0.258	0.212
95% KM Gamma Percentile	0.255	0.21	95% Gamma USL	0.819	0.717

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.803 Shapiro Wilk GOF Test 5% Shapiro Wilk P Value Data Not Lognormal at 5% Significance Level 0 Lilliefors Test Statistic 0.144 **Lilliefors GOF Test** 5% Lilliefors Critical Value 0.0745 Data Not Lognormal at 5% Significance Level Data Not Lognormal at 5% Significance Level

Background Threshold Values Background Lognormal ROS Statistics Assuming Lognormal Distribution Using Imputed Non-Detects Mean in Log Scale Mean in Original Scale 0.109 -3.427 SD in Original Scale 0.619 SD in Log Scale 0.942 95% UTL95% Coverage 95% BCA UTL95% Coverage 0.189 0.0955 95% Bootstrap (%) UTL95% Coverage 95% UPL (t) 0.155 0.11 90% Percentile (z) 0.109 95% Percentile (z) 0.153 99% Percentile (z) 0.291 95% USL 0.757 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Mean of Logged Data -3.399 95% KM UTL (Lognormal)95% Coverage 0.177 KM SD of Logged Data 95% KM UPL (Lognormal) 0.891 0.147 95% KM USL (Lognormal) 95% KM Percentile Lognormal (z) 0.145 0.657 Background DL/2 Statistics Assuming Lognormal Distribution Mean in Original Scale 0.109 Mean in Log Scale -3.431 SD in Original Scale 0.619 SD in Log Scale 0.948 95% UTL95% Coverage 0.19 95% UPL (t) 0.156 90% Percentile (z) 0.109 95% Percentile (z) 0.154 99% Percentile (z) 0.294 95% USL 0.77 DL/2 is not a Recommended Method. DL/2 provided for comparisons and historical reasons. **Nonparametric Distribution Free Background Statistics** Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) of Statiatia ~ . . . 110

0.11	95% UTL with 95% Coverage	146	Order of Statistic, r
0.874	Approximate Actual Confidence Coefficient achieved by UTL	1.537	Approx, f used to compute achieved CC
0.09	95% UPL	181	Approximate Sample Size needed to achieve specified CC
2.807	95% KM Chebyshev UPL	6.24	95% USL

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Se (mg/kg)

	General Statistics		
Total Number of Observations	150	Number of Missing Observations	0
Number of Distinct Observations	11		
Number of Detects	97	Number of Non-Detects	53
Number of Distinct Detects	11	Number of Distinct Non-Detects	1
Minimum Detect	0.2	Minimum Non-Detect	0.2
Maximum Detect	1.2	Maximum Non-Detect	0.2
Variance Detected	0.0641	Percent Non-Detects	35 33%

	0.0041		00.0070
Mean Detected	0.511	SD Detected	0.253
Mean of Detected Logged Data	-0.782	SD of Detected Logged Data	0.467

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 1.868

d2max (for USL) 3.343

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic0.857Normal GOF Test on Detected Observations Only5% Shapiro Wilk P Value1.499E-13Data Not Normal at 5% Significance LevelLilliefors Test Statistic0.237Lilliefors GOF Test5% Lilliefors Critical Value0.0902Data Not Normal at 5% Significance Level

Background Threshold Values

Data Not Normal at 5% Significance Level

Page 12 of 17

HOU\Projects\0526033\DM\29970H(AppG-3).xlsx

> **Background Threshold Values** Kaplan Meier (KM) Background Statistics Assuming Normal Distribution KM SD KM Mean 0.401 0.251 95% UTL95% Coverage 0.871 95% KM UPL (t) 0.819 95% KM Percentile (z) 90% KM Percentile (z) 0.724 0.815 99% KM Percentile (z) 0.986 95% KM USL 1.242 DL/2 Substitution Background Statistics Assuming Normal Distribution 0.366 SD 0.283 Mean 95% UTL95% Coverage 0.895 95% UPL (t) 0.836 90% Percentile (z) 0.729 95% Percentile (z) 0.832 99% Percentile (z) 1.025 95% USL 1.313 DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons Gamma GOF Tests on Detected Observations Only A-D Test Statistic 2.705 Anderson-Darling GOF Test 5% A-D Critical Value 0.755 Data Not Gamma Distributed at 5% Significance Level K-S Test Statistic 0.205 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.0911 Data Not Gamma Distributed at 5% Significance Level Data Not Gamma Distributed at 5% Significance Level Gamma Statistics on Detected Data Only k hat (MLE) k star (bias corrected MLE) 4.672 4.534 Theta hat (MLE) 0.109 Theta star (bias corrected MLE) 0.113 nu hat (MLE) 906.4 nu star (bias corrected) 879.7 MLE Mean (bias corrected) 0.511 MLE Sd (bias corrected) 0.24 95% Percentile of Chisquare (2kstar) 17.02 **Gamma ROS Statistics using Imputed Non-Detects** GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.358
Maximum	1.2	Median	0.3
SD	0.293	CV	0.82
k hat (MLE)	1.007	k star (bias corrected MLE)	0.991
Theta hat (MLE)	0.356	Theta star (bias corrected MLE)	0.361
nu hat (MLE)	302	nu star (bias corrected)	297.3
MLE Mean (bias corrected)	0.358	MLE Sd (bias corrected)	0.36
95% Percentile of Chisquare (2kstar)	5.956	90% Percentile	0.826
95% Percentile	1.076	99% Percentile	1.656
The following statistics are com	nutod usin	a Gamma ROS Statistics on Imputed Data	

The following statistics are computed using Gamma ROS Statistics on Imputed Data

Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods

WH HW

WH HW

		1100			1 1 V V
95% Approx. Gamma UTL with 95% Coverage	1.223	1.361	95% Approx. Gamma UPL	1.066	1.163
95% Gamma USL	2.796	3.588			

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.401	SD (KM)	0.251
Variance (KM)	0.0632	SE of Mean (KM)	0.0206
k hat (KM)	2.549	k star (KM)	2.502
nu hat (KM)	764.6	nu star (KM)	750.6
theta hat (KM)	0.157	theta star (KM)	0.16
80% gamma percentile (KM)	0.585	90% gamma percentile (KM)	0.741
95% gamma percentile (KM)	0.888	99% gamma percentile (KM)	1.211

HOU\Projects\0526033\DM\29970H(AppG-3).xlsx

Page 13 of 17

Background Threshold Values					
-	-	ing gamma distribution and KM estimates			
		VH) and Hawkins Wixley (HW) Methods			
WH	HW	WH	HW		
95% Approx. Gamma UTL with 95% Coverage 0.9	0.909	95% Approx. Gamma UPL 0.824	0.827		
95% KM Gamma Percentile 0.818	0.821	95% Gamma USL 1.587	1.676		
Lognormal GOF	Test on D	Detected Observations Only			
Shapiro Wilk Approximate Test Statistic	0.924	Shapiro Wilk GOF Test			
5% Shapiro Wilk P Value	7.3138E-6				
Lilliefors Test Statistic	0.18	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.0902	Data Not Lognormal at 5% Significance Level			
Data Not Lo	gnormal a	t 5% Significance Level			
Background Lognormal ROS Statistics	Assuming	Lognormal Distribution Using Imputed Non-Detects			
Mean in Original Scale	0.386	Mean in Log Scale	-1.177		
SD in Original Scale	0.266	SD in Log Scale	0.688		
95% UTL95% Coverage	1.113	95% BCA UTL95% Coverage	1		
95% Bootstrap (%) UTL95% Coverage	1	95% UPL (t)	0.965		
90% Percentile (z)	0.744	95% Percentile (z)	0.955		
99% Percentile (z)	1.526	95% USL	3.071		
Statistics using KM estimates o	n Logged	Data and Assuming Lognormal Distribution			
KM Mean of Logged Data	-1.074	95% KM UTL (Lognormal)95% Coverage	0.945		
KM SD of Logged Data	0.545	95% KM UPL (Lognormal)	0.844		
95% KM Percentile Lognormal (z)	0.837	95% KM USL (Lognormal)	2.109		
Background DL/2 St	atistics As	suming Lognormal Distribution			
Mean in Original Scale	0.366	Mean in Log Scale	-1.319		
SD in Original Scale	0.283	SD in Log Scale	0.82		
95% UTL95% Coverage	1.238	95% UPL (t)	1.044		
90% Percentile (z)	0.765	95% Percentile (z)	1.031		
99% Percentile (z)	1.803	95% USL	4.151		
DL/2 is not a Recommended Metho	d. DL/2 pro	ovided for comparisons and historical reasons.			
Nonparametric D	istributior	n Free Background Statistics			
Data do not fo	llow a Dise	cernible Distribution (0.05)			
Nonparametric Upper Limits for BT	Vs(no dist	inction made between detects and nondetects)			
Order of Statistic, r	146	95% UTL with95% Coverage	1		
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874		
Approximate Sample Size needed to achieve specified CC	181	95% UPL	1		
95% USL	1.2	95% KM Chebyshev UPL	1.501		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Page 14 of 17

HOU\Projects\0526033\DM\29970H(AppG-3).xlsx

Background Threshold Values

Sr (mg/kg)

General Statistics

Total Number of Observations	150	Number of Distinct Observations	131
Minimum	7	First Quartile	26.15
Second Largest	275	Median	76.9
Maximum	290	Third Quartile	131.8
Mean	81.84	SD	61.29
Coefficient of Variation	0.749	Skewness	0.706
Mean of logged Data	4.039	SD of logged Data	0.939

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 1.868

d2max (for USL) 3.343

Normal GOF Test

Shapiro Wilk Test Statistic	0.898	Normal GOF Test
5% Shapiro Wilk P Value 1	.332E-15	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.162	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0727	Data Not Normal at 5% Significance Level
Data Not N	ormal at 5%	6 Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Cove	erage 196.3	90% Percentile (z)	160.4
95% UF	PL (t) 183.6	95% Percentile (z)	182.6
95% (USL 286.7	99% Percentile (z)	224.4

Gamma GOF Test

A-D Test Statistic	3.313	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.77	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.128	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.078	Data Not Gamma Distributed at 5% Significance Level
Data Not Gamma	Distribute	d at 5% Significance Level

Gamma Statistics

1.488	k star (bias corrected MLE)	1.514	k hat (MLE)
54.99	Theta star (bias corrected MLE)	54.05	Theta hat (MLE)
446.4	nu star (bias corrected)	454.2	nu hat (MLE)
67.09	MLE Sd (bias corrected)	81.84	MLE Mean (bias corrected)

Background Statistics Assuming Gamma Distribution

95% Wilson Hilferty (WH) Approx. Gamma UPL	214	90% Percentile	170.9
95% Hawkins Wixley (HW) Approx. Gamma UPL	223	95% Percentile	213.7
95% WH Approx. Gamma UTL with 95% Coverage	241.3	99% Percentile	310.6
95% HW Approx. Gamma UTL with 95% Coverage	254.7		
95% WH USL	504.7	95% HW USL	587.8

Lognormal GOF Test

 Shapiro Wilk Test Statistic
 0.912
 Shapiro Wilk Lognormal GOF Test

 5% Shapiro Wilk P Value
 2.240E-12
 Data Not Lognormal at 5% Significance Level

 Lilliefors Test Statistic
 0.141
 Lilliefors Lognormal GOF Test

 5% Lilliefors Critical Value
 0.0727
 Data Not Lognormal at 5% Significance Level

 Data Not Lognormal at 5% Significance Level
 Data Not Lognormal at 5% Significance Level

Background Statistics assuming Lognormal Distribution

 95% UTL with
 95% Coverage
 328.1
 90% Percentile (z)
 189.2

 95% UPL (t)
 270.1
 95% Percentile (z)
 266.1

 95% USL
 1311
 99% Percentile (z)
 504.6

Background Threshold Values

Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	146	95% UTL with 95% Coverage	203
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.874
		Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	203	95% BCA Bootstrap UTL with 95% Coverage	203
95% UPL	181.5	90% Percentile	159.1
90% Chebyshev UPL	266.3	95% Percentile	179.2
95% Chebyshev UPL	349.9	99% Percentile	250.5
95% USL	290		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Zn (mg/kg)

General Statistics

Total Number of Observations	150	Number of Distinct Observations	86
Minimum	4	First Quartile	16.25
Second Largest	228	Median	39
Maximum	385	Third Quartile	78.75
Mean	55.21	SD	51.06
Coefficient of Variation	0.925	Skewness	2.454
Mean of logged Data	3.589	SD of logged Data	0.985

Critical Values for Background Threshold Values (BTVs)

1.868

Tolerance Factor K (For UTL)

d2max (for USL) 3.343

Normal GOF Test

Shapir	o Wilk Test Statistic	0.811	Normal GOF Test	
5% S	Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Li	lliefors Test Statistic	0.158	Lilliefors GOF Test	
5% Lil	liefors Critical Value	0.0727	Data Not Normal at 5% Significance Level	
	Data Not Normal at 5% Significance Level			

Data Not Normal at 5% Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	150.6	90% Percentile (z)	120.6
95% UPL (t)	140	95% Percentile (z)	139.2
95% USL	225.9	99% Percentile (z)	174

Gamma GOF Test

A-D Test Statistic1.524Anderson-Darling Gamma GOF Test5% A-D Critical Value0.775Data Not Gamma Distributed at 5% Significance LevelK-S Test Statistic0.0841Kolmogorov-Smirnov Gamma GOF Test5% K-S Critical Value0.0783Data Not Gamma Distributed at 5% Significance LevelData Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.328	k star (bias corrected MLE)	1.306
Theta hat (MLE)	41.58	Theta star (bias corrected MLE)	42.28
nu hat (MLE)	398.3	nu star (bias corrected)	391.7

HOU\Projects\0526033\DM\29970H(AppG-3).xlsx

Page 16 of 17

	ground r	hreshold Values	
MLE Mean (bias corrected)	55.21	MLE Sd (bias corrected)	48.3
Background Sta	tistics As	suming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	149.4	90% Percentile	119
95% Hawkins Wixley (HW) Approx. Gamma UPL	154.8	95% Percentile	150.7
95% WH Approx. Gamma UTL with 95% Coverage	169.4	99% Percentile	223
95% HW Approx. Gamma UTL with 95% Coverage	177.9		
95% WH USL	365.8	95% HW USL	425.3
	Lognorma	al GOF Test	
Shapiro Wilk Test Statistic	0.949	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	5.4134E-5	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.11	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0727	Data Not Lognormal at 5% Significance Level	
Data Not Lo	gnormal a	t 5% Significance Level	
Background Stati	stics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	228.1	90% Percentile (z)	128
95% UPL (t)	186	95% Percentile (z)	183.1
95% USL	976	99% Percentile (z)	358.4
Nonparametric D	istributio	n Free Background Statistics	
Data do not fo	llow a Dise	cernible Distribution (0.05)	
Nonparametric Uppe	r Limits fo	or Background Threshold Values	
Order of Statistic, r	146	95% UTL with 95% Coverage	140
Approx, f used to compute achieved CC	1.537	Approximate Actual Confidence Coefficient achieved by UTL	0.87
		Approximate Sample Size needed to achieve specified CC	181
95% Percentile Bootstrap UTL with 95% Coverage	140	95% BCA Bootstrap UTL with 95% Coverage	140
95% UPL	134.5	90% Percentile	118.1
90% Chebyshev UPL	208.9	95% Percentile	130.9
95% Chebyshev UPL	278.5	99% Percentile	224.1
95% USL	385		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Page 17 of 17

HOU\Projects\0526033\DM\29970H(AppG-3).xlsx

APPENDIX H 95% UCL CALCULATIONS

15 March 2022

Area Area Purplin Area	Sampling Area	Preliminary AOI	Sample ID	Depth (ft)	Date	Sampler	Barium (mg/kg-dry)	D_Barium (mg/kg-dry)
Area 4 Area 4 Prelim AOI H-8R 0-2 111/12021 ERM NA NA Area 4 Area 4 Prelim AOI H-8N 0-2 111/12021 ERM 1880 1 Area 4 Area 4 Prelim AOI H-8N 0-2 111/12021 ECM 3330 1 Area 4 Area 4 Prelim AOI H-8N 0-2 111/12021 ECM 3600 1 Area 4 Area 4 Prelim AOI H-8N 0-2 111/12021 ECM 2500 1 Area 4 Area 4 Prelim AOI H-8N 0-2 111/12021 ECM 2500 1 Area 4 Area 4 Prelim AOI H-16 0-2 111/2021 ECM 4390 1 Area 4 Area 4 Prelim AOI H-16 0-2 111/2021 ECM 4390 1 Area 4 Area 4 Prelim AOI H-16 0-2 111/2021 ECM 4300 1 Area 5 Area 5 Prelim AOI H-16 0-2 111/2021 ECM								1
Area 4 Area 4 Prelim AOI H=N 0-2 11/11/2021 ICON 3330 1 Area 4 Area 4 Prelim AOI H=NN 0-2 11/11/2021 ICON 3000 1 Area 4 Area 4 Prelim AOI H=SN 0-2 11/11/2021 ICON 3000 1 Area 4 Area 4 Prelim AOI H=SN 0-2 11/11/2021 ICON 2530 1 Area 4 Area 4 Prelim AOI H=SN 0-2 11/11/2021 ICON 2530 1 Area 4 Area 4 Prelim AOI H=6N 0-2 11/12021 ICON 4390 1 Area 4 Area 4 Prelim AOI H=16 0-2 11/12021 ICON 4390 1 Area 4 Area 4 Prelim AOI H=16 0-2 11/12021 ICON 2530 1 Area 5 Frelim AOI H=16 0-2 11/12021 ICON 2530 1 Area 5 Frelim AOI H=18 0-4 12/12/2019 ICON <td></td> <td></td> <td></td> <td>0-2</td> <td></td> <td>ERM</td> <td></td> <td>NA</td>				0-2		ERM		NA
Area 4 Area 4 Prelim AOI H=8N2 0-2 11/1/2022 ERM 2520 1 Area 4 Area 4 Prelim AOI H=8S 0-2 11/1/2021 ERM 2680 1 Area 4 Area 4 Prelim AOI H=8S 0-2 11/1/1/2021 ECN 2530 1 Area 4 Area 4 Prelim AOI H=8W 0-2 11/1/1/2021 ECN 2540 1 Area 4 Area 4 Prelim AOI H=4W 0-2 11/1/1/2021 ECN 2540 1 Area 4 Area 4 Prelim AOI H=16 0-2 11/1/2021 ECN 4300 1 Area 4 Area 4 Prelim AOI H=16 0-2 11/1/2021 ECN 4300 1 Area 5 Area 6 Prelim AOI H=18 0-2 12/1/3/2021 ERM NA NA Area 5 Area 5 Frelim AOI H=18 0-4 12/2/2021 ICON 14/40 1 Area 5 Area 5 Frelim AOI H=18 0-4	Area 4	Area 4 Prelim AOI	H-8N	0-2	11/11/2021	ERM	1890	1
Area 4 Area 4 Prelim AOI H=8N2 0-2 11/11/2021 ECNN 3000 1 Area 4 Area 4 Prelim AOI H=8S 0-2 11/11/2021 ECNN 2530 1 Area 4 Area 4 Prelim AOI H=8W 0-2 11/11/2021 ECNN 2530 1 Area 4 Area 4 Prelim AOI H=8W 0-2 11/11/2021 ECNN 2540 1 Area 4 Area 4 Prelim AOI H=16 0-2 11/202019 ECN 4380 1 Area 4 Area 4 Prelim AOI H=16 0-2 11/52021 ECN 7.1 1 1 Area 4 Area 4 Prelim AOI H=16 0-2 11/52021 ECN 21.0 1 Area 5 1	Area 4	Area 4 Prelim AOI			11/11/2021			1
Ares 4 Ares 4 Prelim AOI H-85 O-2 111112021 ERM 2880 1 Ares 4 Ares 4 Prelim AOI H-85 O-2 111112021 ERM 649 1 Ares 4 Ares 4 Prelim AOI H-8W O-2 111112021 ERM 649 1 Ares 4 Ares 4 Prelim AOI H-16 O-2 111202019 ERM 221 1 Ares 4 Ares 4 Prelim AOI H-16 O-2 111202019 ECN 4390 1 Ares 4 Ares 4 Prelim AOI H-16R O-2 111202019 ECN 4390 1 Ares 5 Ares 5 Prelim AOI H-17 O-2 10273021 ERM NA NA Ares 5 Ares 5 Prelim AOI H-18 O-1 12370221 ECN NA NA Ares 5 Ares 5 Prelim AOI H-18R O-1 12370221 ECN NA NA Ares 5 Ares 5 Prelim AOI H-18R O-4 12370221 ECN	Area 4	Area 4 Prelim AOI						1
Area 4 Area 4 Prelim ADI H-8S O-22 111112021 ECON 2530 1 Area 6 Area 4 Prelim ADI H-8W O-22 111112021 ERM 649 1 Area 6 Area 4 Prelim ADI H-16 O-2 11202019 ECON 2540 1 Area 4 Area 4 Prelim ADI H-16R O-2 117202019 ECON 4390 1 Area 4 Area 4 Prelim ADI H-16R O-2 117202019 ECON 2400 1 Area 5 Area 5 Prelim ADI H-16R O-2 11752021 ECON 2400 1 Area 5 Area 5 Prelim ADI H-18 O-2 12732021 ECM NA NA Area 5 Area 5 Prelim ADI H-18R O-4 112732021 ECON NA NA Area 5 Area 5 Prelim ADI H-18R O-4 12732021 ECON NA NA Area 5 Area 5 Prelim ADI H-18R O-4 12732021 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>								1
Area 4 Area 4 Prelim ADI H-SW Q-2 111112021 ERM 649 1 Area 4 Area 4 Prelim ADI H-HS Q-2 111202019 ERM 221 1 Area 4 Area 4 Prelim ADI H-H6 Q-2 111202019 ERM 221 1 Area 4 Area 4 Prelim ADI H-H6 Q-2 11152021 ERM 71.1 1 Area 5 Area 5 Prelim ADI H-H6 Q-2 11152021 ECON 2160 1 Area 5 Area 5 Prelim ADI H-H8 Q-2 12132021 ECON 8300 1 Area 5 Area 5 Prelim ADI H-H8 Q-4 12732021 ECM NA NA Area 5 Area 5 Prelim ADI H-H8 Q-4 12732021 ECM NA NA Area 5 Area 5 Prelim ADI H-H8 Q-4 12732021 ECM NA NA								1
Area 6 Area 4 Prelim AOI H-8W 0-2 1111/120211 CON 2540 1 Area 4 Area 4 Prelim AOI H-16 0-2 11/202019 ERM 221 1 Area 4 Area 4 Prelim AOI H-16 0-2 11/15/2021 ERM 71.1 1 Area 4 Area 4 Prelim AOI H-16R 0-2 11/15/2021 ERM 71.1 1 Area 5 Area 5 Prelim AOI H-18 0-2 12/13/2021 ECON 2490 1 Area 5 Area 5 Prelim AOI H-18 0-4 11/23/2021 ECON 839 1 Area 5 Area 5 Prelim AOI H-18 0-4 12/3/2021 ECON NA NA Area 5 Area 5 Prelim AOI H-18 0-4 12/3/2021 ECON NA NA Area 5 Area 5 Prelim AOI H-18 1-2 12/3/2021 ECON NA NA Area 5 Area 5 Prelim AOI H-18R 1-2 12/3/2021	-							•
Area Area Prelin ADI H-16 O-2 11/202019 ERM 221 1 Area <								1
Area 4 Area 4 Preim AOI H-16 0-2 11/15/2021 ICON 4390 1 Area 4 Area 4 Preim AOI H-16R 0-2 11/15/2021 ICON 2160 1 Area 5 Area 5 Preim AOI H-1 0-2 11/15/2021 ICON 2940 1 Area 5 Area 5 Preim AOI H-1.1 0-2 12/13/2021 ERM NA NA Area 5 Area 5 Preim AOI H-18 0-2 12/13/2021 ICON 6330 1 Area 5 Area 5 Preim AOI H-18 0-4 11/2/3/2021 ICON NA NA Area 5 Area 5 Preim AOI H-18 0-4 12/3/2021 ERM NA NA Area 5 Area 5 Preim AOI H-18 1-2 12/3/2021 ERM NA NA Area 5 Area 5 Preim AOI H-18 1-2 12/3/2021 ERM NA NA Area 5 Area 5 Preim AOI H-18 2-3 12/3/2021 ERM <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>								1
Area 4 Area 4 Prelim AOI H-16R 0-2 11/15/2021 ERM 71.1 1 Area 5 Area 5 Prelim AOI H-16R 0-2 11/15/2021 ICON 2160 1 Area 5 Area 5 Prelim AOI H-1R 0-2 12/13/2021 ICON 2940 1 Area 5 Area 5 Prelim AOI H-1R 0-2 12/13/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18 0-4 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 0-4 12/3/2021 ECM NA NA Area 5 Area 5 Prelim AOI H-18R 1-2 12/3/2021 ECM NA NA Area 5 Area 5 Prelim AOI H-18R 1-2 12/3/2021 ECM NA NA Area 5 Area 5 Prelim AOI H-18R 1-2 12/3/2021 ECM NA NA Area 5 Area 5 Prelim AOI H-19R 2-3 12/3/2021 <								•
Area 4 Area 5 Area 5<								•
Area 5 Area 5 Prelim AQI H-1 0-2 10/22/2019 ICON 2940 1 Area 5 Area 5 Prelim AQI H-1R 0-2 12/13/2021 ICON 1940 1 Area 5 Area 5 Prelim AQI H-1R 0-2 12/13/2021 ICON 6330 1 Area 5 Area 5 Prelim AQI H-18 0-1 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AQI H-18R 0-1 12/3/2021 ICON NA NA Area 5 Area 5 Prelim AQI H-18R 0-4 12/3/2021 ICON NA NA Area 5 Area 5 Prelim AQI H-18R 1-2 12/3/2021 ICON NA NA Area 5 Area 5 Prelim AQI H-18R 1-2 12/3/2021 ICON NA NA Area 5 Area 5 Prelim AQI H-19R 2-2 12/3/2021 ICON NA NA Area 5 Area 5 Prelim AQI H-19R 0-2 12/14/2021								-
Area 5 Area 5 Prelim AOI H-1R 0-2 12/13/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-1R 0-4 11/21/2019 ICON 1940 1 Area 5 Area 5 Prelim AOI H-18 0-4 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 0-4 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 0-4 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 1-2 12/3/2021 ERM NA NA Area 5 Area 5 Area 5 Prelim AOI H-18R 2-3 12/3/2021 ICON NA NA Area 5 Area 5 Area 5 Prelim AOI H-18R 2-3 12/3/2021 ICON NA NA Area 5 Area 5 Area 5 Area 5 Area 5 Area 5 Area 7								1
Area 5 Area 5 Prelim AOI H-18 0-2 12/13/2021 ICON 6390 1 Area 5 Area 5 Area 5 Prelim AOI H-18 0-1 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 0-1 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 0-4 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 1-2 12/3/2021 ERM NA NA Area 5 Area 5 Area 5 Prelim AOI H-18R 1-2 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 2-3 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 2-3 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-19R 0-2 12/14/2021 ERM								
Area 5 Area 5 Prelim AOI H-18 0-4 112/12/019 ICON 6390 1 Area 5 Area 5 Area 5 Prelim AOI H-18R 0-1 12/3/2021 ERM NA NA Area 5 Area 5 Area 5 Prelim AOI H-18R 0-4 12/3/2021 ERM NA NA Area 5 Area 5 Area 5 Prelim AOI H-18R 1-2 12/3/2021 ICON NA NA Area 5 Area 5 Frelim AOI H-18R 1-2 12/3/2021 ICON NA NA Area 5 Area 5 Frelim AOI H-18R 2-3 12/3/2021 ICON NA NA Area 5 Area 5 Frelim AOI H-18R 2-3 12/3/2021 ICON NA NA Area 5 Area 5 Frelim AOI H-19R 0-2 12/14/2021 ICON NA NA Area 5 Area 5 Frelim AOI H-19R 0-2 12/14/2								
Area 5 Area 5<								•
Area 5 Area 5 Prelim A01 H-18R 0.1 12/3/2021 ECN NA NA Area 5 Area 5 Prelim A01 H-18R 0.4 12/3/2021 ECM NA NA Area 5 Area 5 Prelim A01 H-18R 1.2 12/3/2021 ECM NA NA Area 5 Area 5 Prelim A01 H-18R 1.2 12/3/2021 ECON NA NA Area 5 Area 5 Prelim A01 H-18R 1.2 12/3/2021 ECON NA NA Area 5 Area 5 Prelim A01 H-18R 2.3 12/3/2021 ECON NA NA Area 5 Area 5 Prelim A01 H-19R 0.2 12/14/2021 ECM NA NA Area 5 Area 5 Prelim A01 H-19R 0.2 12/14/2021 ECM N2 1 Area 6 Area 5 Prelim A01 H-19SW 0.2 12/14/2021 ECM NA NA Area 6 Area 6 Prelim A01 H-24 0.2 4/6/2021 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Area 5 Area 5 Prelim AOI H-18R 0.4 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 0.4 12/3/2021 ICON 472 1 Area 5 Area 5 Prelim AOI H-18R 1.2 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 1.2 12/3/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-18R 2.3 12/3/2021 ICON NA NA Area 5 Area 5 Prelim AOI H-19R 0.2 12/14/2021 ECON 3750 1 Area 5 Area 5 Prelim AOI H-19R 0.2 12/14/2021 ECON 4530 1 Area 5 Area 5 Prelim AOI H-19R 0.2 12/14/2021 ECON 4530 1 Area 6 Area 6 Prelim AOI H-19SW 0.2 12/14/2021 ECON 4550 1 Area 6 Area 6 Prelim AOI H-24 0.2 11/12/2021								
Area 5 Area 5 Prelim A01 H-18R 0.4 12/3/2021 ECN A72 1 Area 5 Area 5 Prelim A01 H-18R 1.2 12/3/2021 ECM NA NA Area 5 Area 5 Prelim A01 H-18R 1.2 12/3/2021 ECM NA NA Area 5 Area 5 Prelim A01 H-18R 2.3 12/3/2021 ECON NA NA Area 5 Area 5 Prelim A01 H-19R 0.2 12/14/2021 ECM NA NA Area 5 Area 5 Prelim A01 H-19R 0.2 12/14/2021 ECM NA NA Area 5 Area 5 Prelim A01 H-19R 0.2 12/14/2021 ECM 702 1 Area 5 Area 5 Prelim A01 H-24 0.2 12/14/2021 ECM 702 1 Area 6 Area 6 Prelim A01 H-24 0.2 11/12/2021 ECM 355 1 Area 6 Area 6 Prelim A01 H-24R 0.2 11/12/2021 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Area 5 Area 6 Area 6<								
Area 5 Area 6 Area 6 H-198W 0-2 12/14/2021 ICON 4530 1 Area 6 Area 6 Prelim AOI H-198W 0-2 12/14/2021 ICON 4180 1 Area 6 Area 6 Prelim AOI H-244 0-2 11/12/2021 ERM 100 1 Area 6 Area 6 Prelim AOI H-244 0-2 11/11/2021 ICON								
Area 5 Area 6 Area 6<								
Area 5 Area 5 Prelim AOI H-18R 2-3 12/3/2021 ICON NA NA Area 5 Area 5 Prelim AOI H-19R 0-2 11/2/2021 ICON 3750 1 Area 5 Area 5 Prelim AOI H-19R 0-2 12/14/2021 ICON 4530 1 Area 5 Area 5 Prelim AOI H-19R 0-2 12/14/2021 ICON 4530 1 Area 5 Area 5 Prelim AOI H-19SW 0-2 12/14/2021 ICON 4530 1 Area 6 Area 6 Prelim AOI H-24 0-2 16/2021 ICON 4180 1 Area 6 Area 6 Prelim AOI H-24 0-2 11/12/2021 ICON 4180 1 Area 6								
Area 5 Area 5 Prelim AOI H-19 0-2 11/22/2019 ICON 3750 1 Area 5 Area 5 Prelim AOI H-19R 0-2 12/14/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-19SW 0-2 12/14/2021 ERM 702 1 Area 5 Area 5 Prelim AOI H-19SW 0-2 12/14/2021 ERM 702 1 Area 6 Area 6 Prelim AOI H-24 0-2 14/14/2021 ICON 3950 1 Area 6 Area 6 Prelim AOI H-24 0-2 14/12/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ICON 5990 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/11/2021								
Area 5 Area 5 Prelim AOI H-19R 0-2 12/14/2021 ERM NA NA Area 5 Area 5 Prelim AOI H-19R 0-2 12/14/2021 ICON 4530 1 Area 5 Area 5 Prelim AOI H-19SW 0-2 12/14/2021 ICON 3950 1 Area 6 Area 6 Prelim AOI H-24 0-2 14/6/2021 ICON 3950 1 Area 6 Area 6 Prelim AOI H-24 0-2 14/6/2021 ICON 4180 1 Area 6 Area 6 Prelim AOI H-24R 0-2 11/12/2021 ICON 4580 1 Area 6 Area 6 Prelim AOI H-24R 0-2 11/12/2021 ICON 5890 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ICON 5890 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/11/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/11/20								
Area 5 Area 5 Prelim AOI H-19R 0-2 12/14/2021 ICON 4530 1 Area 5 Area 5 Prelim AOI H-19SW 0-2 12/14/2021 ICON 4530 1 Area 6 Area 6 Prelim AOI H-19SW 0-2 12/14/2021 ICON 3950 1 Area 6 Area 6 Prelim AOI H-24 0-2 4/6/2021 ICON 355 1 Area 6 Area 6 Prelim AOI H-24R 0-2 4/6/2021 ICON 4180 1 Area 6 Area 6 Prelim AOI H-24R 0-2 11/12/2021 ICON 4180 1 Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ICON 5890 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/12/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/12/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2								•
Area 5 Area 5 Prelim AOI H-19SW 0-2 12/14/2021 ERM 702 1 Area 5 Area 5 Prelim AOI H-19SW 0-2 12/14/2021 ICON 3950 1 Area 6 Area 6 Prelim AOI H-24 0-2 4/6/2021 IERM 355 1 Area 6 Area 6 Prelim AOI H-24 0-2 4/6/2021 IERM NA NA Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ICON 5890 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ICON 5890 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2								1
Area 5 Area 6 Prelim AOI H-19SW 0-2 12/14/2021 ICON 3950 1 Area 6 Area 6 Prelim AOI H-24 0-2 4/6/2021 ERM 355 1 Area 6 Area 6 Prelim AOI H-24 0-2 4/6/2021 ICON 4180 1 Area 6 Area 6 Prelim AOI H-24R 0-2 11/12/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ICON 5890 1 Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ICON 5890 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ICON 3130 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ICON 3930 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/11/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 11/11/2021<								1
Area 6 Area 6 Prelim AOI H-24 0-2 446/2021 ERM 355 1 Area 6 Area 6 Prelim AOI H-24 0-2 446/2021 ICON 4180 1 Area 6 Area 6 Prelim AOI H-24R 0-2 11/12/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-24R 0-2 11/12/2021 ERM 1900 1 Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ERM 1900 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ECON 3130 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/11/2021 ICON 3900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/11/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 11/11/2021 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>								1
Area 6 Area 6 Prelim AOI H-24 0-2 4/6/2021 ICON 4180 1 Area 6 Area 6 Prelim AOI H-24R 0-2 11/12/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-24R 0-2 11/12/2021 ERM 1900 1 Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ICON 5890 1 Area 6 Area 6 Prelim AOI H-24K 0-2 11/12/2021 ICON 3130 1 Area 6 Area 6 Prelim AOI H-24K 0-2 11/11/2021 ERM 4660 1 Area 6 Area 6 Prelim AOI H-24K 0-2 11/11/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/11/2021 ERM 2860 1 Area 6 Area 6 Prelim AOI H-24W 0-2 1/11/2022 ICON 4960 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/12022<								1
Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ERM 1900 1 Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ERM 3230 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ERM 3230 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ERM 4860 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ERM 4860 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24W 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/202	Area 6	Area 6 Prelim AOI	H-24	0-2	4/6/2021	ICON	4180	1
Area 6 Area 6 Prelim AOI H-24E 0-2 11/12/2021 ICON 5890 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ICON 3130 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ICON 3130 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ERM 4660 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ERM 2860 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ERM 2860 1 Area 6 Area 6 Prelim AOI H-24WW 0-2 11/11/2022 ERM 2320 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/	Area 6	Area 6 Prelim AOI	H-24R	0-2	11/12/2021	ERM	NA	NA
Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ERM 3230 1 Area 6 Area 6 Prelim AOI H-24N 0-2 11/11/2021 ICON 3130 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ICON 3130 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/11/2021 ERM 2860 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/11/2022 ERM 2320 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 4/12/2021 ERM 1210 1 Area 6 Area 6 Prelim AOI H-28 0-2 1/11/202	Area 6	Area 6 Prelim AOI	H-24E	0-2	11/12/2021	ERM	1900	1
Area 6 Area 6 Prelim AOI H-24N 0-2 11/12/2021 ICON 3130 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ERM 4660 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/11/2021 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24W 0-2 1/11/2022 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ICON 7880 1 Area 6 Area 6 Prelim AOI H-28 0-2 11/11/20	Area 6	Area 6 Prelim AOI	H-24E	0-2	11/12/2021	ICON	5890	1
Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ERM 4660 1 Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ERM 2320 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ERM 3990 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-28N 0-2 1/11/2021 ERM 1210 1 Area 6 Area 6 Prelim AOI H-28 0-2 1/11/12021 ERM 1210 1 Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021	Area 6	Area 6 Prelim AOI	H-24N	0-2	11/12/2021	ERM	3230	1
Area 6 Area 6 Prelim AOI H-24S 0-2 11/11/2021 ICON 5900 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24WV 0-2 11/11/2022 ERM 2320 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2021 ERM 3990 1 Area 6 Area 6 Prelim AOI H-28 0-2 1/11/2021 ICON 7410 1 Area 6 Area 6 Prelim AOI H-28 0-2 1/11/12/021 ICON 7480 1 Area 6 Area 6 Prelim AOI H-28S 0-2 1/11/1	Area 6	Area 6 Prelim AOI		0-2	11/12/2021			1
Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ERM 2860 1 Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ERM 2320 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7740 1 Area 6 Area 6 Prelim AOI H-28 0-2 1/11/2021 ICON 7080 1 Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ICON 7080 1 Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2		Area 6 Prelim AOI		0-2				
Area 6 Area 6 Prelim AOI H-24W 0-2 11/12/2021 ICON 4550 1 Area 6 Area 6 Prelim AOI H-24WW 0-2 1/11/2022 ERM 2320 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ERM 2320 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ERM 3990 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2021 ERM 1210 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ICON 7080 1 Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM NA NA Area 6 Area 8 Prelim AOI H-28S 0-2 11/11/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-48 0-2 11/11/2021 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ERM 2320 1 Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ICON 7080 1 Area 6 Area 6 Prelim AOI H-28 0-2 11/11/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM 1280 1 Area 8 Area 8 Prelim AOI H-28S 0-2 11/12/201 ICON 4540 1 Area 8 Area 8 Prelim AOI H-4R 0-2 11/12/2021 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Area 6 Area 6 Prelim AOI H-24NW 0-2 1/11/2022 ICON 3940 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ERM 3990 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ICON 7410 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ICON 7080 1 Area 6 Area 6 Prelim AOI H-28 0-2 11/11/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM NA NA Area 6 Area 8 Prelim AOI H-48S 0-2 11/12/201 ICON 4240 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/12/2021 ICON 4240 1 Area 8 Area 8 Prelim AOI H-4E 0-2								-
Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ERM 3990 1 Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ERM 1210 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ICON 7080 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ICON 7080 1 Area 6 Area 6 Prelim AOI H-28 0-2 1/11/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM 1280 1 Area 8 Area 8 Prelim AOI H-48S 0-2 11/12/201 ERM 1280 1 Area 8 Area 8 Prelim AOI H-44 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021								
Area 6 Area 6 Prelim AOI H-24NE 0-2 1/11/2022 ICON 7410 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ERM 1210 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ERM 1210 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ECON 7080 1 Area 6 Area 6 Prelim AOI H-28 0-2 1/1/1/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM NA NA Area 6 Area 8 Prelim AOI H-28S 0-2 11/11/2021 ECON 4240 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/12/2021 ECON 4540 1 Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021								
Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ERM 1210 1 Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ICON 7080 1 Area 6 Area 6 Prelim AOI H-28R 0-2 11/11/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM 1280 1 Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM 1280 1 Area 8 Area 8 Prelim AOI H-28S 0-2 11/11/2021 ERM 1280 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/12/2021 ICON 4540 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM 2860 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022								
Area 6 Area 6 Prelim AOI H-28 0-2 4/12/2021 ICON 7080 1 Area 6 Area 6 Prelim AOI H-28R 0-2 11/11/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM 1280 1 Area 8 Area 8 Prelim AOI H-28S 0-2 11/11/2021 ICON 4240 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/12/2021 ICON 4540 1 Area 8 Area 8 Prelim AOI H-4R 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM 2860 1 Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ICON 3700 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022								
Area 6 Area 6 Prelim AOI H-28R 0-2 11/11/2021 ERM NA NA Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM 1280 1 Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM 1280 1 Area 6 Area 8 Prelim AOI H-28S 0-2 11/11/2021 ICON 4240 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/4/2019 ICON 4540 1 Area 8 Area 8 Prelim AOI H-4R 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM 2860 1 Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ICON 3700 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ERM 4920 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022								-
Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ERM 1280 1 Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ICON 4240 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/1/2021 ICON 4540 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/1/2/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4R 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM 2860 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ERM 4920 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021								•
Area 6 Area 6 Prelim AOI H-28S 0-2 11/11/2021 ICON 4240 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/4/2019 ICON 4540 1 Area 8 Area 8 Prelim AOI H-4 0-2 11/4/2019 ICON 4540 1 Area 8 Area 8 Prelim AOI H-4R 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM 2860 1 Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ICON 3700 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ERM 4920 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N 0-2 1/10/2022								
Area 8 Area 8 Prelim AOI H-4 0-2 11/4/2019 ICON 4540 1 Area 8 Area 8 Prelim AOI H-4R 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM 2860 1 Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ICON 3700 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 11/10/2022 ERM 4920 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022								
Area 8 Area 8 Prelim AOI H-4R 0-2 11/12/2021 ERM NA NA Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM 2860 1 Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM 2860 1 Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ICON 3700 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ERM 4920 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ERM 2890 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022								
Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ERM 2860 1 Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ICON 3700 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 11/12/2021 ICON 3700 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ERM 4920 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ERM 3730 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022								· ·
Area 8 Area 8 Prelim AOI H-4E 0-2 11/12/2021 ICON 3700 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ERM 4920 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ERM 4920 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ERM 2890 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ERM 3730 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021								
Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ERM 4920 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ERM 2890 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ERM 3730 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021								
Area 8 Area 8 Prelim AOI H-4E2 0-2 1/10/2022 ICON 7290 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ERM 2890 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ERM 3730 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ICON 6620 1 Area 8 Area 8 Prelim AOI H-4W2 0-2 1/10/2022								
Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ERM 2890 1 Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ERM 3730 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ICON 6620 1 Area 8 Area 8 Prelim AOI H-4W2 0-2 1/10/2022 ERM 668 1								
Area 8 Area 8 Prelim AOI H-4N 0-2 11/12/2021 ICON 2170 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ERM 3730 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ERM 3730 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ICON 6620 1 Area 8 Area 8 Prelim AOI H-4W2 0-2 1/10/2022 ERM 668 1								· ·
Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ERM 3730 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ICON 6620 1 Area 8 Area 8 Prelim AOI H-4W2 0-2 1/10/2022 ERM 668 1								
Area 8 Area 8 Prelim AOI H-4N2 0-2 1/10/2022 ICON 4020 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ICON 6620 1 Area 8 Area 8 Prelim AOI H-4W2 0-2 1/10/2022 ERM 668 1								
Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ERM 1290 1 Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ICON 6620 1 Area 8 Area 8 Prelim AOI H-4W2 0-2 1/10/2022 ERM 668 1								
Area 8 Area 8 Prelim AOI H-4W 0-2 11/12/2021 ICON 6620 1 Area 8 Area 8 Prelim AOI H-4W2 0-2 1/10/2022 ERM 668 1							1290	1
Area 8 Area 8 Prelim AOI H-4W2 0-2 1/10/2022 ERM 668 1					11/12/2021	ICON	6620	1
Area 8 Area 8 Prelim AOI H-4W2 0-2 1/10/2022 ICON 4270 1		Area 8 Prelim AOI	H-4W2	0-2	1/10/2022	ERM	668	1
	Area 8	Area 8 Prelim AOI	H-4W2	0-2	1/10/2022	ICON	4270	1

UCL Statistics for Uncensored Full Data Sets

User Selected Options Date/Time of Computation ProUCL 5.13/9/2022 1:05:44 PM From File ProUCL data_Soil 0-4ft_preliminary AOI.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Barium (mg/kg-dry) (area 4 prelim aoi 1)

	General Statistics		
Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	1
Minimum	71.1	Mean	2537
Maximum	7000	Median	2530
SD	1821	Std. Error of Mean	505
Coefficient of Variation	0.718	Skewness	1.001

Normal GOF Test

Shapiro Wilk Test Statistic	0.903	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.178	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.234	Data appear Normal at 5% Significance Level	
Data appear Normal at 5% Significance Level			

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	3437	95% Adjusted-CLT UCL (Chen-1995)	3518
		95% Modified-t UCL (Johnson-1978)	3460

Gamma GOF Test

A-D Test Statistic	0.827	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.754	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.265	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.242	Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level			

	Gamma Statistics		
k hat (MLE)	1.264	k star (bias corrected MLE)	1.024
Theta hat (MLE)	2007	Theta star (bias corrected MLE)	2478
nu hat (MLE)	32.87	nu star (bias corrected)	26.62
MLE Mean (bias corrected)	2537	MLE Sd (bias corrected)	2507
		Approximate Chi Square Value (0.05)	15.86
Adjusted Level of Significance	0.0301	Adjusted Chi Square Value	14.68
Assu	ming Gamma Distribu	tion	
95% Approximate Gamma UCL (use when n>=50))	4259	95% Adjusted Gamma UCL (use when n<50)	4599
L	.ognormal GOF Test		
Shapiro Wilk Test Statistic	0.798	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.316	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.234	Data Not Lognormal at 5% Significance Level	
Data Not Log	normal at 5% Signific	ance Level	
I	Lognormal Statistics		
Minimum of Logged Data	4.264	Mean of logged Data	7.394
Maximum of Logged Data	8.854	SD of logged Data	1.277
Assum	ing Lognormal Distrib	ution	
95% H-UCL	12636	90% Chebyshev (MVUE) UCL	7223
95% Chebyshev (MVUE) UCL	8987	97.5% Chebyshev (MVUE) UCL	11435
99% Chebyshev (MVUE) UCL	16244		
Nonparametri	c Distribution Free U	CL Statistics	
Data appear to follow a Dis	scernible Distribution	at 5% Significance Level	
Nonparar	netric Distribution Fre	e UCLs	
95% CLT UCL	3368	95% Jackknife UCL	3437
95% Standard Bootstrap UCL	3324	95% Bootstrap-t UCL	3658
95% Hall's Bootstrap UCL	4359	95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL			
90% Chebyshev(Mean, Sd) UCL		95% Chebyshev(Mean, Sd) UCL	4738

Suggested UCL to Use

95% Student's-t UCL 3437

97.5% Chebyshev(Mean, Sd) UCL 5691

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

99% Chebyshev(Mean, Sd) UCL 7562

Barium (mg/kg-dry) (area 5 prelim aoi)

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	9
Minimum	472	Mean	3084
Maximum	6390	Median	3345
SD	2001	Std. Error of Mean	707.6
Coefficient of Variation	0.649	Skewness	0.172

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

	Normal GC	0F Test	
Shapiro Wilk Test Statistic	0.96	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.818	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.133	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.283	Data appear Normal at 5% Significance Level	
Data appear N	Normal at 5	% Significance Level	
Assur	ning Norma	I Distribution	
5% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4425	95% Adjusted-CLT UCL (Chen-1995)	4294
		95% Modified-t UCL (Johnson-1978)	4432
	Gamma GC	DF Test	
A-D Test Statistic	0.385	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significan	ce Leve
K-S Test Statistic	0.198	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.298	Detected data appear Gamma Distributed at 5% Significan	ce Leve
Detected data appear Ga	amma Distr	ibuted at 5% Significance Level	
	Gamma St	atistics	
k hat (MLE)	1.879	k star (bias corrected MLE)	1.25
Theta hat (MLE)	1642	Theta star (bias corrected MLE)	2452
nu hat (MLE)	30.06	nu star (bias corrected)	20.12
MLE Mean (bias corrected)	3084	MLE Sd (bias corrected)	2750
		Approximate Chi Square Value (0.05)	10.94
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	9.27

Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 6689

95% Approximate Gamma UCL (use when n>=50)) 5672

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.879	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.818	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.227	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.283	Data appear Lognormal at 5% Significance Level
Data appear Log	normal at 5% Sign	ificance Level

Lognormal Statistics

Minimum of Logged Data	6.157	Mean of logged Data	7.745
Maximum of Logged Data	8.762	SD of logged Data	0.929

Assuming Lognormal Distribution

95% H-UCL 11143	90% Chebyshev (MVUE) UCL 6660
95% Chebyshev (MVUE) UCL 8173	97.5% Chebyshev (MVUE) UCL 10273
99% Chebyshev (MVUE) UCL 14397	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	4248	95% Jackknife UCL	4425
95% Standard Bootstrap UCL	4171	95% Bootstrap-t UCL	4461
95% Hall's Bootstrap UCL	4316	95% Percentile Bootstrap UCL	4198
95% BCA Bootstrap UCL	4125		
90% Chebyshev(Mean, Sd) UCL	5207	95% Chebyshev(Mean, Sd) UCL	6169
97.5% Chebyshev(Mean, Sd) UCL	7503	99% Chebyshev(Mean, Sd) UCL	10125

Suggested UCL to Use

95% Student's-t UCL 4425

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Barium (mg/kg-dry) (area 6 prelim aoi)

ng/kg-dry) (area 6 prelim aoi)			
	General Sta	atistics	
Total Number of Observations	18	Number of Distinct Observations	18
		Number of Missing Observations	2
Minimum	355	Mean	3785
Maximum	7410	Median	3965
SD	1980	Std. Error of Mean	466.7
Coefficient of Variation	0.523	Skewness	0.165
	Normal GO	F Test	
Shapiro Wilk Test Statistic	0.975	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.107	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.202	Data appear Normal at 5% Significance Level	
Data appear l	Normal at 59	% Significance Level	
Assur	ning Norma	I Distribution	
95% Normal UCL	-	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4597	95% Adjusted-CLT UCL (Chen-1995)	4572
		95% Modified-t UCL (Johnson-1978)	4600
	Gamma GC)F Test	
A-D Test Statistic	0.415	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.748	Detected data appear Gamma Distributed at 5% Significan	ice Level
K-S Test Statistic	0.162	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.205	Detected data appear Gamma Distributed at 5% Significan	ice Level
Detected data appear G	amma Distri	buted at 5% Significance Level	
	Gamma Sta	atistics	
k hat (MLE)	2.715	k star (bias corrected MLE)	2.3
Theta hat (MLE)	1394	Theta star (bias corrected MLE)	1646
nu hat (MLE)	97.75	nu star (bias corrected)	82.79
MLE Mean (bias corrected)	3785	MLE Sd (bias corrected)	2496
		Approximate Chi Square Value (0.05)	62.82
Adjusted Level of Significance	0.0357	Adjusted Chi Square Value	61.15
Assun	ning Gamma	a Distribution	
95% Approximate Gamma UCL (use when n>=50))	4988	95% Adjusted Gamma UCL (use when n<50)	5124
L	ognormal G		
Shapiro Wilk Test Statistic	0.867	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.179	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Level	
Data appear Approxim	nate Lognor	mal at 5% Significance Level	

Lognormal Statistics

Minimum of Logged Data	5.872	Mean of logged Data	8.043
Maximum of Logged Data	8.911	SD of logged Data	0.751

Assuming Lognormal Distribution

95% H-UCL 6274 95% Chebyshev (MVUE) UCL 7391 99% Chebyshev (MVUE) UCL 11679 90% Chebyshev (MVUE) UCL 6349 97.5% Chebyshev (MVUE) UCL 8837

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	4552	95% Jackknife UCL	4597
95% Standard Bootstrap UCL	4534	95% Bootstrap-t UCL	4662
95% Hall's Bootstrap UCL	4594	95% Percentile Bootstrap UCL	4543
95% BCA Bootstrap UCL	4539		
0% Chebyshev(Mean, Sd) UCL	5185	95% Chebyshev(Mean, Sd) UCL	5819
5% Chebyshev(Mean, Sd) UCL	6699	99% Chebyshev(Mean, Sd) UCL	8428

Suggested UCL to Use

95% Student's-t UCL 4597

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Barium (mg/kg-dry) (area 8 prelim aoi)

-dry) (area 8 prelim aoi)			
	General St	atistics	
Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	1
Minimum	668	Mean	3767
Maximum	7290	Median	3730
SD	1886	Std. Error of Mean	523.1
Coefficient of Variation	0.501	Skewness	0.274
	Normal GC	F Test	
Shapiro Wilk Test Statistic	0.972	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.117	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.234	Data appear Normal at 5% Significance Level	
Data appear	Normal at 5	% Significance Level	
Assu	ning Norma	I Distribution	
95% Normal UCL	-	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4699	95% Adjusted-CLT UCL (Chen-1995)	4670
		95% Modified-t UCL (Johnson-1978)	4706
	Gamma GC	DF Test	
A-D Test Statistic	0.339	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.739	Detected data appear Gamma Distributed at 5% Significan	ce Leve
K-S Test Statistic	0.176	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.238	Detected data appear Gamma Distributed at 5% Significan	ce Leve
Detected data appear G	amma Distr	ibuted at 5% Significance Level	
	Gamma St	atistics	
k hat (MLE)	3.324	k star (bias corrected MLE)	2.60
Theta hat (MLE)	1133	Theta star (bias corrected MLE)	1444
nu hat (MLE)	86.44	nu star (bias corrected)	67.82
MLE Mean (bias corrected)	3767	MLE Sd (bias corrected)	2332
		Approximate Chi Square Value (0.05)	49.87
Adjusted Level of Significance	0.0301	Adjusted Chi Square Value	47.68
Assur	ning Gamm	a Distribution	
6 Approximate Gamma UCL (use when n>=50))	5123	95% Adjusted Gamma UCL (use when n<50)	5358
	ognormal G		
Shapiro Wilk Test Statistic	0.897	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.2	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.234	Data appear Lognormal at 5% Significance Level	

Data appear Lognormal at 5% Significance Level

95%

Lognormal Statistics

Minimum of Logged Data	6.504	Mean of logged Data	8.076
Maximum of Logged Data	8.894	SD of logged Data	0.655

Assuming Lognormal Distribution

95% H-UCL 6167 95% Chebyshev (MVUE) UCL 7135 99% Chebyshev (MVUE) UCL 11271 90% Chebyshev (MVUE) UCL 6130 97.5% Chebyshev (MVUE) UCL 8530

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	4627	95% Jackknife UCL	4699
95% Standard Bootstrap UCL	4581	95% Bootstrap-t UCL	4817
95% Hall's Bootstrap UCL	4794	95% Percentile Bootstrap UCL	4592
95% BCA Bootstrap UCL	4618		
90% Chebyshev(Mean, Sd) UCL	5336	95% Chebyshev(Mean, Sd) UCL	6047
97.5% Chebyshev(Mean, Sd) UCL	7033	99% Chebyshev(Mean, Sd) UCL	8971

Suggested UCL to Use

95% Student's-t UCL 4699

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

APPENDIX I HQ INPUT FACTORS CALCULATIONS

15 March 2022

Plant	Geometric Mean Soil/Sediment to Plant Bioconcentration Factor conc. in plant ÷ conc. in sediment	Reference	
Swiss Chard	0.0041	Nelson et al., 1984	
Rye Grass	0.0043	Nelson et al., 1984	
Plant Shoots	0.0056	Lamb et al., 2013	
Geometric Mean Ba Soil/Sediment to Plant BCF	0.0046		

Notes:

Ba=Barium BCF=Bioconcentration Factor

References:

Nelson et al. 1984. Extractability and Plant Uptake of Trace Elements from Drilling Fluids. Journal of Environmental Quality, Vol. 13, No. 4.

Lamb, D. et al. 2013. Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite. Environ. Sci. Technol. 47: 4670 - 4676.

TABLE 2. Barium in Soils and Plants and Bioconcentration Factor Calculations (Nelson et al., 1984)

Treatment	Barium in Swiss Chard (mg/kg)	Barium in Soil (mg/kg)	Soil to Plant BCF (Ba in Swiss Chard ÷Total Ba in Soil)
Control	206	350	0.59
BM1	196	101000	0.0019
BM2	226	252000	0.00090
NS2	165	215000	0.00077
MX1	464	91000	0.0051
MX2	262	227000	0.0012

Geometric Mean Ba Plant BCF

Treatment	Barium in Rye Grass (mg/kg)	Barium in Soil (mg/kg)	Soil to Plant BCF (Ba in Rye Grass÷Total Ba in Soil)
Control	188	350	0.54
BM1	172	101000	0.0017
BM2	275	252000	0.0011
NS2	-	215000	NA
MX1	142	91000	0.0016
MX2	216	227000	0.0010
	Geometric Mean	Barium Soil to Plant BCF	0.0043

Notes:

The controls are not included in BCF calculations, because they represent the Ba in plants at background. Ba=Barium

BCF=Bioconcentration Factor

Reference:

Nelson et al. 1984. Extractability and Plant Uptake of Trace Elements from Drilling Fluids. Journal of Environmental Quality, Vol. 13, No. 4.

0.0041

Total Barium ^a Soil	Barium Shoot Concentration	Barium Soil to Plant BCF	
mg/kg	mg/kg	(conc. in plant ÷ conc. in soil)	
700	18	0.026	
1300	122	0.094	
5300	87	0.016	
7700	79	0.010	
5700	65	0.011	
10100	79	0.0078	
10100	133	0.013	
6700	132	0.020	
269000	92	0.00034	
292000	68	0.00023	
265000	65	0.00025	
Geometri	c Mean Barium Soil to Plant BCF	0.0056	

Notes:

BCF=Bioconcentration Factor ^aAnalyzed by XRF (X-ray diffraction analysis)

Reference:

Lamb, D. et al. 2013. Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite. Environ. Sci. Technol. 47: 4670 - 4676.

TABLE 4. Summary: Barium Sediment to Benthic Invertebrate Bioconcentration Factors

Geometric Mean Sediment to Benthic Invertebrate BCF	Reference
0.0013	Finerty et al., 1990
0.012	Finerty et al., 1990
0.091	ERM, 2019
0.21	ERM, 2019
	Sediment to Benthic Invertebrate BCF 0.0013 0.012 0.091

Notes:

BCF=Bioconcentration Factor EWL, LA=East White Lake, Louisiana

References:

Finerty, M.W., Madden, J.D., Feagley, and Grodner, R.M. 1990. Tissues of Wild and Pond-raised Crayfish in Southern Louisiana, Effect of Environs and Seasonality on Metal Residues. Arch. Environ. Contam. Toxicol. 19: 94-100.

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

TABLE 5. Barium in Sediments and Invertebrates and Bioconcentration Factor Calculations (Finerty et al., 1990)

Sample ID	Crawfish Mean Abdominal Barium (mg/kg)	Crawfish Mean Hepatopancreas Barium (mg/kg)	Mean Sediment Barium (mg/kg)	Abdominal BCF (conc. in crawfish ÷conc. in sed.)	Hepatopancreas BCF (conc. in crawfish ÷ conc. in sed.)
VER	0.782	8.223	333.5	0.0023	0.025
AP	-	4.84	556.4	-	0.0087
CRS	0.532	6.869	519.3	0.0010	0.013
LB	1.288	6.177	297.6	0.0043	0.021
STM	0.043	2.193	945.9	0.000045	0.0023
UB	2.383	6.558	282.2	0.0084	0.023
Geometrie	c Mean Barium Se	diment to Benthic	Invertebrate BCF	0.0013	0.012

Notes:

Outlier removed: Barium soil outlier significantly below background (13.39 mg/kg). BCF=Bioconcentration Factor

Reference:

Finerty, M.W., Madden, J.D., Feagley, and Grodner, R.M. 1990. Tissues of Wild and Pond-raised Crayfish in Southern Louisiana, Effect of Environs and Seasonality on Metal Residues. Arch. Environ. Contam. Toxicol. 19: 94-100.

TABLE 6. Barium in Sediments and Crabs and Bioconcentration Factor Calculations (ERM, 2019)

Area	Sample ID	Barium Concentration in Crab Tissue	Barium Concentration in Sediment	Barium Sediment to Crab BCF (conc. in crab tissue ÷ conc. in sediment)
EWL Site	EWL-T-01A-C	13.1		
EWL Site	EWL-T-01-C	22.6		
EWL Site	EWL-T-02-C	16.5		
EWL Site	EWL-T-03-C	34.1		
EWL Site	EWL-T-04-C	20.7		
EWL Site	EWL-T-05-C	19.5		
EWL Site	EWL-T-06-C	22.9		
EWL Site	EWL-T-07-C	20.4		
EWL Site	EWL-T-08-C	23.5		
EWL Site	EWL-T-09-C	16.1		
EWL Site	EWL-T-10-C	37.7		
EWL Site	EWL-T-11-C	24.3		
EWL Site	EWL-T-12-C	24.9		
EWL Site Ge	ometric Mean	21.9	241	0.091

EWL Reference	EWL-TR-01-C	16.8		
EWL Reference	EWL-TR-02-C	20.8		
EWL Reference	EWL-TR-03A-C	25.8		
EWL Reference	EWL-TR-03-C	20.4		
EWL Reference	EWL-TR-04-C	22.4		
EWL Reference	EWL-TR-05-C	21.1		
EWL Reference	EWL-TR-06-C	29.3		
EWL Reference	EWL-TR-07-C	14.3		
EWL Reference	EWL-TR-08-C	21.8		
EWL Reference	EWL-TR-09-C	23.6		
EWL Reference	Geometric Mean	21.3	101	0.21

Notes:

Concentrations are in mg/kg wet weight.

Concentrations for crab are for tissue.

Crab sampling was performed in December 2010/January 2011.

Sediment data are from 0-2 feet and collected in 2010 at EWL.

BCF=Bioconcentration Factor

EWL=East White Lake

Reference:

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

Location	Geometric Mean Barium Sediment to Fish BCF	Reference
Ottawa River, Ten Mile Creek, Ohio	0.012	Ohio EPA, 1991
Upper Columbia River, Washington	0.0068	Teck American, Inc. 2010
EWL, LA (EWL Site)	0.071	ERM, 2019
EWL, LA (EWL Reference)	0.11	ERM, 2019
Barium Sediment to Fish BCF	0.028	

Notes:

BCF=Bioconcentration Factor EWL, LA= East White Lake, Louisiana

References:

Ohio EPA. 1991. Fish Tissue Bottom Sediment Surface Water Organic & Metal Chemical Evaluation, Ottawa River, Ten Mile Creek, Toledo, Ohio, Division Of Water Quality Planning And Assessment. US Geological Survey. Pearl, Mississippi.

Teck American, Inc. 2010. Upper Columbia River Screening-Level Ecological Risk Assessment (SLERA) Teck American, Inc., Spokane, WA.

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

 TABLE 8. Barium in Fish and Sediments in Rivers in Ohio and Washington and Bioconcentration Factor Calculations (Ohio EPA, 1991; Teck American, Inc., 2010)

Ottawa River / Ten Mile Creek ^a	Site Location	Detroit Ave	Adj. Dura Landfill	Suder Ave	Dst Summit St	Sylvania Ave	Highland Meadows Golf		
Whole body common carp conc.	mg/kg	1.94	0.843	0.79	1.38	1.22	1.34		
Sediment composite conc.	mg/kg	96.9	126	143	175	55	72.6		
BCF	fish conc.÷ sed. conc.	0.020	0.0067	0.0055	0.0079	0.022	0.018		
Geometric Mean Barium Sediment to Fish BCF									

Upper Columbia River ^b	Reach #	6b	6a	5	4a	3	2	1	
Mean fish tissue conc. in reach	mg/kg-dry	10.6	10.6	10.4	9.2	8.0	6.7	7.6	
Avg. sediment conc. by location	mg/kg-dry	1517	798	1067	1190	1382	1543	2008	
BCF	fish conc.÷ sed. conc.	0.0070	0.013	0.010	0.0077	0.0058	0.0043	0.0038	
Geometric Mean Barium Sediment to Fish BCF									

Note:

BCF=Bioconcentration Factor

References:

^aOhio EPA. 1991. Fish Tissue Bottom Sediment Surface Water Organic & Metal Chemical Evaluation, Ottawa River, Ten Mile Creek, Toledo, Ohio, Division Of Water Quality Planning And Assessment. US Geological Survey. Pearl, Mississippi.

^bTeck American, Inc. 2010. Upper Columbia River Screening-Level Ecological Risk Assessment (SLERA) Teck American, Inc., Spokane, WA.

TABLE 9. Barium in EWL Fish and Sediments and Bioconcentration Factor Calculations (ERM, 2019)

Area	Sample ID	Barium Concentration in Fish Tissue	Barium Concentration in Sediment	Barium Sediment to Fish BCF Conc. in Fish Tissue ÷ Conc. in Sediment
EWL Site	EWL-T-01A-F	NA		
EWL Site	EWL-T-01-F	16.4		
EWL Site	EWL-T-02-F	17.0		
EWL Site	EWL-T-03-F	15.9		
EWL Site	EWL-T-04-F	17.1		
EWL Site	EWL-T-05-F	19.1		
EWL Site	EWL-T-06-F	16.4		
EWL Site	EWL-T-07-F	17.0		
EWL Site	EWL-T-08-F	17.1		
EWL Site	EWL-T-09-F	16.7		
EWL Site	EWL-T-10-F	20.1		
EWL Site	EWL-T-11-F	18.0		
EWL Site	EWL-T-12-F	14.7		
EWL Site Ge	ometric Mean	17.1	241	0.071

EWL Reference	EWL Reference Geometric Mean		
EWL Reference	EWL-TR-09-F	12.1	
EWL Reference	EWL-TR-08-F	11.9	
EWL Reference	EWL-TR-07-F	11.5	
EWL Reference	EWL-TR-06-F	10.8	
EWL Reference	EWL-TR-05-F	13.0	
EWL Reference	EWL-TR-04-F	13.4	
EWL Reference	EWL-TR-03-F	9.5	
EWL Reference	EWL-TR-03A-F	NA	
EWL Reference	EWL-TR-02-F	9.1	
EWL Reference	EWL-TR-01-F	NA	

Notes:

Concentrations are in mg/kg wet weight. Concentrations for shad fish are for tissue. Fish sampling was performed in December 2010/January 2011. Sediment data are from 0-2 feet and collected in 2010 at EWL. BCF=Bioconcentration Factor EWL=East White Lake

Reference:

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

Geometric Mean Barium Soil/Sediment Bioavailability Factor	Reference
0.00072	Engdahl, A. et al., 2008
0.00013	Environment International Ltd, 2010
0.000086	USGS, 2002
0.00020	Geometric Mean Barium Soil Bioavailability Factor

Note:

Soil bioavailability factors in each study are based on mean soil and porewater concentrations.

References:

Engdahl, A. et al. 2008. Oskarshamm and Forsmark site investigation, Chemical composition of suspended material, sediment and pore water in lakes and sea bays. Swedish Nuclear Fuel and Waste Management Co., P-08-81: 80 pgs.

Environment International Ltd. 2010. Upper Columbia River in-Situ Porewater Assessment Sampling and Quality Assurance Plan, Washington State Attorney General's Office.

USGS. 2002. Vertical Distribution of Trace-Element Concentrations and Occurrence of Metallurgical Slag Particles in Accumulated Bed Sediments of Lake Roosevelt, Washington. Scientific Investigations Report 2004-5090. TABLE 11. Barium in Soils/Sediments/Porewaters and Soil Bioavailability Calculations (Engdahl et al., 2008)

Barium Sediment Concentration										
	Sample ID	Eck	Eck	Lab	Lab	Bol	Bol	Geometric Mean Ba Sediment Concentration		
Sample Depth	ст	0-5	25-30	0-5	25-30	0-5	25-30	86		
Concentration	mg/kg-dry	40	46	59	59	220	280	80		
	Barium Porewater Concentration									
	Sample ID	Eck	Eck	Lab	Lab	Bol	Bol	Geometric Mean Ba Porewater Concentration		
Sample Depth	ст	0-5	25-30	0-5	25-30	0-5	25-30	0.062		
Concentration	mg/L	0.03	0.06	0.06	0.08	0.04	0.17	0.002		
			Bariu	m Soil Bio	availability	,				
	Sample ID	Eck	Eck	Lab	Lab	Bol	Bol	Geometric Mean Barium Soil/Sed. Bioavailability Factor		
Porewater conc. ÷ Sediment conc.	unitless	0.0008	0.0013	0.0009	0.0013	0.0002	0.0006	0.00072		

Note:

Ba=Barium

Reference:

Engdahl, A. et al. 2008. Oskarshamm and Forsmark site investigation, Chemical composition of suspended material, sediment and pore water in lakes and sea bays. Swedish Nuclear Fuel and Waste Management Co., P-08-81: 80 pgs.

TABLE 12. Barium in Soils/Sediments/Porewaters and Soil Bioavailability Calculations (Environment International Ltd, 2010)

	Barium Soil Concentrations (mg/kg)											
Sample ID	UDE 2 SED	BSB 2 SED	BSB 1 SED	DE 2 SED	DE 1 SED	MSB 1 SED	MSB 2 SED	UDE 1 SED				
	347	1010	1250	845	415	268	468	678				
		Barium Porewater Concentrations										
				(mg	g/L)							
Collected AM	0.109	0.058	0.154	0.129	0.115	0.040	0.047	0.029				
Collected PM	0.129	0.055	0.146	0.173	0.117	0.039	0.044	0.029				
Mean of AM and PM	0.119	0.057	0.150	0.151	0.116	0.0392	0.046	0.029				
			Barium	Soil/Sediment	Bioavailabilit	y Factor						
porewater conc.÷ soil conc.	0.00034	0.000056	0.00012	0.00018	0.00028	0.00015	0.00010	0.000042				
			Geome	etric Mean Soi	I/Sediment Ba	arium Bioavail	ability Factor	0.00013				

Reference:

Environment International Ltd. 2010. Upper Columbia River in-Situ Porewater Assessment Sampling and Quality Assurance Plan, Washington State Attorney General's Office.

TABLE 13. Barium in Lake Roosevelt in Soils/Sediments/Porewaters and Soil Bioavailability Calculations

Sample ID	Depth	Depth Barium Porewater		Barium Soil/Sediment Bioavailability Factor
	cm	mg/L	mg/kg	(porewater conc. ÷ sediment conc.)
1	1-2	0.091	1100	0.000083
I	9-11	0.14	1100	0.00013
2	1-2	0.11	1200	0.000092
Z	9-11	0.18	1500	0.00012
3	1-2	0.068	1200	0.000057
	9-11	0.08	1300	0.000062
G	eometric Mean Bari	um Soil/Sediment B	ioavailability Factor	0.000086

Reference:

USGS. 2002. Vertical Distribution of Trace-Element Concentrations and Occurrence of Metallurgical Slag Particles in Accumulated Bed Sediments of Lake Roosevelt, Washington. Scientific Investigations Report 2004-5090.

Endpoint	Result	Units	Exposure	Duration	Media	Salinity	Organism Scientific Name	Common Name	Life Stage	Effect	Reference
	STUDIES	<u>e</u>									
Freshwa											
EC50	32	mg/L	direct contact	48 hrs	water	freshwater	Daphnia magna Straus	water flea	not reported	immobility	1. Khangarot,B.S., and P.K. Ray, 1989
EC50	33.65	mg/L	direct contact	48 hrs	water	freshwater	Tubifex tubifex	Tubificid Worm	not reported	immobility	2. Khangarot,B.S., 1991
EC50	33.65	mg/L	direct contact	96 hrs	water	freshwater	Tubifex tubifex	Tubificid Worm	not reported	immobility	2. Khangarot,B.S., 1991
EC50	44.98	mg/L	direct contact	24 hrs	water	freshwater	Tubifex tubifex	Tubificid Worm	not reported	immobility	2. Khangarot,B.S., 1991
EC50	52.82	mg/L	direct contact	24 hrs	water	freshwater	Daphnia magna Straus	water flea	not reported	immobility	1. Khangarot,B.S., and P.K. Ray, 1989
EC50	634-798	mg/L	direct contact	48 hr	water	freshwater	C. subglobosa Sowerby	freshwater ostracod	various	immobility	3. Khangarot, B.S. and Das, S., 2009
LC50	> 7500	mg/L	direct contact	96 hrs	water	freshwater	Salmo gairdneri Richardson	rainbow trout	2.5 - 4.0 cm	mortality	4. Faulk, M. et al., 1973
LC50	76000	mg/L	direct contact	96 hrs	water	freshwater	Oncorhynchus mykiss	rainbow trout	1 gram weight	mortality	5. Sprague, J. et al., 1979
LC0	100000	mg/L	direct contact	96 hrs	water	freshwater	Poecilia sp.	Mollies	not reported	mortality	6. Grantham, C.K., and J.P. Sloan, 1975
Saltwate											
NOAEL	10	mg/L	direct contact	7 days	water	34 ppt salinity	Cancer anthonyi	yellow crab	embryo	mortality/reproduct.	7. Macdonald J.M. et al., 1988
NOAEL	200	mg/L	direct contact	24 hours	water	marine	Mallotus villosus	capelin	larvae	survival	8. Payne, J.F. et al., 2006
LC50	1000	mg/L	direct contact	7 days	water	34 ppt salinity	Cancer anthonyi	yellow crab	embryo	mortality	7. Macdonald J.M. et al., 1988
NOAEL	1000	mg/L	direct contact	24 hours	water	marine	Chionoecetes opilio	snow crab	larvae	survival	8. Payne, J.F. et al., 2006
NOAEL	1000	mg/L	direct contact	24 hours	water	marine	jellyfish	jellyfish	planktonic	survival	8. Payne, J.F. et al., 2006
NOAEL	1000	mg	ingestion	4x/one month	water	marine	Pseudopleuronectes americanus	winter flounder	300 gram weight	survival	8. Payne, J.F. et al., 2006
EC50	16200	mg/L	direct contact	96 hour	water	28-31 ppt salinity	Pandalus danae	dock shrimp	larvae	swimming	9. Carls, M.G. et al., 1984
EC50	71400	mg/L	direct contact	96 hour	water	28-31 ppt salinity	Metacarcinus magister	dungeness crab	larvae	swimming	9. Carls, M.G. et al., 1984
NOAEL	200000	mg/L	direct contact	10 month	water	seawater	Tautogolabrus adspersus	cunner	70.7 +/-20.8 gms	growth	10. Payne, J. et al., 2011
TERRES	FRIAL STUDIE	S									
Mammals	5										
NOAEL	8	mg/kg	ingestion	apprx 60 days ^a	diet	NA	CF-1 mice	mice	weanling	growth/repro/mortal	11. Hutcheson, D., 1975
LD50	364000	mg/kg	intragastric	28 -52 hours	dosed	NA	CBL-Wistar Albino Rats	rat	130-160 gm wght	mortality	12. Boyd, M.D. and Abel, M., 1966
LD0	163000	mg/kg	intragastric	14 days	dosed	NA	CBL-Wistar Albino Rats	rat	130-160 gm wght	mortality	12. Boyd, M.D. and Abel, M., 1966
Terrestria	al Invertebrate	es S	-							•	
NOAEL	10000	mg/kg	direct contact		sandy loam soil	NA	Folsomia Candida	soil arthropod	adult	mortality	13. Kuperman, R.G. et al., 2006
NOAEL	10000	mg/kg	direct contact		sandy loam soil	NA	Eisenia Fetida	earth worm	adult	mortality	13. Kuperman, R.G. et al., 2006
NOAEL	10000	mg/kg	direct contact		sandy loam soil	NA	Enchytraeus Crypticus	white worm	adult	mortality	13. Kuperman, R.G. et al., 2006
NOAEL	1000000	mg/kg	direct contact	14 days	clayey soil	NA	Onychiurus folsomi	springtail insect	not reported	mortality	14. Menzie et al., 2008
NOAEL	300000	mg/kg	direct contact	14 days	loamy soil	NA	Eisenia andrei	worm	not reported	mortality	14. Menzie et al., 2008
Notes											

^aThree generations of mice

References

1. Khangarot, B.S., and P.K. Ray, 1989, Investigation of Correlation Between Physicochemical Properties of Metals and Their Toxicity to the Water Flea Daphnia magna Straus, Ecotoxicol. Environ. Saf. 18(2): 109-121 (from ECOTOX) 2. Khangarot, B.S., 1991, Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller), Bull. Environ. Contam. Toxicol. 46:906-912 (from ECOTOX)

3. Khangarot, B.S. and Das, S., 2009, Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC50 values of other test models, Journal of Hazardous Materials 172, 641–649 4. Faulk, M. et al., Acute Toxicity of Petrochemical Drilling Fluids Components and Wastes to Fish, 1973, Environment Canada, Technical Report Series

5. Sprague, J. et al., 1979, Separate and Joint Toxicity to Rainbow Trout of Substances Used in Drilling Fluids for Oil Exploration, Environ. Pollut. 0013-9327

6. Grantham, C.K., and J.P. Sloan, 1975, EPA 560/1-75-004, 1975, Toxicity Study Drilling Fluid Chemicals on Aquatic LifeConf. Proc. on Environ. Aspects of Chemical Use in Well-Drilling Operations, Research Triangle Inst., NC (from ECOTOX) 7. Macdonald J.M. et al., 1988, Acute toxicities of eleven metals to early life-history stages of the yellow crab Cancer anthonyi, Marine Biology 98, 201-207

8. Payne, J.F. et al., 2006. Risks assoc. with drill. fluids at petrol. developm. sites in the offsh.: Eval. of the potent. for an aliph. HC- based drill. fluid to produce sedimen. toxicity and for barite to be acut. toxic to plankton. Can. Tech. Rep. Fish. Aquat. Sci. 2679 9. Carls, M.G. et al., 1984, Toxic Contributions of Specific Drilling Mud Components to Larval Shrimp and Crabs, Marine Environmental Research 12, 45-62.

10. Payne, J. et al., 2011, Produced Water: Overview of Composition, Fates, and Effects, Chapter 21 Risks to Fish Associated with Barium in Drilling Fluids and Produced Water: A Chronic Toxicity Study with Cunner (Tautogolabrus adspersus) 11. Hutcheson, D. et al., 1975, Studies of Nutritional Safety of Some Heavy Metals in Mice, The Journal of Nutrition, Vol 105, no.6.

12. Boyd, M.D. and Abel, M., 1966, The Acute Toxicity of Barium Sulfate Administered Intragastrically, Canad. Med. Ass. J.

13. Kuperman, R.G. et al., 2006, Toxicity Benchmarks for Antimony, Barium, and Beryllium Determin. using Reproduc. Endpoints for Folsomia Candida, Eisenia Fetida, and Enchytraeus Crypticus, Environ. Toxicol. and Chem., Vol. 25, No. 3, pp. 754–762 14. Menzie, C. et al., 2008, The Importance of Understanding the Chemical Form of a Metal in the Environment: The Case of Barium Sulfate, Human and Ecological Risk Assessment, 14: 974–991

TABLE 15. Summary: Total Mercury Soil to Plant Bioconcentration Factors

Reference	Geometric Means					
Fernández-Martínez et al., 2015	Geometric Mean Total Mercury Plant BCF	0.02				
Rodriguez et al., 2007	Geometric Mean Total Mercury Plant BCF	0.95				
Hamilton et al., 2008	Geometric Mean Total Mercury Plant BCF	1.02				
То	Total Geometric Mean Total Mercury Plant BCF					

Note:

BCF=Bioconcentration Factor

References:

Fernández-Martínez, R. et al. 2015. Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253–254, 30–38.

Rodriguez, L. et al. 2007. Capability of Selected Crop Plants for Shoot Mercury Accumulation from Polluted Soils: Phytoremediation Perspectives. Journal of Phytoremediation, 9:1–13, 2007.

Hamilton, M. et al. 2008. Determination and comparison of heavy metals in selected seafood, water,vegetation and sediments by inductively coupled plasma-optical emission spectrometry from an industrialized and pristine waterway in Southwest Louisiana. Microchemical Journal 88 (2008) 52–55.

TABLE 16. Total Mercury in Soils and Plants near Cinnabar Mines and Bioconcentration FactorCalculations (Fernández-Martínez et. al., 2015)

Mining area	Sampling Location	Soil to Plant BCF	
	P1-E1	Crupina vulgaris	0.029
La Soterraña	P3-E4	Typha latifolia	0.014
La Solerrana	P3-E5	Phyllitis scolopendrium	0.013
	P3-H6	Dryopteris filix-mas	0.186
Los Rueldos	P8-E7	Calluna vulgaris	0.010
	P8-H7	Dryopteris affinis	0.017
	Geor	metric Mean Total Hg Plant BCF	0.02

Reference:

Fernández-Martínez, R. et al. 2015. Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253–254, 30–38.

TABLE 17. Total Mercury in Soils and Plants and Bioconcentration Factor Calculations (Rodriguez et. al., 2007)

Media: Soil and Vegetation	Total Mercury mg/kg	Soil to Plant BCF
Soil	33.56	
Lupine	30.65	0.91
Lentil	33.25	0.99
Chickpea	31	0.92
Barley	32.53	0.97
Geom	etric Mean Total Hg Plant BCF	0.95

Reference:

Rodriguez, L. et al. 2007. Capability of Selected Crop Plants for Shoot Mercury Accumulation from Polluted Soils: Phytoremediation Perspectives. Journal of Phytoremediation, 9:1–13, 2007.

TABLE 18. Total Mercury in Southwest Louisiana Soils and Plants and Bioconcentration Factor Calculations (Hamilton et. al., 2008)

Sample Location	Total Hg mg/kg	Sample Location	Total Hg mg/kg
Vegetation 63–64, Site 1	6.41	Sediments 75, 78, Site 1	6.2
Vegetation 65–66, Site 2	6.69	Sediments 76, 79, Site 2	6.22
Vegetation 67–68, Site 3	6.36		
Vegetation 69–70, Site 4	6.25		
Vegetation 71–72, Site 5	6.25		
Vegetation 73–74, Site 6	6.14		
Geometric Veg. Mean	6.35	Geometric Sed. Mean	6.21
		Geometric Mean Hg Plant BCF	1.02
		(conc. in veg/conc. in sed.)	1.02

Reference:

Hamilton, M. et al. 2008. Determination and comparison of heavy metals in selected seafood, water, vegetation and sediments by inductively coupled plasma-optical emission spectrometry from an industrialized and pristine waterway in Southwest Louisiana. Microchemical Journal 88 (2008) 52–55.

TABLE 19. Summary: Total Mercury Sediment to Benthic Invertebrate Bioconcentration Factors

Location	Geometric Mean Total Mercury Sed. to Invert. BCF	Reference
St. Lawrence, Canada	0.035	Razavi, 2013
Lavaca, TX	1.1	USFW, 1994
EWL, LA (EWL Site)	0.90	ERM, 2019
EWL, LA (EWL Reference)	2.2	ERM, 2019
St. Lawrence, Cornwall Zooplankton	0.40	Ridal et. al., 2010
St.Lawrence, Cornwall Benthos	0.40	Ridal et al., 2010
Total Mercury Sediment to Invertebrate BCF	0.48	

Note:

BCF=Bioconcentration Factor

References:

Razavi, R. 2013. Ebullition Rates And Mercury Concentrations In St. Lawrence River Sediments And a Benthic Invertebrate. Environmental Toxicology and Chemistry, Vol. 32, No. 4, pp. 857–865.

U.S. Fish And Wildlife Service. 1994. Accumulation Of Mercury In Sediments, Prey, And Shorebirds of Lavaca Bay, Texas, Phase II Report.

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

Ridal, J. et al. 2010. Potential causes of enhanced transfer of mercuryto St. Lawrence River Biota: implications for sedimentmanagement strategies at Cornwall, Ontario, Canada. Hydrobiologia 647:81–98.

TABLE 20. Total Mercury in St. Lawrence Sediments and Benthic Invertebrates and Bioconcentration Factor Calculations (Razavi, 2013)

Media: Invertebrates and Sediments	Mean Total Mercury (ng/g dw)	Bioconcentration Factor (BCF) Total Mercury Sediment to Invertebrates (amphipod total Hg conc. ÷ sediment total Hg conc.)
Amphipods	173	0.035
Sediments	5000	0.035

Reference:

Razavi, R. 2013. Ebullition Rates And Mercury Concentrations In St. Lawrence River Sediments And a Benthic Invertebrate. Environmental Toxicology and Chemistry, Vol. 32, No. 4, pp. 857–865.

TABLE 21. Total Mercury in Lavaca Bay, TX. Sediments and Benthic Invertebrates and Bioconcentration Factor Calculations

Matrix / Biota	Mean Total Mercury mg/kg dw	Bioconcentration Factor (BCF) Total Mercury Sediment to Invertebrates (invertebrate total mercury conc.÷ total mercury sediment conc.)
Sediment	0.26	
Mussel	0.27	1.0
Oyster	0.26	1.0
Polychaete	0.20	0.77
Xanthid crab	0.18	0.69
Fiddler crab	0.83	3.2
Geome	ric Mean Total Mercury Invertebrate BCF	1.1

Reference:

U.S. Fish And Wildlife Service. 1994. Accumulation Of Mercury In Sediments, Prey, And Shorebirds of Lavaca Bay, Texas, Phase II Report.

TABLE 22. Total Mercury in EWL Sediments and Crabs and Bioconcentration Factor Calculations (ERM, 2019)

Area	Sample ID	Total Mercury Concentration in Crab Tissue	Total Mercury Concentration in Sediment	Total Mercury Sediment to Crab BCF (Conc. in Crab Tissue ÷ Conc. in Sediment)
EWL Site	EWL-T-01A-C	0.055		
EWL Site	EWL-T-01-C	0.055		
EWL Site	EWL-T-02-C	0.047		
EWL Site	EWL-T-03-C	0.063		
EWL Site	EWL-T-04-C	0.043		
EWL Site	EWL-T-05-C	0.050		
EWL Site	EWL-T-06-C	0.055		
EWL Site	EWL-T-07-C	0.046		
EWL Site	EWL-T-08-C	0.049		
EWL Site	EWL-T-09-C	0.046		
EWL Site	EWL-T-10-C	0.058		
EWL Site	EWL-T-11-C	0.047		
EWL Site	EWL-T-12-C	0.042		
EWL Site Ge	ometric Mean	0.050	0.055	0.90
EWL Reference	EWL-TR-01-C	0.045		
EWL Reference	EWL-TR-02-C	0.036		
EWL Reference	EWL-TR-03A-C	0.063		
EWL Reference	EWL-TR-03-C	0.043		
EWL Reference	EWL-TR-04-C	0.057		
EWL Reference	EWL-TR-05-C	0.035		
EWL Reference	EWL-TR-06-C	0.072		
EWL Reference	EWL-TR-07-C	0.038		
EWL Reference	EWL-TR-08-C	0.035		
EWL Reference	EWL-TR-09-C	0.046		
EWL Reference	Geometric Mean	0.046	0.020	2.2

Notes:

Concentrations are in mg/kg wet weight.

Concentrations for crab are for tissue.

Crab sampling was performed in December 2010/January 2011.

Sediment data are from 0-2 feet and collected in 2010 at EWL.

BCF=Bioconcentration Factor

EWL=East White Lake

Reference:

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

TABLE 23. Total Mercury in St. Lawrence River Sediments and Benthic Invertebrates and Bioconcentration Factor Calculations (Ridal et al., 2010)

Matrix / Biota		Sample	Total Mercury Bioconcentration Factors		
Matrix / Diota	1	2	3	4	(conc. in invert. ÷ conc. in sed.)
Zooplankton (ng/g dw)	502	608	245	111	
Sediment (ng/g dw) Top 10 cm	774	2238	1744	104	Geometric Mean Total Mercury Zooplankton BCF
Total Hg BCF Zooplankton	0.65	0.27	0.14	1.1	0.40
Benthos (ng/g dw)	338	300	666	118	
Sediment (ng/g dw) Top 10 cm	774	2238	1744	104	Geometric Mean Total Mercury Benthos BCF
Total Hg BCF Benthos	0.44	0.13	0.38	1.1	0.40

Note:

BCF=Bioconcentration Factor

Reference:

Ridal, J. et al. 2010. Potential causes of enhanced transfer of mercury to St. Lawrence River Biota: implications for sediment management strategies at Cornwall, Ontario, Canada. Hydrobiologia 647:81–98.

Location	Geometric Mean Total Mercury Sediment to Fish BCF	Reference
White Lake at Abbeville, LA	3.9	LDEQ LEAU database, 2019
Upper Prong Schooner Bayou, LA	3.9	LDEQ LEAU database, 2019
EWL, LA. Site	0.20	ERM, 2019
EWL, LA. Reference	0.51	ERM, 2019
Total Mercury Sediment to Fish BCF	1.1	

References:

LDEQ. 2019. Data taken from the LDEQ's Louisiana Environmental Assessment Utility (LEAU) database. https://waterdata.deq.louisiana.gov/

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

Site	LDEQ Site 310: White Lake at Abbeville, LA				LDEQ Site 756: Upper Prong Schooner Bayou			oner Bayou
Date	4/2/1998	7/23/2003	7/12/2004	7/10/2008	8/31/1998	9/30/2002	8/4/2004	6/22/2009
	0.15	0.41	0.06	0.1978	0.08	0.72	0.51	0.0661
	0.05	0.15	0.22	0.6438	0.24	0.21	0.06	0.0577
	0.02	0.4	0.28	0.2286	0.19	0.41	0.2	0.0572
	0.04	0.37	0.3	0.3809	0.35	0.2	0.27	0.0948
	0.03	0.24	0.72	0.2693		0.61	0.08	0.0688
	0.03	0.41	0.04	0.2242		0.5	0.11	0.0543
	0.0001	0.27	0.28	0.2079		0.62	0.24	0.0785
	0.05	0.17	0.47	0.2628		0.27	0.12	0.1467
Fish Tissue	0.07	0.58	0.23	0.1911		0.24	0.44	
Concentration	0.33	0.29	0.44	0.573		0.21	0.09	
	0.02	0.13	0.21	0.2966			0.4	
	0.05	0.17	0.69	0.2683			0.06	
	0.14	0.3		0.2659				
	0.18	0.17		0.2729				
				0.1996				
				0.1778				
				0.2325				
				0.2288				
Geometric Mean Fish	0.038	0.264	0.251	0.266	0.189	0.355	0.165	0.074
Tissue Concentration	0.000	0.204	0.231	0.200	0.109	0.000	0.105	0.074
Sediment Concentration	0.01	0.05895	0.0849	0.0575	0.13	0.05466	0.02558	NA
Geometric Mean Sediment to Fish BCF ^a	3.85	4.47	2.95	4.62	1.45	6.50	6.44	NA
Geometric Mean Sediment to Fish BCF for LDEQ Site		3	.9			3	.9	

Notes:

^aFish Tissue Concentration ÷ Sediment Concentration

Concentrations are in mg/kg.

Data from LDEQ's Louisiana Environmental Assessment Utility (LEAU) database. https://waterdata.deq.louisiana.gov/

TABLE 26. Total Mercury in Fish and Sediments and Bioconcentration Factor Calculations (ERM, 2019)

Area	Sample ID	Total Mercury Concentration in Fish Tissue	Total Mercury Concentration in Sediment	Total Mercury Sediment to Fish BCF Conc. in Fish Tissue ÷ Conc. in Sediment
EWL Site	EWL-T-01A-F	NA		
EWL Site	EWL-T-01-F	0.0119		
EWL Site	EWL-T-02-F	0.0105		
EWL Site	EWL-T-03-F	0.0098		
EWL Site	EWL-T-04-F	0.0131		
EWL Site	EWL-T-05-F	0.0117		
EWL Site	EWL-T-06-F	0.0109		
EWL Site	EWL-T-07-F	0.0102		
EWL Site	EWL-T-08-F	0.0097		
EWL Site	EWL-T-09-F	0.0104		
EWL Site	EWL-T-10-F	0.0125		
EWL Site	EWL-T-11-F	0.0114		
EWL Site	EWL-T-12-F	0.0106		
EWL Site Ge	ometric Mean	0.0110	0.0555	0.20

		EWL-TR-09-F Geometric Mean	0.0101 0.0105	
EWL Refer				
EWL Refer	erence	EWL-TR-08-F	0.0101	
EWL Refer	erence	EWL-TR-07-F	0.0098	
EWL Refer	erence	EWL-TR-06-F	0.0101	
EWL Refer	erence	EWL-TR-05-F	0.0104	
EWL Refer	erence	EWL-TR-04-F	0.0116	
EWL Refer	erence	EWL-TR-03-F	0.0098	
EWL Refer	erence	EWL-TR-03A-F	NA	
EWL Refer	erence	EWL-TR-02-F	0.0120	
EWL Refer	erence	EWL-TR-01-F	NA	

Notes:

Concentrations are in mg/kg wet weight. Concentrations for shad fish are for tissue. Fish sampling was performed in December 2010/January 2011. Sediment data are from 0-2 feet and collected in 2010 at EWL. BCF=Bioconcentration Factor EWL=East White Lake

Reference:

ERM. 2019. East White Lake Ecological Risk Assessment, Section 16 Property, East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. September 16, 2019.

Location	Geometric Mean Total Mercury Soil/Sed. Bioavailability Factors (conc. in porewater ÷ conc. in sed.)	Reference
Savannah River	0.00009	Xu et al., 2019
Spiked Sediment	0.018	Chibunda et al., 2009
Chloralkalai Plant	0.00002	Chalmers et al., 2013

Geometric Mean	0.00031	

References:

Xu, X. et al. 2019. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA), Science of The Total Environment. 668, 261-270.

Chibunda, R. T. et al. 2009. Chronic Toxicity of Mercury (HgCl2) to the Benthic Midge *Chironomus riparius*. Int. J. Environ. Res., 3(3):455-462

Chalmers, A. et al. 2013. Characterization of Mercury Contamination in the Androscoggin River, Coos County, New Hampshire, USGS, USEPA, USDOI

TABLE 28. Total Mercury In Savannah River Soil/Sediment/Porewaters and Bioavailability Calculations (Xu et al., 2019)

Area	Soil Total Mercury	Soil Methylmercury	МеНд	Total Mercury in Porewater	Total Mercury Soil/Sed. Bioavailability	
units	ng/kg dw	ng/g dw	%	ng/L	(Total Hg porewater conc.÷Total Hg sediment conc.)	
MB-a	50000	0.9	1.8	6.9	0.00014	
MB-b	51000	0.6	1.1	4	0.0008	
MB-c	52000	0.6	1.1	4	0.0008	
FMC-a	77000	1.2	1.5	7.2	0.00009	
FMC-b	76000	1	1.3	4.5	0.00006	
FMC-c	58000	1.4	2.5	8.4	0.00014	
	Geometric Mean	Total Mercury Sc	oil/Sediment Bioa	vailability Factor	0.00009	

Reference:

Xu, X. et al. 2019. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA), Science of The Total Environment. 668, 261-270.

TABLE 29. Total Mercury in Spiked Soil/Sediment/Porewater and Bioavailability Calculations (Chibunda et al., 2009)

Conc. in Sediment mg /Kg dry weight	Conc. in Porewater mg/L	Total Mercury Soil/Sed. Bioavailability Factor (conc. in porewater ÷ conc. in sediment)
0.59	0.00001	0.00002
0.93	0.09	0.09
2.42	0.14	0.06
3.84	0.32	0.08
7.20	0.51	0.07
12.68	0.80	0.06
Geometric Mean Total Merc	ury Soil/Sed. Bioavailability Factor	0.018

Reference:

Chibunda, R. T. et al. 2009. Chronic Toxicity of Mercury (HgCl2) to the Benthic Midge *Chironomus riparius*. Int. J. Environ. Res., 3(3):455-462.

TABLE 30. Total Mercury In Soil/Sediment/Porewater near a Chloralkali Plant and Bioavailabilty Calculations (Chalmers et al., 2013)

Location	Total Mercury Soil/Sediment Concentration mg/kg	Total Mercury Porewater Concentration mg/L	Soil/Sediment Bioavailability Factor	
Sed. Reference 1 Location	0.03	0.0000007	0.000023	
Sed. Downstream	0.114	0.00000172	0.000015	
Sed. Reference 2 Location	0.026	0.0000007	0.000027	
Sed. Nearstream Reach	0.117	0.00000132	0.000011	
Sed. Farstream	0.111	0.00000172	0.000015	

Total Geometric Mean Total Mercury Soil/Sed. Bioavailability Factor	
---	--

0.00002

Note:

Sediment and porewater are median concentrations.

Reference:

Chalmers, A. et al. 2013. Characterization of Mercury Contamination in the Androscoggin River, Coos County, New Hampshire, USGS, USEPA, USDOI.

TABLE 31. Calculation of Lead Soil-to-Bird Bioconcentration Factor

Matrix ^a	Lea (mg/kg	
Location:	Bake Oven Knob	Palmerton
Soil horizon		
01	99	1200
02	490	2700
A1	150	41
A2	17	17
Average Soil Concentration	105	218
Songbird Carcass (average)	15	56
Soil-to-bird BCF	0.1422	0.2569
Soil-to-bird BCF (Geometric Mean)	0.19	91

Notes:

a) Each soil sample is a pool of 10 samples.

Bake Oven Knob birds: catbird, wood thrush, black-and-white warbler, warbler,

Palmerton birds: Carolina chickadee, catbird, brown thrasher, robin, wood thrush, black-and-white warbler, yellow-throated warbler, common grackle, rufous-sided towhee, and field sparrow.

Reference:

Beyer, W.N., Pattee, O.H., Sileo, L., Hoffman, D.J., and B.M. Mulhern. 1985. Metal Contamination in Wildlife Living Near Two Zinc Smelters. Environmental Pollution (Series A) 38: 63-86.

TABLE 32. Calculation of Mercury Soil-to-Bird Bioconcentration Factor

Matrix ^a	Mercury (mg/kg wet weight)	Soil-to-Bird BCF	Reference
Sediment	0.5		White and Cromartie, 1985
Liver	0.1	0.200	

Matrix [□]	Mercury (mg/kg)	Soil-to-Bird BCF	Reference
Soil	2		Adair et al., 2003.
Kidney	0.22	0.110	

Notes:

a) Livers: 10 samples American advocet and 10 samples Black-necked stilt. Sediment: 3 samples, range (0.4 - 0.7 mg/kg), geomean = 0.5 mg/kg

b) Soil concentration is the minimum site geometric mean of four samples at a location. Kidney concentration is the maximum site geometric mean of kidneys at a nesting location. Minimum soil and maximum kidney are used as a conservative approach.

References:

White, D.H. and E. Cromartie. 1985. Bird Use and Heavy Metal Accumulation in Waterbirds at Dredge Disposal Impoundments, Corpus Christi, Texas. Bulletin of Environmental Contamination and Toxicology 34: 295-300.

Adair, B.M., Reynolds, K.D., McMurray, S.T., and G.P. Cobb. 2003. Mercury Occurrence in Prothonotary Warblers (Protonotaria citrea) Inhabiting a National Priorities List Site and Reference Areas in Southern Alabama. Archives of Environmental Contamination and Toxicology 44: 265–271.

APPENDIX J HQ CALCULATIONS

15 March 2022

Soil HQ Calculations (95% UCL Conc.): Area 4 Prelim AOI 1 (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on 95%	UCL values
Proportion of diet, plants	1	Рр					
Spatial factor	0.000044	SF					
Temporal factor	0.3	TF					
Area use factor	0.000013	AUF					
			Absorbed F	Fraction (AF)	Absorbed C	oncentration	
			AbsorbedT		from Medium and Biota		
	95% UCL Soil				<i>i</i>		
	Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3437	600	0.0002	0.0046	0.00895	2.21	0.000000488

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-1. Table 2 Soil HQ Calculations (95% UCL Conc.): Area 4 Prelim AOI 1 (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Haves Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on 9	5% UCL values	
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi]						
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Concentration from Medium and Biota			
COPEC	95% UCL Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Barium	3437	600	0.0002	0.0046	0.091	0.0121	1.92	21.4	0.0117

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 4 Prelim AOI 1.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

Where:

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 4 Prelim AOI 1 (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on 95%	6 UCL values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.52	SF					
Temporal factor	0.3	TF					
Area use factor	0.16	AUF					
			Absorbed F	raction (AF)		oncentration m and Biota	
	95% UCL Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	3437	600	0.0002	0.091	0.00959	46.9	0.0122

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

N = Number of different biota types in diet (food types)

- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species

- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 4 Prelim AOI 1 (0-4'): Red-tailed Hawk

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk		· · ·					
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.00058	SF					
Temporal factor	0.3	TF					
Area use factor	0.00017	AUF					
			Absorbed F	Fraction (AF)	Abso Concentra		
COPEC	95% UCL Soil Concentration (0-4')	TRV	BCF mammals	BCF birds	Mammals	Birds	НQ
Barium	3437	600	0.0566	0.0566	11.8	1.77	0.00000394
Danum	5437	000	0.0000	0.0000	11.0	1.11	0.00000394

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 4 Prelim AOI 1 (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps	1				
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on 95%	UCL values
Proportion of diet, plants	1	Рр					
Spatial factor	0.15	SF					
Temporal factor	0.3	TF					
Area use factor	0.045	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	95% UCL Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3437	5433	0.0002	0.0046	0.00563	2.06	0.0000171

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-1. Table 6 Soil HQ Calculations (95% UCL Conc.): Area 4 Prelim AOI 1 (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

n		· · ·															
arameter	Value	Symbol															
Body weight (kg)	5.78	BW															
Soil ingestion proportion	0.094	Ps															
Food ingestion Rate (kg/kgBW/d)	0.035	FIR								Calculations	based on 95	5% UCL value	S				
Proportion of diet, plants	0.743	Рр															
Proportion of diet, soil inverts	0.123	Pi															
Proportion of diet, mammals	0.089	Pm															
Proportion of diet, birds	0.02	Pb															
Proportion of diet, benthic inverts	0.021	Pbi															
Proportion of diet, fish	0.004	Pf															
Spatial factor	0.0033	SF															
Temporal factor	0.3	TF															
Area use factor	0.00099	AUF								-							
			Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota														
	95% UCL Soil Concentration		Soil bio-		BCF soil	BCF		BCF benthic		Soil/					Benthic		
COPEC	(0-4')	TRV	factor	BCF plants	inverts	mammals			BCF fish	Sediment	Plants	Soil Inverts		Birds	Inverts	Fish	
Barium	3437	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00226	0.411	1.35	0.606	0.136	NA	NA	0.00

Notes:

Soil concentrations are in mg/kg dry weight.

95% UCL soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 4 Prelim AOI 1 (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on 95%	UCL values	
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000017	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000051	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con	centration fr and Biota	om Medium	
COPEC	95% UCL Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF mammals	Soil/ Sediment	Plants	Mammals	HQ
Barium	3437	5433	0.0002	0.0046	0.0566	0.000539	0.0443	4.90	0.0000000464

Notes:

Soil concentrations are in mg/kg dry weight.

95% UCL soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 5 Prelim AOI (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on 95%	UCL values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.000044	SF					
Temporal factor	0.3	TF					
Area use factor	0.000013	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	95% UCL Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	4425	600	0.0002	0.0046	0.0115	2.85	0.000000630

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-2. Table 2 Soil HQ Calculations (95% UCL Conc.): Area 5 Prelim AOI (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Haves Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on 9	5% UCL values	
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi]						
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abso	orbed Fraction	(AF)	Absorbec Mee			
COPEC	95% UCL Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Barium	4425	600	0.0002	0.0046	0.091	0.0156	2.48	27.5	0.0150

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 5 Prelim AOI (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on 95%	% UCL values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.52	SF					
Temporal factor	0.3	TF					
Area use factor	0.16	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediu	oncentration m and Biota	
	95% UCL Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	4425	600	0.0002	0.091	0.0123	60.4	0.0157

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

N = Number of different biota types in diet (food types)

- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species

- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 5 Prelim AOI (0-4'): Red-tailed Hawk

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.00058	SF					
Temporal factor	0.3	TF					
Area use factor	0.00017	AUF					
			Absorbed F	Fraction (AF)		orbed ation from	
COPEC	95% UCL Soil Concentration (0-4')	TRV	BCF mammals	BCF birds	Mammals	Birds	НQ
Barium	4425	600	0.0566	0.0566	15.3	2.28	0.00000510

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 5 Prelim AOI (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on 95%	UCL values
Proportion of diet, plants	1	Рр					
Spatial factor	0.15	SF					
Temporal factor	0.3	TF					
Area use factor	0.045	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	95% UCL Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	4425	5433	0.0002	0.0046	0.00725	2.65	0.0000220

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-2. Table 6 Soil HQ Calculations (95% UCL Conc.): Area 5 Prelim AOI (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon																	
Parameter	Value	Symbol															
Body weight (kg)	5.78	BW															
Soil ingestion proportion	0.094	Ps															
Food ingestion Rate (kg/kgBW/d)	0.035	FIR								Calculations	based on 95	5% UCL value	S				
Proportion of diet, plants	0.743	Рр															
Proportion of diet, soil inverts	0.123	Pi															
Proportion of diet, mammals	0.089	Pm															
Proportion of diet, birds	0.02	Pb															
Proportion of diet, benthic inverts	0.021	Pbi															
Proportion of diet, fish	0.004	Pf															
Spatial factor	0.0033	SF															
Temporal factor	0.3	TF															
Area use factor	0.00099	AUF															
					Abso	orbed Fraction	n (AF)				Abs	sorbed Conce	entration from	n Medium an	d Biota		
	95%UCL Soil Concentration		Soil bio-		BCF soil	BCF		BCF benthic		Soil/					Benthic		
COPEC	(0-4')	TRV	factor	BCF plants			BCF birds		BCF fish	Sediment	Plants	Soil Inverts		Birds	Inverts	Fish	НС
Barium	4425	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00291	0.529	1.73	0.78	0.175	NA	NA	0.00000

Notes:

Soil concentrations are in mg/kg dry weight.

95% UCL soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 5 Prelim AOI (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on 95%	UCL values	
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000017	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000051	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con	centration fr and Biota	om Medium	
COPEC	95% UCL Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF mammals	Soil/ Sediment	Plants	Mammals	HQ
Barium	4425	5433	0.0002	0.0046	0.0566	0.000694	0.057	6.31	0.0000000598

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 6 Prelim AOI (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on 95%	6 UCL values
Proportion of diet, plants	1	Рр					
Spatial factor	0.000044	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.000013	AUF					
			Absorbed F	Fraction (AF)	Absorbed C from Mediu		
	95% UCL Soil						
	Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	4597	600	0.0002	0.0046	0.012	2.96	0.000000654

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-3. Table 2 Soil HQ Calculations (95% UCL Conc.): Area 6 Prelim AOI (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Haves Qil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on 9	5% UCL values	
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abso	rbed Fraction	(AF)	Absorbec Mee			
	95% UCL Soil Concentration		Soil bio-		BCF soil	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	inverts	Sediment	Plants	Soil Inverts	HQ
Barium	4597	600	0.0002	0.0046	0.091	0.0162	2.57	28.6	0.0156

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 6 Prelim AOI (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat											
Parameter	Value	Symbol									
Body weight (kg)	0.01	BW									
Soil ingestion proportion	0.093	Ps									
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on 95%	% UCL values				
Proportion of diet, soil inverts	1	Pi									
Spatial factor	0.52	SF									
Temporal factor	0.3	TF	7								
Area use factor	0.16	AUF									
			Absorbed F	raction (AF)		oncentration m and Biota					
	95% UCL Soil Concentration		Soil bio-	BCF soil	Soil/						
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ				
Barium	4597	600	0.0002	0.091	0.0128	62.7	0.0163				

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 6 Prelim AOI (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk		,					
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.00058	SF					
Temporal factor	0.3	TF					
Area use factor	0.00017	AUF					
			Absorbed F	Fraction (AF)		orbed ation from	
	95% UCL Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	4597	600	0.0566	0.0566	15.8	2.37	0.00000527

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 6 Prelim AOI (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW]				
Soil ingestion proportion	0.063	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.13	FIR]		Calculations	based on 95%	UCL values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.15	SF]				
Temporal factor	0.3	TF					
Area use factor	0.045	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	95% UCL Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	4597	5433	0.0002	0.0046	0.00753	2.75	0.0000228

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-3. Table 6 Soil HQ Calculations (95% UCL Conc.): Area 6 Prelim AOI (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon				
Parameter	Value	Symbol		
Body weight (kg)	5.78	BW		
Soil ingestion proportion	0.094	Ps		
Food ingestion Rate (kg/kgBW/d)	0.035	FIR		Calculations based of
Proportion of diet, plants	0.743	Рр		
Proportion of diet, soil inverts	0.123	Pi		
Proportion of diet, mammals	0.089	Pm		
Proportion of diet, birds	0.02	Pb		
Proportion of diet, benthic inverts	0.021	Pbi		
Proportion of diet, fish	0.004	Pf		
Spatial factor	0.0033	SF		
Temporal factor	0.3	TF		
Area use factor	0.00099	AUF		
			Absorbed Fraction (AF)	

Area use factor	0.00099	AUF															
				Absorbed Fraction (AF)						Absorbed Concentration from Medium and Biota							
	95% UCL Soil Concentration		Soil bio-		BCF soil			BCF benthic		Soil/					Benthic		
COPEC	(0-4')	TRV	factor	BCF plants	inverts	mammals	BCF birds	inverts	BCF fish	Sediment	Plants	Soil Inverts	Mammals	Birds	Inverts	Fish	HQ
Barium	4597	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00302	0.55	1.8	0.81	0.182	NA	NA	0.000000610

Notes:

Soil concentrations are in mg/kg dry weight.

95% UCL soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

5% UCL values

Soil HQ Calculations (95% UCL Conc.): Area 6 Prelim AOI (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote		· · · · · ·							
Parameter	Value	Symbol							
Body weight (kg)	14	BW	1						
Soil ingestion proportion	0.028	Ps]						
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations b	ased on 95%	UCL values	
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000017	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000051	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con	centration fr and Biota	om Medium	
	95% UCL Soil Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	4597	5433	0.0002	0.0046	0.0566	0.000721	0.0592	6.56	0.0000000621

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

/h a ra i

- <u>Where:</u>
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 8 Prelim AOI (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on 95%	UCL values
Proportion of diet, plants	1	Рр					
Spatial factor	0.00015	SF					
Temporal factor	0.3	TF					
Area use factor	0.000045	AUF					
			Absorbed F	Fraction (AF)	Absorbed C	oncentration	
			Absorbed i		from Mediu	m and Biota	
	95% UCL Soil						
	Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	4699	600	0.0002	0.0046	0.0122	3.03	0.00000228

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-4. Table 2 Soil HQ Calculations (95% UCL Conc.): Area 8 Prelim AOI (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Haves Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on 9	5% UCL values	
Proportion of diet, plants	0.64	Рр]						
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	1	SF							
Femporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abso	orbed Fraction	(AF)		l Concentra		
COPEC	95% UCL Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Barium	4699	600	0.0002	0.0046	0.091	0.0166	2.63	29.2	0.0159

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 8 Prelim AOI (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on 95%	6 UCL values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	1	SF					
Temporal factor	0.3	TF					
Area use factor	0.3	AUF					
			Absorbed F	raction (AF)		oncentration m and Biota	
	95% UCL Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	4699	600	0.0002	0.091	0.0131	64.1	0.0321

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

N = Number of different biota types in diet (food types)

- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species

- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 8 Prelim AOI (0-4'): Red-tailed Hawk

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.002	SF					
Temporal factor	0.3	TF					
Area use factor	0.0006	AUF					
			Absorbed F	raction (AF)	Abso Concentra		
	95% UCL Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	4699	600	0.0566	0.0566	16.2	2.42	0.0000186

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 8 Prelim AOI (0-4'): Swamp Rabbit Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on 95%	UCL values
Proportion of diet, plants	1	Рр					
Spatial factor	0.52	SF					
Temporal factor	0.3	TF					
Area use factor	0.16	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	95% UCL Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	4699	5433	0.0002	0.0046	0.0077	2.81	0.0000809

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-4. Table 6 Soil HQ Calculations (95% UCL Conc.): Area 8 Prelim AOI (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon																	-
Parameter	Value	Symbol															
Body weight (kg)	5.78	BW															
Soil ingestion proportion	0.094	Ps															
Food ingestion Rate (kg/kgBW/d)	0.035	FIR								Calculations	based on 98	5% UCL values	5				
Proportion of diet, plants	0.743	Рр															
Proportion of diet, soil inverts	0.123	Pi															
Proportion of diet, mammals	0.089	Pm															
Proportion of diet, birds	0.02	Pb															
Proportion of diet, benthic inverts	0.021	Pbi															
Proportion of diet, fish	0.004	Pf															
Spatial factor	0.011	SF															
Temporal factor	0.3	TF															
Area use factor	0.0033	AUF															
					Abso	rbed Fractio	n (AF)				Abs	sorbed Conce	ntration from	n Medium and	d Biota		
COPEC	95%UCL Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	BCF	BCF birds	BCF benthic inverts	BCF fish	Soil/ Sediment	Plants	Soil Inverts	Mammals	Birds	Benthic Inverts	Fish	HQ
Barium	4699	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00309	0.562	1.84	0.828	0.186	NA	NA	0.00000
Banam	1000	0,00	0.0002	0.0040	0.001	0.0000	0.0000			0.00000	0.002	1.04	0.020	0.100		1473	0.0000

Notes:

Soil concentrations are in mg/kg dry weight.

95% UCL soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (95% UCL Conc.): Area 8 Prelim AOI (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on 95%	UCL values	
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000059	SF							
Temporal factor	0.3	TF							
Area use factor	0.000018	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con	centration fr and Biota	om Medium	
COPEC	95% UCL Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF mammals	Soil/ Sediment	Plants	Mammals	HQ
Barium	4699	5433	0.0002	0.0046	0.0566	0.000737	0.0605	6.70	0.000000220

Notes:

Soil concentrations are in mg/kg dry weight. 95% UCL soil concentrations in Area 8 Prelim AOI.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 1 (0-4'): Mourning Dove Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Haves Oil & Gas Fields. Calcasieu and Jefferson Davis Parishes. Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр					
Spatial factor	0.000044	SF]				
Temporal factor	0.3	TF					
Area use factor	0.000013	AUF					
			Absorbed F	Fraction (AF)	Absorbed Co from Mediu		
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	2537	600	0.0002	0.0046	0.00661	1.63	0.000000360
Lead	27.2	1.63	0.01	0.0389	0.00354	0.148	0.00000123
Mercury	0.12	3.25	0.00031	0.27	0.00000484	0.00454	0.000000184

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{\pi DW} = HQ$$

TRV Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-5. Table 2 Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 1 (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Haves Oil & Gas Fields. Calcasieu and Jefferson Davis Parishes. Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on av	erage values	
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abco	rbed Fraction		Absorbed	Concentrat	tion from	
			Abso			Мес	lium and Bi	ota	
	Average Soil Concentration		Soil bio-		BCF soil	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	inverts	Sediment	Plants	Soil Inverts	HQ
Barium	2537	600	0.0002	0.0046	0.091	0.00897	1.42	15.8	0.00861
Lead	27.2	1.63	0.01	0.0389	0.266	0.00481	0.129	0.495	0.116
Mercury	0.12	3.25	0.00031	0.27	1.693	0.00000657	0.00394	0.0139	0.00165

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 1 (0-4'): Common Yellowthroat Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat		, i i i i i i i i i i i i i i i i i i i					
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ave	erage values
Proportion of diet, soil inverts	1	Pi					-
Spatial factor	0.52	SF					
Temporal factor	0.3	TF					
Area use factor	0.16	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediur		
	Average Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	2537	600	0.0002	0.091	0.00708	34.6	0.00900
Lead	27.2	1.63	0.01	0.266	0.00379	1.09	0.105
Mercury	0.12	3.25	0.00031	1.693	0.00000519	0.0305	0.00146

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{mnu} = HQ$$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 1 (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk		,					
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.00058	SF					
Temporal factor	0.3	TF					
Area use factor	0.00017	AUF					
			Absorbed F	Fraction (AF)	Abso Concentra	rbed ation from	
	Average Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	2537	600	0.0566	0.0566	8.74	1.31	0.0000029
Lead	27.2	1.63	0.1054	0.191	0.175	0.0473	0.000023
Mercury	0.12	3.25	0.0534	0.148	0.00039	0.000162	0.0000002

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 1 (0-4'): Swamp Rabbit Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Haves Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.13	FIR]		Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.15	SF]				
Temporal factor	0.3	TF					
Area use factor	0.045	AUF					
			Absorbed F	Fraction (AF)	Absorbed Co from Mediu		
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	2537	5433	0.0002	0.0046	0.00416	1.52	0.0000126
Lead	27.2	4.7	0.01	0.0389	0.00223	0.138	0.00134
Mercury	0.12	1.01	0.00031	0.27	0.00000305	0.00421	0.000188

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-5. Table 6 Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 1 (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon				
Parameter	Value	Symbol		
Body weight (kg)	5.78	BW		
Soil ingestion proportion	0.094	Ps		
Food ingestion Rate (kg/kgBW/d)	0.035	FIR		Ca
Proportion of diet, plants	0.743	Рр		
Proportion of diet, soil inverts	0.123	Pi		
Proportion of diet, mammals	0.089	Pm		
Proportion of diet, birds	0.02	Pb		
Proportion of diet, benthic inverts	0.021	Pbi		
Proportion of diet, fish	0.004	Pf		
Spatial factor	0.0033	SF		
Temporal factor	0.3	TF		
Area use factor	0.00099	AUF		
			Absorbed Fraction (AF)	

Area use factor	0.00099	AUF															
				Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota													
COPEC	Average Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	BCF mammals		BCF benthic inverts	BCF fish	Soil/ Sediment	Plants	Soil Inverts	Mammals	Birds	Benthic Inverts	Fish	HQ
Barium	2537	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00167	0.303	0.994	0.447	0.101	NA	NA	0.00000336
Lead	27.2	4.7	0.01	0.0389	0.266	0.1054	0.191	NA	NA	0.000895	0.0275	0.0311	0.00893	0.00364	NA	NA	0.0000152
Mercury	0.12	1.01	0.00031	0.27	1.693	0.0534	0.148	NA	NA	0.000000122	0.000843	0.000875	0.00002	0.0000124	NA	NA	0.00000172

Notes:

Soil concentrations are in mg/kg dry weight.

Average soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TDV} = HQ$$

TRV

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species

P_s = Soil ingestion as a proportion of diet

AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

verage values

APPENDIX J-5. Table 7 Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 1 (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps]						
Food ingestion Rate (kg/kgBW/d)	0.028	FIR]			Calculations ba	ased on aver	age values	
Proportion of diet, plants	0.1	Рр]						
Proportion of diet, mammals	0.9	Pm]						
Spatial factor	0.000017	SF]						
Temporal factor	0.3	TF]						
Area use factor	0.0000051	AUF							
			Abso	rbed Fraction		Absorbed Con	centration fr	om Medium	
			Absu				and Biota		
	Average Soil Concentration		Soil bio-		BCF	Soil/			
COPEC		TDV		BCE planta			Dianto	Mammals	HQ
	(0-4')	TRV	factor	BCF plants		Sediment	Plants		
Barium	2537	5433	0.0002	0.0046	0.0566	0.000398	0.0327	3.62	0.0000000343
Lead	27.2	4.7	0.01	0.0389	0.1054	0.000213	0.00296	0.0722	0.000000818
Mercury	0.12	1.01	0.00031	0.27	0.0534	0.000000292	0.0000907	0.000161	0.0000000127

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 2 (0-4'): Mourning Dove Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Haves Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0000037	SF					
Temporal factor	0.3	TF					
Area use factor	0.0000011	AUF					
			Absorbed B	Fraction (AF)	Absorbed Co	oncentration	
			Absorbed i		from Mediu	m and Biota	
	Average Soil Concentration		Soil bio-		Soil/		
COPEC		тру		PCE planta		Planta	HQ
	(0-4')	TRV	factor	BCF plants	Sediment	Plants	•
Barium	2176	600	0.0002	0.0046	0.00567	1.4	0.0000000260

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 2.

 $([Soil = n D = n E D = n A E] + [\Sigma^N D = n D = n E D = A E])$

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-6. Table 2 Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 2 (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps]						
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on av	verage values	
Proportion of diet, plants	0.64	Рр]						
Proportion of diet, soil inverts	0.36	Pi]						
Spatial factor	0.2	SF]						
Temporal factor	0.3	TF							
Area use factor	0.06	AUF							
			Abso	orbed Fraction	(AF)		l Concentra dium and Bi		
	Average Soil Concentration		Soil bio-		BCF soil	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants		Sediment	Plants	Soil Inverts	HQ
Barium	2176	600	0.0002	0.0046	0.091	0.00769	1.22	13.5	0.00147

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 2 (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ave	erage values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.043	SF					
Temporal factor	0.3	TF]				
Area use factor	0.013	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediu		
	Average Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	2176	600	0.0002	0.091	0.00607	29.7	0.000639

Notes:

Soil concentrations are in mg/kg dry weight.

Average soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 2 (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.000048	SF					
Temporal factor	0.3	TF					
Area use factor	0.000014	AUF					
			Absorbed F	Fraction (AF)		orbed ation from	
					Concentra		
	Average Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	2176	600	0.0566	0.0566	7.5	1.12	0.00000207

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 2 (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW]				
Soil ingestion proportion	0.063	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.13	FIR]		Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.013	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0039	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	2176	5433	0.0002	0.0046	0.00356	1.3	0.00000936

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-6. Table 6 Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 2 (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon				
Parameter	Value	Symbol		
Body weight (kg)	5.78	BW		
Soil ingestion proportion	0.094	Ps		
Food ingestion Rate (kg/kgBW/d)	0.035	FIR		Calculatio
Proportion of diet, plants	0.743	Рр		
Proportion of diet, soil inverts	0.123	Pi		
Proportion of diet, mammals	0.089	Pm		
Proportion of diet, birds	0.02	Pb		
Proportion of diet, benthic inverts	0.021	Pbi		
Proportion of diet, fish	0.004	Pf		
Spatial factor	0.00027	SF		
Temporal factor	0.3	TF		
Area use factor	0.000081	AUF		
			Absorbed Fraction (AF)	

Area use factor	0.000081	AUF															
				Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota													
COPEC	Average Soil Concentration (0-4')		Soil bio- factor	BCF plants	BCF soil inverts	BCF	BCF birds	BCF benthic inverts	BCF fish	Soil/ Sediment	Plants	Soil Inverts	Mammals	Birds	Benthic Inverts	Fish	HQ
Barium	2176	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00143	0.26	0.852	0.384	0.0862	NA	NA	0.000000236

Notes:

Soil concentrations are in mg/kg dry weight.

Average soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

verage values

Soil HQ Calculations (Average Conc.): Area 4 Prelim AOI 2 (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations b	ased on aver	age values	
Proportion of diet, plants	0.1	Рр]						
Proportion of diet, mammals	0.9	Pm]						
Spatial factor	0.0000014	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000004	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Cor	ncentration fr and Biota	om Medium	
	Average Soil Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	2176	5433	0.0002	0.0046	0.0566	0.000341	0.028	3.10	0.00000000242

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 5 Prelim AOI (0-4'): Mourning Dove Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр					
Spatial factor	0.000044	SF					
Temporal factor	0.3	TF					
Area use factor	0.000013	AUF					
			Absorbed Fraction (AF)		Absorbed Concentration		
					from Medium and Biota		
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3084	600	0.0002	0.0046	0.00803	1.99	0.000000440

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-7. Table 2 Soil HQ Calculations (Average Conc.): Area 5 Prelim AOI (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on av	verage values	
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Absorbed Fraction (AF)			Absorbec Mee			
COPEC	Average Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Barium	3084	600	0.0002	0.0046	0.091	0.0109	1.73	19.2	0.0105

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 5 Prelim AOI (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ave	rage values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.52	SF					
Temporal factor	0.3	TF]				
Area use factor	0.16	AUF					
			Absorbed Fraction (AF)		Absorbed Co from Mediu		
	Average Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	3084	600	0.0002	0.091	0.0086	42.1	0.0109

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

N = Number of different biota types in diet (food types)

- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species

- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 5 Prelim AOI (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.00058	SF					
Temporal factor	0.3	TF					
Area use factor	0.00017	AUF					
			Absorbed F	Fraction (AF)		orbed ation from	
COPEC	Average Soil Concentration	TRV	BCF	BCF birds	Mammals	Birds	ЧО
	(0-4')		mammals				HQ
Barium	3084	600	0.0566	0.0566	10.6	1.59	0.00000354

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 5 Prelim AOI (0-4'): Swamp Rabbit Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on aver	age values
Proportion of diet, plants	1	Рр					
Spatial factor	0.15	SF					
Temporal factor	0.3	TF					
Area use factor	0.045	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3084	5433	0.0002	0.0046	0.00505	1.84	0.0000153

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-7. Table 6 Soil HQ Calculations (Average Conc.): Area 5 Prelim AOI (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon		· · · ·															
Parameter	Value	Symbol															
Body weight (kg)	5.78	BW															
Soil ingestion proportion	0.094	Ps															
Food ingestion Rate (kg/kgBW/d)	0.035	FIR								Calculations	based on av	erage values	;				
Proportion of diet, plants	0.743	Рр															
Proportion of diet, soil inverts	0.123	Pi															
Proportion of diet, mammals	0.089	Pm															
Proportion of diet, birds	0.02	Pb															
Proportion of diet, benthic inverts	0.021	Pbi															
Proportion of diet, fish	0.004	Pf															
Spatial factor	0.0033	SF															
Temporal factor	0.3	TF															
Area use factor	0.00099	AUF															
					Abso	orbed Fraction	n (AF)				Abs	sorbed Conce	ntration from	n Medium an	d Biota		
COPEC	Average Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	BCF mammals	BCF birds	BCF benthic inverts	BCF fish	Soil/ Sediment	Plants	Soil Inverts	Mammals	Birds	Benthic Inverts	Fish	НQ
Barium	3084	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00203	0.369	1.21	0.544	0.122	NA	NA	0.000000409

Notes:

Soil concentrations are in mg/kg dry weight.

Average soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 5 Prelim AOI (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on aver	age values	
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000017	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000051	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con	centration fr and Biota	om Medium	
COPEC	Average Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF mammals	Soil/ Sediment	Plants	Mammals	HQ
Barium	3084	5433	0.0002	0.0046	0.0566	0.000484	0.0397	4.40	0.0000000417

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 6 Prelim AOI (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR]		Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.000044	SF]				
Temporal factor	0.3	TF					
Area use factor	0.000013	AUF					
			Absorbed F	Fraction (AF)	Absorbed Co from Mediur		
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3785	600	0.0002	0.0046	0.00986	2.44	0.000000539
Lead	29.4	1.63	0.01	0.0389	0.00383	0.16	0.00000133
Mercury	0.123	3.25	0.00031	0.27	0.00000496	0.00465	0.000000189

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-8. Table 2 Soil HQ Calculations (Average Conc.): Area 6 Prelim AOI (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird Parameter Value Symbol Body weight (kg) 0.05 BW 0.093 Ps Soil ingestion proportion Food ingestion Rate (kg/kgBW/d) 0.19 FIR Calculations based on average values Proportion of diet, plants 0.64 Pp Proportion of diet, soil inverts 0.36 Pi Spatial factor SF 1 Temporal factor 0.3 TF AUF Area use factor 0.3 Absorbed Concentration from **Absorbed Fraction (AF) Medium and Biota Average Soil** Concentration Soil bio-**BCF** soil Soil/ COPEC Soil Inverts HQ (0-4')TRV factor **BCF** plants inverts Sediment **Plants** Barium 3785 600 0.0002 0.0046 0.091 0.0134 2.12 23.6 0.0129 29.4 1.63 0.01 0.0389 0.266 0.00519 0.139 0.535 0.125 Lead Mercury 3.25 0.27 1.693 0.00000674 0.00404 0.0142 0.00168 0.123 0.00031

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 6 Prelim AOI.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 6 Prelim AOI (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ave	erage values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.52	SF					
Temporal factor	0.3	TF					
Area use factor	0.16	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediur		
	Average Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	3785	600	0.0002	0.091	0.0106	51.7	0.0134
Lead	29.4	1.63	0.01	0.266	0.0041	1.17	0.112
Mercury	0.123	3.25	0.00031	1.693	0.00000532	0.0312	0.00150

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 6 Prelim AOI (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.00058	SF					
Temporal factor	0.3	TF					
Area use factor	0.00017	AUF					
			Absorbed F	Fraction (AF)		orbed ation from	
	Average Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	3785	600	0.0566	0.0566	13	1.95	0.0000434
Lead	29.4	1.63	0.1054	0.191	0.189	0.0511	0.0000256
Mercury	0.123	3.25	0.0534	0.148	0.0004	0.000166	0.00000030

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{\pi DU} = HQ$$

TRV

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 6 Prelim AOI (0-4'): Swamp Rabbit Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр					
Spatial factor	0.15	SF					
Temporal factor	0.3	TF					
Area use factor	0.045	AUF					
			Absorbed F	Fraction (AF)	oncentration m and Biota		
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3785	5433	0.0002	0.0046	0.0062	2.26	0.0000188
Lead	29.4	4.7	0.01	0.0389	0.00241	0.149	0.00145
Mercury	0.123	1.01	0.00031	0.27	3.12E-07	0.00432	0.000192

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 6 Prelim AOI (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon			
Parameter	Value	Symbol	
Body weight (kg)	5.78	BW	
oil ingestion proportion	0.094	Ps	
ood ingestion Rate (kg/kgBW/d)	0.035	FIR	
roportion of diet, plants	0.743	Рр	
roportion of diet, soil inverts	0.123	Pi	
roportion of diet, mammals	0.089	Pm	
roportion of diet, birds	0.02	Pb	
roportion of diet, benthic inverts	0.021	Pbi	
roportion of diet, fish	0.004	Pf	
patial factor	0.0033	SF	
emporal factor	0.3	TF	
rea use factor	0.00099	AUF	
			Absorbed Fraction (AF)

Area use factor	0.00099	AUF															
				Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota													
COPEC	Average Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	BCF mammals	BCF birds	BCF benthic inverts	BCF fish	Soil/ Sediment	Plants	Soil Inverts	Mammals	Birds	Benthic Inverts	Fish	HQ
Barium	3785	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00249	0.453	1.48	0.667	0.15	NA	NA	0.000000502
Lead	29.4	4.7	0.01	0.0389	0.266	0.1054	0.191	NA	NA	0.000967	0.0297	0.0337	0.00965	0.00393	NA	NA	0.0000164
Mercury	0.123	1.01	0.00031	0.27	1.693	0.0534	0.148	NA	NA	0.000000125	0.000864	0.000896	0.0000205	0.0000127	NA	NA	0.00000176

Notes:

Soil concentrations are in mg/kg dry weight.

Average soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

verage values

Soil HQ Calculations (Average Conc.): Area 6 Prelim AOI (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on aver	age values	
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000017	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000051	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con		om Medium	
					. (/		and Biota		
	Average Soil								
	Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	3785	5433	0.0002	0.0046	0.0566	0.000593	0.0488	5.40	0.0000000512
Lead	29.4	4.7	0.01	0.0389	0.1054	0.00023	0.0032	0.0781	0.000000885
Mercury	0.123	1.01	0.00031	0.27	0.0534	0.000000299	0.000093	0.000166	0.0000000131

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 6 Prelim AOI.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 8 Prelim AOI (0-4'): Mourning Dove Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps	1				
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.00015	SF					
Temporal factor	0.3	TF					
Area use factor	0.000045	AUF					
			Absorbed F	Fraction (AF)		oncentration	
				. ,	from Mediu	m and Biota	
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3767	600	0.0002	0.0046	0.00981	2.43	0.00000183

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-9. Table 2 Soil HQ Calculations (Average Conc.): Area 8 Prelim AOI (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on av	verage values	
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abso	orbed Fraction	(AF)		I Concentra		
COPEC	Average Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Barium	3767	600	0.0002	0.0046	0.091	0.0133	2.11	23.4	0.0128

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 8 Prelim AOI (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ave	rage values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	1	SF					
Temporal factor	0.3	TF					
Area use factor	0.3	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediu	oncentration m and Biota	
	Average Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	3767	600	0.0002	0.091	0.0105	51.4	0.0257

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

N = Number of different biota types in diet (food types)

- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species

- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 8 Prelim AOI (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.002	SF					
Temporal factor	0.3	TF					
Area use factor	0.0006	AUF					
			Absorbed F	raction (AF)		orbed ation from	
COPEC	Average Soil Concentration (0-4')	TRV	BCF mammals	BCF birds	Mammals	Birds	HQ
Barium	3767	600	0.0566	0.0566	13	1.94	0.0000149

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 8 Prelim AOI (0-4'): Swamp Rabbit Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on aver	age values
Proportion of diet, plants	1	Рр					
Spatial factor	0.52	SF					
Temporal factor	0.3	TF					
Area use factor	0.16	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3767	5433	0.0002	0.0046	0.00617	2.25	0.0000648

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-9. Table 6 Soil HQ Calculations (Average Conc.): Area 8 Prelim AOI (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon																	
Parameter	Value	Symbol															
Body weight (kg)	5.78	BW															
Soil ingestion proportion	0.094	Ps															
Food ingestion Rate (kg/kgBW/d)	0.035	FIR								Calculations	based on av	verage values	;				
Proportion of diet, plants	0.743	Рр															
Proportion of diet, soil inverts	0.123	Pi															
Proportion of diet, mammals	0.089	Pm															
Proportion of diet, birds	0.02	Pb															
Proportion of diet, benthic inverts	0.021	Pbi															
Proportion of diet, fish	0.004	Pf															
Spatial factor	0.011	SF															
Temporal factor	0.3	TF															
Area use factor	0.0033	AUF															
					Abso	rbed Fractio	n (AF)				Ab	sorbed Conce	entration from	n Medium an	d Biota		
COPEC	Average Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	BCF mammals	BCF birds	BCF benthic inverts	BCF fish	Soil/ Sediment	Plants	Soil Inverts	Mammals	Birds	Benthic Inverts	Fish	HQ
Barium	3767	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00248	0.451	1.48	0.664	0.149	NA	NA	0.00000167

Notes:

Soil concentrations are in mg/kg dry weight.

Average soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 8 Prelim AOI (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on aver	age values	
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000059	SF							
Temporal factor	0.3	TF							
Area use factor	0.000018	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con	centration fr and Biota	om Medium	
COPEC	Average Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF mammals	Soil/ Sediment	Plants	Mammals	HQ
Barium	3767	5433	0.0002	0.0046	0.0566	0.000591	0.0485	5.37	0.000000177

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 1 (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations I	based on max	kimum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.000044	SF					
Temporal factor	0.3	TF					
Area use factor	0.000013	AUF					
			Absorbed I	Fraction (AF)	Absorbed Co from Mediur		
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	7000	600	0.0002	0.0046	0.0182	4.51	0.000000996
Lead	54.5	1.63	0.01	0.0389	0.0071	0.297	0.00000246
Mercury	0.157	3.25	0.00031	0.27	0.00000634	0.00593	0.000000241

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{\pi DW} = HQ$$

TRV Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-10. Table 2 Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 1 (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Haves Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on m	aximum value	es
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abco	rbed Fraction		Absorbed	Concentrat	tion from	
			ADSU			Мес	lium and Bi	ota	
	Maximum Soil Concentration		Soil bio-		BCF soil	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	inverts	Sediment	Plants	Soil Inverts	HQ
Barium	7000	600	0.0002	0.0046	0.091	0.0247	3.92	43.6	0.0238
Lead	54.5	1.63	0.01	0.0389	0.266	0.00963	0.258	0.992	0.232
Mercury	0.157	3.25	0.00031	0.27	1.693	0.00000860	0.00515	0.0182	0.00216

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 1 (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.15	FIR]		Calculations	based on ma	ximum values
Proportion of diet, soil inverts	1	Pi]				
Spatial factor	0.52	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.16	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediur		
00050	Maximum Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	7000	600	0.0002	0.091	0.0195	95.6	0.0249
Lead	54.5	1.63	0.01	0.266	0.0076	2.17	0.208
Mercury	0.157	3.25	0.00031	1.693	0.00000679	0.0399	0.00192

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{mnu} = HQ$$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 1 (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.00058	SF					
Temporal factor	0.3	TF					
Area use factor	0.00017	AUF					
			Absorbed F	raction (AF)	Abso Concentra	orbed ation from	
	Maximum Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	7000	600	0.0566	0.0566	24.1	3.61	0.00008
Lead	54.5	1.63	0.1054	0.191	0.35	0.0947	0.000047
Mercury	0.157	3.25	0.0534	0.148	0.000511	0.000211	0.0000000

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 1 (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on max	kimum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.15	SF					
Temporal factor	0.3	TF					
Area use factor	0.045	AUF					
			Absorbed F	Fraction (AF)	Absorbed Co from Mediu		
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	7000	5433	0.0002	0.0046	0.0115	4.19	0.0000348
Lead	54.5	4.7	0.01	0.0389	0.00446	0.276	0.00269
Mercury	0.157	1.01	0.00031	0.27	0.00000399	0.00551	0.000246

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-10. Table 6 Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 1 (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon				
Parameter	Value	Symbol		
Body weight (kg)	5.78	BW		
Soil ingestion proportion	0.094	Ps		
Food ingestion Rate (kg/kgBW/d)	0.035	FIR		Calculations based
Proportion of diet, plants	0.743	Рр		
Proportion of diet, soil inverts	0.123	Pi		
Proportion of diet, mammals	0.089	Pm		
Proportion of diet, birds	0.02	Pb		
Proportion of diet, benthic inverts	0.021	Pbi		
Proportion of diet, fish	0.004	Pf		
Spatial factor	0.0033	SF		
Temporal factor	0.3	TF		
Area use factor	0.00099	AUF		
			Absorbed Fraction (AF)	

Area use factor	0.00099	AUF															
	Absorbed Fraction (AF)							Abs	orbed Conce	ntration from	n Medium and	l Biota					
COPEC	Maximum Soil Concentration (0-4')		Soil bio- factor	BCF plants	BCF soil inverts	BCF	BCF birds	BCF benthic inverts	BCF fish	Soil/ Sediment	Plants	Soil Inverts	Mammals	Birds	Benthic Inverts	Fish	HQ
Barium	7000	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00461	0.837	2.74	1.23	0.277	NA	NA	0.00000927
Lead	54.5	4.7	0.01	0.0389	0.266	0.1054	0.191	NA	NA	0.00179	0.0551	0.0624	0.0179	0.00729	NA	NA	0.0000304
Mercury	0.157	1.01	0.00031	0.27	1.693	0.0534	0.148	NA	NA	0.000000160	0.0011	0.00114	0.0000261	0.0000163	NA	NA	0.00000224

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TDV} = HQ$$

TRV

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species

P_s = Soil ingestion as a proportion of diet

AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

aximum values

APPENDIX J-10. Table 7 Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 1 (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on max	kimum value	S
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000017	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000051	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con		om Medium	
							and Biota		
	Maximum Soil								
	Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	7000	5433	0.0002	0.0046	0.0566	0.0011	0.0902	9.98	0.0000000945
Lead	54.5	4.7	0.01	0.0389	0.1054	0.000427	0.00594	0.145	0.000000164
Mercury	0.157	1.01	0.00031	0.27	0.0534	0.000000382	0.000119	0.000211	0.0000000167

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 2 (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps	1				
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on max	ximum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0000037	SF					
Temporal factor	0.3	TF					
Area use factor	0.0000011	AUF					
			Absorbed F	Fraction (AF)		oncentration	
			Absorbed i		from Mediu	m and Biota	
	Maximum Soil						
	Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3130	600	0.0002	0.0046	0.00815	2.02	0.0000000375

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 2 (0-4'): Red-winged Blackbird

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on m	aximum value	s
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	0.2	SF							
Temporal factor	0.3	TF							
Area use factor	0.06	AUF							
			Abso	orbed Fraction	(AF)		I Concentra		
COREC	Maximum Soil Concentration	TDV	Soil bio-	PCE planta	BCF soil	Soil/	Planta	Soil Inverte	
COPEC	(0-4')	TRV	factor	BCF plants		Sediment	Plants	Soil Inverts	HQ
Barium	3130	600	0.0002	0.0046	0.091	0.0111	1.75	19.5	0.00213

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 2 (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ma	ximum values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.043	SF					
Temporal factor	0.3	TF					
Area use factor	0.013	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediu	oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	3130	600	0.0002	0.091	0.00873	42.7	0.000918

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 2.

 $\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF = HQ$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 2 (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Haves Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk		· · · ·					
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.000048	SF					
Temporal factor	0.3	TF					
Area use factor	0.000014	AUF					
			Absorbed F	raction (AF)		orbed ation from	
	Maximum Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	3130	600	0.0566	0.0566	10.8	1.61	0.00000298

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 2 (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW]				
Soil ingestion proportion	0.063	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on may	timum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.013	SF]				
Temporal factor	0.3	TF					
Area use factor	0.0039	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	3130	5433	0.0002	0.0046	0.00513	1.87	0.00000135

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-11. Table 6 Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 2 (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon			
Parameter	Value	Symbol	
Body weight (kg)	5.78	BW	
Soil ingestion proportion	0.094	Ps	
ood ingestion Rate (kg/kgBW/d)	0.035	FIR	
Proportion of diet, plants	0.743	Рр	
Proportion of diet, soil inverts	0.123	Pi	
Proportion of diet, mammals	0.089	Pm	
Proportion of diet, birds	0.02	Pb	
roportion of diet, benthic inverts	0.021	Pbi	
Proportion of diet, fish	0.004	Pf	
Spatial factor	0.00027	SF	
emporal factor	0.3	TF	
Area use factor	0.000081	AUF	
			Absorbed Fraction (AF)

Area use factor	0.000081	AUF								-							
				Absorbed Fraction (AF)					Absorbed Concentration from Medium and Biota								
	Maximum Soil Concentration		Soil bio-		BCF soil	BCF		BCF benthic		Soil/					Benthic		
COPEC	(0-4')	TRV	factor	BCF plants	inverts	mammals	BCF birds	inverts	BCF fish	Sediment	Plants	Soil Inverts	Mammals	Birds	Inverts	Fish	HQ
Barium	3130	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00206	0.374	1.23	0.552	0.124	NA	NA	0.000000340

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

naximum values

Soil HQ Calculations (Maximum Conc.): Area 4 Prelim AOI 2 (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations b	ased on max	imum values	5
Proportion of diet, plants	0.1	Рр]						
Proportion of diet, mammals	0.9	Pm]						
Spatial factor	0.0000014	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000004	AUF							
			Abso	rbed Fraction	ı (AF)	Absorbed Cor	ncentration fr and Biota	om Medium	
	Maximum Soil Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	3130	5433	0.0002	0.0046	0.0566	0.000491	0.0403	4.46	0.0000000348

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 4 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- nere.
- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 5 Prelim AOI (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on max	kimum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.000044	SF					
Temporal factor	0.3	TF					
Area use factor	0.000013	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	6390	600	0.0002	0.0046	0.0166	4.12	0.000000910

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 5 Prelim AOI (0-4'): Red-winged Blackbird

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on m	aximum values	5
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abso	rbed Fraction	(AF)		I Concentra		
COPEC	Maximum Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil inverts	Soil/ Sediment	Plants	Soil Inverts	HQ
Barium	6390	600	0.0002	0.0046	0.091	0.0226	3.57	39.8	0.0217

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 5 Prelim AOI (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat										
Parameter	Value	Symbol								
Body weight (kg)	0.01	BW								
Soil ingestion proportion	0.093	Ps								
Food ingestion Rate (kg/kgBW/d)	0.15	FIR	Calculations based on maximum values							
Proportion of diet, soil inverts	1	Pi								
Spatial factor	0.52	SF								
Temporal factor	0.3	TF]							
Area use factor	0.16	AUF								
			Absorbed Fraction (AF)		Absorbed Concentration from Medium and Biota					
	Maximum Soil Concentration		Soil bio-	BCF soil	Soil/					
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ			
Barium	6390	600	0.0002	0.091	0.0178	87.2	0.0227			

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

N = Number of different biota types in diet (food types)

- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species

- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 5 Prelim AOI (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Haves Oil & Gas Fields. Calcasieu and Jefferson Davis Parishes. Louisiana

Red-tailed Hawk		,						
Parameter	Value	Symbol						
Body weight (kg)	1.1	BW						
Soil ingestion proportion	0	Ps						
Food ingestion Rate (kg/kgBW/d)	0.07	FIR						
Proportion of diet, mammals	0.87	Pm						
Proportion of diet, birds	0.13	Pb						
Spatial factor	0.00058	SF						
Temporal factor	0.3	TF						
Area use factor	0.00017	AUF						
Absorbed Fraction (AF) Concentration f								
COPEC	Maximum Soil Concentration (0-4')	TRV	BCF mammals	BCF birds	Mammals	Birds	HQ	
Barium	6390	600	0.0566	0.0566	22	3.29	0.00000733	

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 5 Prelim AOI (0-4'): Swamp Rabbit Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on max	imum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.15	SF					
Temporal factor	0.3	TF					
Area use factor	0.045	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	6390	5433	0.0002	0.0046	0.0105	3.82	0.0000317

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)

AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)

- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-12. Table 6 Soil HQ Calculations (Maximum Conc.): Area 5 Prelim AOI (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon																	
Parameter	Value	Symbol															
Body weight (kg)	5.78	BW															
Soil ingestion proportion	0.094	Ps															
Food ingestion Rate (kg/kgBW/d)	0.035	FIR								Calculations	based on m	aximum value	es				
Proportion of diet, plants	0.743	Рр															
Proportion of diet, soil inverts	0.123	Pi															
Proportion of diet, mammals	0.089	Pm															
Proportion of diet, birds	0.02	Pb															
Proportion of diet, benthic inverts	0.021	Pbi															
Proportion of diet, fish	0.004	Pf															
Spatial factor	0.0033	SF															
Temporal factor	0.3	TF															
Area use factor	0.00099	AUF															
					Abso	rbed Fractio	n (AF)				Abs	orbed Conce	ntration from	n Medium an	d Biota		
CODEC	Maximum Soil Concentration		Soil bio-	PCE plants	BCF soil	BCF		BCF benthic		Soil/	Dianto	Coil Inverte	Memmele	Birdo	Benthic	Fich	10
COPEC Barium	(0-4') 6390	TRV 5433	factor 0.0002	BCF plants 0.0046	inverts 0.091	mammals 0.0566	BCF birds 0.0566	inverts NA	BCF fish NA	Sediment 0.0042	Plants 0.764	Soil Inverts	1.13	Birds 0.253	Inverts NA	Fish NA	HQ 0.0000084
Danum	0290	5433	0.0002	0.0040	0.091	0.0000	0.0000	INA	INA	0.0042	0.764	2.3	1.13	0.200	INA	INA	0.0000084

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 5 Prelim AOI (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote		·							
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on max	imum values	5
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000017	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000051	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con	centration fr and Biota	om Medium	
COPEC	Maximum Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF mammals	Soil/ Sediment	Plants	Mammals	HQ
Barium	6390	5433	0.0002	0.0046	0.0566	0.001	0.0823	9.11	0.0000000863

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 5 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 6 Prelim AOI (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on max	kimum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.000044	SF					
Temporal factor	0.3	TF					
Area use factor	0.000013	AUF					
			Absorbed F	Fraction (AF)	Absorbed Co from Mediu		
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	7410	600	0.0002	0.0046	0.0193	4.77	0.000000105
Lead	54.2	1.63	0.01	0.0389	0.00706	0.295	0.00000245
Mercury	0.32	3.25	0.00031	0.27	0.000001290	0.0121	0.000000491

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-13. Table 2 Soil HQ Calculations (Maximum Conc.): Area 6 Prelim AOI (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al. Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations b	based on m	aximum value	S
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abso	orbed Fraction	ı (AF)		Concentra lium and Bi		
	Maximum Soil Concentration		Soil bio-		BCF soil	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	inverts	Sediment	Plants	Soil Inverts	HQ
Barium	7410	600	0.0002	0.0046	0.091	0.0262	4.14	46.1	0.0251
Lead	54.2	1.63	0.01	0.0389	0.266	0.00958	0.256	0.986	0.230
Mercury	0.32	3.25	0.00031	0.27	1.693	0.000001750	0.0105	0.0371	0.00439

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 6 Prelim AOI.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 6 Prelim AOI (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ma	ximum values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.52	SF					
Temporal factor	0.3	TF					
Area use factor	0.16	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediur		
	Maximum Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	7410	600	0.0002	0.091	0.0207	101	0.0263
Lead	54.2	1.63	0.01	0.266	0.00756	2.16	0.207
Mercury	0.32	3.25	0.00031	1.693	0.000001380	0.0813	0.00390

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 6 Prelim AOI (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.00058	SF					
Temporal factor	0.3	TF					
Area use factor	0.00017	AUF					
			Absorbed F	Fraction (AF)		orbed ation from	
	Maximum Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	7410	600	0.0566	0.0566	25.5	3.82	0.000085
Lead	54.2	1.63	0.1054	0.191	0.348	0.0942	0.0000472
Mercury	0.32	3.25	0.0534	0.148	0.00104	0.000431	0.0000007

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{\pi DU} = HQ$$

TRV Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 6 Prelim AOI (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW]				
Soil ingestion proportion	0.063	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.13	FIR]		Calculations	based on max	timum values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.15	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.045	AUF					
			Absorbed F	Fraction (AF)	Absorbed Co from Mediu		
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	7410	5433	0.0002	0.0046	0.0121	4.43	0.0000368
Lead	54.2	4.7	0.01	0.0389	0.00444	0.274	0.00267
Mercury	0.32	1.01	0.00031	0.27	0.00000812	0.0112	0.000499

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 6 Prelim AOI (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana Raccoon

Raccoon			
Parameter	Value	Symbol	
Body weight (kg)	5.78	BW	
Soil ingestion proportion	0.094	Ps	
ood ingestion Rate (kg/kgBW/d)	0.035	FIR	
roportion of diet, plants	0.743	Рр	
Proportion of diet, soil inverts	0.123	Pi	
roportion of diet, mammals	0.089	Pm	
Proportion of diet, birds	0.02	Pb	
roportion of diet, benthic inverts	0.021	Pbi	
roportion of diet, fish	0.004	Pf	
Spatial factor	0.0033	SF	
emporal factor	0.3	TF	
Area use factor	0.00099	AUF	
			Absorbed Erection (AE)

Area use factor	0.00099	AUF															
				Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota													
COPEC	Maximum Soil Concentration (0-4')		Soil bio- factor	BCF plants	BCF soil inverts	BCF mammals	BCF birds	BCF benthic inverts	BCF fish	Soil/ Sediment	Plants	Soil Inverts	Mammals	Birds	Benthic Inverts	Fish	HQ
Barium	7410	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00488	0.886	2.9	1.31	0.294	NA	NA	0.00000983
Lead	54.2	4.7	0.01	0.0389	0.266	0.1054	0.191	NA	NA	0.00178	0.0548	0.0621	0.0178	0.00725	NA	NA	0.0000303
Mercury	0.32	1.01	0.00031	0.27	1.693	0.0534	0.148	NA	NA	0.00000326	0.00225	0.00233	0.0000532	0.0000332	NA	NA	0.00000457

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 6 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

aximum values

Soil HQ Calculations (Maximum Conc.): Area 6 Prelim AOI (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on max	imum values	6
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000017	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000051	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con	centration fr and Biota	om Medium	
	Maximum Soil Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	7410	5433	0.0002	0.0046	0.0566	0.00116	0.0954	10.60	0.000000100
Lead	54.2	4.7	0.01	0.0389	0.1054	0.000425	0.0059	0.144	0.000000163
Mercury	0.32	1.01	0.00031	0.27	0.0534	0.000000778	0.000242	0.000431	0.0000000340

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 6 Prelim AOI.

$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{= HO}$

TRV

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Max Conc.): Area 8 Prelim AOI (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on max	kimum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.00015	SF					
Temporal factor	0.3	TF					
Area use factor	0.000045	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	7290	600	0.0002	0.0046	0.019	4.69	0.00000353

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Max Conc.): Area 8 Prelim AOI (0-4'): Red-winged Blackbird

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on m	naximum value	s
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	1	SF							
Temporal factor	0.3	TF							
Area use factor	0.3	AUF							
			Abso	orbed Fraction	(AF)		l Concentra dium and B		
	Maximum Soil Concentration		Soil bio-		BCF soil	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	inverts	Sediment	Plants	Soil Inverts	HQ
Barium	7290	600	0.0002	0.0046	0.091	0.0258	4.08	45.4	0.0248

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Max Conc.): Area 8 Prelim AOI (0-4'): Common Yellowthroat Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ma	ximum values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	1	SF					
Temporal factor	0.3	TF					
Area use factor	0.3	AUF					
			Absorbed F	raction (AF)		oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	7290	600	0.0002	0.091	0.0203	99.5	0.0498

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Max Conc.): Area 8 Prelim AOI (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.002	SF					
Temporal factor	0.3	TF					
Area use factor	0.0006	AUF					
			Absorbed E	raction (AF)	Abso	orbed	
			Absorbed i		Concentra	ation from	
	Maximum Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	7290	600	0.0566	0.0566	25.1	3.75	0.0000289

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Max Conc.): Area 8 Prelim AOI (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on max	imum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.52	SF					
Temporal factor	0.3	TF					
Area use factor	0.16	AUF					
			Absorbed F	Fraction (AF)		oncentration	
				. ,	from Mediu	m and Biota	
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	7290	5433	0.0002	0.0046	0.0119	4.36	0.000126

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-14. Table 6 Soil HQ Calculations (Max Conc.): Area 8 Prelim AOI (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon			
Parameter	Value	Symbol	
Body weight (kg)	5.78	BW	
Soil ingestion proportion	0.094	Ps	
ood ingestion Rate (kg/kgBW/d)	0.035	FIR	
oportion of diet, plants	0.743	Рр	
roportion of diet, soil inverts	0.123	Pi	
roportion of diet, mammals	0.089	Pm	
roportion of diet, birds	0.02	Pb	
roportion of diet, benthic inverts	0.021	Pbi	
roportion of diet, fish	0.004	Pf	
patial factor	0.011	SF	
emporal factor	0.3	TF	
Area use factor	0.0033	AUF	
			Absorbed Fraction (AF)

Area	use factor	0.0033	AUF								-							
					Absorbed Fraction (AF)						Absorbed Concentration from Medium and Biota							
COR		Maximum Soil Concentration		Soil bio-	BCE planta	BCF soil	BCF		BCF benthic		Soil/	Dianto		Mommolo	Dirdo	Benthic	Fich	40
COP		(0-4')	TRV	factor	BCF plants	inverts	mammais	BCF birds	inverts	BCF fish	Sediment	Plants	Soil Inverts	wammais	Birds	Inverts	Fish	HQ
Bariu	um	7290	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.0048	0.872	2.86	1.29	0.289	NA	NA	0.0000323

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

aximum values

Soil HQ Calculations (Max Conc.): Area 8 Prelim AOI (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote		,							
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations ba	ased on max	imum values	5
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.000059	SF							
Temporal factor	0.3	TF							
Area use factor	0.000018	AUF							
			Abso	rbed Fraction	(AF)	Absorbed Con	centration fr and Biota	om Medium	
	Maximum Soil Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	7290	5433	0.0002	0.0046	0.0566	0.00114	0.0939	10.40	0.000000342

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 8 Prelim AOI.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 2 Prelim AOI 2 (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW	1				
Soil ingestion proportion	0.093	Ps	1				
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр					
Spatial factor	0.0000037	SF					
Temporal factor	0.3	TF					
Area use factor	0.0000011	AUF					
			Absorbed B	Fraction (AF)	Absorbed C	oncentration	
			Absorbeut		from Mediu	m and Biota	
	Average Soil						
	Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	1493	600	0.0002	0.0046	0.00389	0.961	0.0000000179

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-15. Table 2 Soil HQ Calculations (Average Conc.): Area 2 Prelim AOI 2 (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Value	Symbol							
0.05	BW							
0.093	Ps							
0.19	FIR				Calculations	based on a	verage values	
0.64	Рр							
0.36	Pi]						
0.2	SF							
0.3	TF							
0.06	AUF							
		Abso	orbed Fraction	(AF)				
Average Soil Concentration (0-4')	TRV	Soil bio- factor	BCF plants	BCF soil	Soil/ Sediment	Plants	Soil Inverts	HQ
								0.00101
	0.05 0.093 0.19 0.64 0.36 0.2 0.3 0.06 Average Soil	0.05 BW 0.093 Ps 0.19 FIR 0.64 Pp 0.36 Pi 0.2 SF 0.3 TF 0.06 AUF	0.05 BW 0.093 Ps 0.19 FIR 0.64 Pp 0.36 Pi 0.2 SF 0.3 TF 0.06 AUF Average Soil Soil bio- (0-4') TRV Soil bio-	0.05BW0.093Ps0.19FIR0.64Pp0.36Pi0.2SF0.3TF0.06AUFAbsorbed FractionAverage Soil Concentration (0-4')Soil bio- factorBCF plants	0.05BW0.093Ps0.19FIR0.64Pp0.36Pi0.2SF0.3TF0.06AUFAbsorbed Fraction (AF)Average Soil Concentration (0-4')Soil bio- factorBCF soil inverts	0.05 BW 0.093 Ps 0.19 FIR 0.64 Pp 0.36 Pi 0.2 SF 0.3 TF 0.06 AUF Absorbed Fraction (AF) Average Soil Concentration (0-4') TRV Soil bio- factor BCF plants BCF soil inverts Soil/ Sediment	0.05 BW 0.093 Ps 0.19 FIR 0.64 Pp 0.36 Pi 0.2 SF 0.3 TF 0.06 AUF Absorbed Fraction (AF) Absorbed Concentration (0-4') Soil bio-factor BCF soil BCF soil inverts Soil/ Soil/ Sediment Plants	0.05 BW 0.093 Ps 0.19 FIR 0.64 Pp 0.36 Pi 0.2 SF 0.3 TF 0.06 AUF Absorbed Fraction (AF) Absorbed Fraction (AF) Absorbed Concentration from Medium and Biota Average Soil Concentration (0-4') Soil bio- factor BCF plants BCF soil Soil/ Soil / Soil lio- factor BCF plants BCF soil Soil/ Soil Plants Soil Inverts

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 2 Prelim AOI 2 (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ave	erage values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.043	SF					
Temporal factor	0.3	TF					
Area use factor	0.013	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediu		
	Average Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	1493	600	0.0002	0.091	0.00417	20.4	0.000439

Notes:

Soil concentrations are in mg/kg dry weight.

Average soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 2 Prelim AOI 2 (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.000048	SF					
Temporal factor	0.3	TF					
Area use factor	0.000014	AUF					
			Absorbed F	Fraction (AF)		orbed ation from	
COPEC	Average Soil Concentration	TD\/	BCF	PCE birdo	Mammals	Birds	ЧО
	(0-4')	TRV	mammals	BCF birds			HQ
Barium	1493	600	0.0566	0.0566	5.15	0.769	0.000000142

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Average Conc.): Area 2 Prelim AOI 2 (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW]				
Soil ingestion proportion	0.063	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.13	FIR]		Calculations	based on ave	rage values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.013	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0039	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Average Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	1493	5433	0.0002	0.0046	0.00245	0.893	0.000000643

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-15. Table 6 Soil HQ Calculations (Average Conc.): Area 2 Prelim AOI 2 (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon				
Parameter	Value	Symbol		
Body weight (kg)	5.78	BW		
Soil ingestion proportion	0.094	Ps		
Food ingestion Rate (kg/kgBW/d)	0.035	FIR		Calculations ba
Proportion of diet, plants	0.743	Pp		
Proportion of diet, soil inverts	0.123	Pi		
Proportion of diet, mammals	0.089	Pm		
Proportion of diet, birds	0.02	Pb		
Proportion of diet, benthic inverts	0.021	Pbi		
Proportion of diet, fish	0.004	Pf		
Spatial factor	0.00027	SF		
Temporal factor	0.3	TF		
Area use factor	0.000081	AUF		
			Absorbed Fraction (AF)	

Area use factor	0.000081	AUF								-							
				Absorbed Fraction (AF)					Absorbed Concentration from Medium and Biota								
COPEC	Average Soil Concentration (0-4')		Soil bio- factor	BCF plants	BCF soil inverts	BCF	BCF birds	BCF benthic inverts	BCF fish	Soil/ Sediment	Plants	Soil Inverts	Mammals	Birds	Benthic Inverts	Fish	HQ
Barium	1493	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.000982	0.179	0.585	0.263	0.0592	NA	NA	0.000000162

Notes:

Soil concentrations are in mg/kg dry weight.

Average soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

verage values

Soil HQ Calculations (Average Conc.): Area 2 Prelim AOI 2 (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Haves Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations b	ased on aver	age values	
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.0000014	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000004	AUF							
			Abso	rbed Fraction	n (AF)	Absorbed Cor	ncentration fr and Biota	om Medium	
	Average Soil Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	1493	5433	0.0002	0.0046	0.0566	0.000234	0.0192	2.13	0.00000000166

Notes:

Soil concentrations are in mg/kg dry weight. Average soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

/horo:

- Where:
 - HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
 - Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
 - FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
 - AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
 - AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
 - TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
 - AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 1 (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.14	FIR]		Calculations	based on max	kimum values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.0000037	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0000011	AUF					
			Absorbed F	Fraction (AF)		oncentration	
					from Mediu	m and Biota	
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	2740	600	0.0002	0.0046	0.00713	1.76	0.0000000327

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 2 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-16. Table 2 Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 1 (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on m	aximum value	S
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	0.2	SF							
Temporal factor	0.3	TF							
Area use factor	0.06	AUF							
			Abso	orbed Fraction	(AF)	Absorbec Mee			
	Maximum Soil Concentration		Soil bio-		BCF soil	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	inverts	Sediment	Plants	Soil Inverts	HQ
Barium	2740	600	0.0002	0.0046	0.091	0.00968	1.53	17.1	0.00186

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 2 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 1 (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ma	ximum values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.043	SF					
Temporal factor	0.3	TF]				
Area use factor	0.013	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediu	oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	2740	600	0.0002	0.091	0.00764	37.4	0.000804

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 2 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 1 (0-4'): Red-tailed Hawk

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.000048	SF					
Temporal factor	0.3	TF					
Area use factor	0.000014	AUF					
			Absorbod E	raction (AF)	Abso	orbed	
			Absorbed F		Concentra	ation from	
	Maximum Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	2740	600	0.0566	0.0566	9.44	1.41	0.00000260

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 2 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 1 (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps]				
Food ingestion Rate (kg/kgBW/d)	0.13	FIR]		Calculations	based on max	kimum values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.013	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0039	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	2740	5433	0.0002	0.0046	0.00449	1.64	0.00000118

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 2 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-16. Table 6 Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 1 (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon			
Parameter	Value	Symbol	
Body weight (kg)	5.78	BW	
oil ingestion proportion	0.094	Ps	
ood ingestion Rate (kg/kgBW/d)	0.035	FIR	
roportion of diet, plants	0.743	Рр	
roportion of diet, soil inverts	0.123	Pi	
roportion of diet, mammals	0.089	Pm	
roportion of diet, birds	0.02	Pb	
roportion of diet, benthic inverts	0.021	Pbi	
roportion of diet, fish	0.004	Pf	
patial factor	0.00027	SF	
emporal factor	0.3	TF	
rea use factor	0.000081	AUF	
			Absorbed Fraction (AF)

Area use factor	0.000081	AUF															
				Absorbed Fraction (AF)					Absorbed Concentration from Medium and Biota								
	Maximum Soil Concentration		Soil bio-		BCF soil	BCF		BCF benthic		Soil/					Benthic		
COPEC	(0-4')	TRV	factor	BCF plants	inverts	mammals	BCF birds	inverts	BCF fish	Sediment	Plants	Soil Inverts	Mammals	Birds	Inverts	Fish	HQ
Barium	2740	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.0018	0.328	1.07	0.483	0.109	NA	NA	0.000000297

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 2 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

naximum values

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 1 (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Herning Management, L.L.C. V. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations b	ased on max	timum values	5
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.0000014	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000004	AUF							
			Abso	rbed Fraction	n (AF)	Absorbed Cor	ncentration fr and Biota	rom Medium	
	Maximum Soil Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	2740	5433	0.0002	0.0046	0.0566	0.00043	0.0353	3.91	0.00000000305

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 2 Prelim AOI 1.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 2 (0-4'): Mourning Dove

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Mourning Dove							
Parameter	Value	Symbol					
Body weight (kg)	0.12	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.14	FIR			Calculations	based on max	ximum values
Proportion of diet, plants	1	Рр					
Spatial factor	0.000037	SF					
Temporal factor	0.3	TF					
Area use factor	0.0000011	AUF					
			Absorbed F	Fraction (AF)		oncentration	
					from Mediu	m and Biota	
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	2670	600	0.0002	0.0046	0.00695	1.72	0.0000000319

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 2 (0-4'): Red-winged Blackbird Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-winged Blackbird									
Parameter	Value	Symbol							
Body weight (kg)	0.05	BW							
Soil ingestion proportion	0.093	Ps							
Food ingestion Rate (kg/kgBW/d)	0.19	FIR				Calculations	based on m	aximum value	s
Proportion of diet, plants	0.64	Рр							
Proportion of diet, soil inverts	0.36	Pi							
Spatial factor	0.2	SF							
Temporal factor	0.3	TF							
Area use factor	0.06	AUF							
			Abso	orbed Fraction	(AF)	Absorbed Concentration from Medium and Biota			
	Maximum Soil Concentration		Soil bio-		BCF soil	Soil/	Diami		
COPEC	(0-4')	TRV	factor	BCF plants		Sediment	Plants	Soil Inverts	HQ
Barium	2670	600	0.0002	0.0046	0.091	0.00944	1.49	16.6	0.00181

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 2 (0-4'): Common Yellowthroat

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Common Yellowthroat							
Parameter	Value	Symbol					
Body weight (kg)	0.01	BW					
Soil ingestion proportion	0.093	Ps					
Food ingestion Rate (kg/kgBW/d)	0.15	FIR			Calculations	based on ma	ximum values
Proportion of diet, soil inverts	1	Pi					
Spatial factor	0.043	SF					
Temporal factor	0.3	TF]				
Area use factor	0.013	AUF					
			Absorbed F	raction (AF)	Absorbed Co from Mediu	oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-	BCF soil	Soil/		
COPEC	(0-4')	TRV	factor	inverts	Sediment	Soil Inverts	HQ
Barium	2670	600	0.0002	0.091	0.00745	36.4	0.000783

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 2 (0-4'): Red-tailed Hawk Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Red-tailed Hawk							
Parameter	Value	Symbol					
Body weight (kg)	1.1	BW					
Soil ingestion proportion	0	Ps					
Food ingestion Rate (kg/kgBW/d)	0.07	FIR					
Proportion of diet, mammals	0.87	Pm					
Proportion of diet, birds	0.13	Pb					
Spatial factor	0.000048	SF					
Temporal factor	0.3	TF					
Area use factor	0.000014	AUF					
			Absorbed F	Fraction (AF)		orbed ation from	
	Maximum Soil Concentration		BCF				
COPEC	(0-4')	TRV	mammals	BCF birds	Mammals	Birds	HQ
Barium	2670	600	0.0566	0.0566	9.2	1.38	0.00000254

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

Where:

- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 2 (0-4'): Swamp Rabbit

Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Swamp Rabbit							
Parameter	Value	Symbol					
Body weight (kg)	2.118	BW					
Soil ingestion proportion	0.063	Ps					
Food ingestion Rate (kg/kgBW/d)	0.13	FIR			Calculations	based on max	cimum values
Proportion of diet, plants	1	Рр]				
Spatial factor	0.013	SF]				
Temporal factor	0.3	TF]				
Area use factor	0.0039	AUF					
			Absorbed F	Fraction (AF)		oncentration m and Biota	
	Maximum Soil Concentration		Soil bio-		Soil/		
COPEC	(0-4')	TRV	factor	BCF plants	Sediment	Plants	HQ
Barium	2670	5433	0.0002	0.0046	0.00437	1.6	0.00000115

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai}\right]\right) x \ AUF}{TRV} = HQ$$

- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

APPENDIX J-17. Table 6 Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 2 (0-4'): Raccoon Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Hayes Oil & Gas Fields, Calcasieu and Jefferson Davis Parishes, Louisiana

Raccoon				
Parameter	Value	Symbol		
Body weight (kg)	5.78	BW		
Soil ingestion proportion	0.094	Ps		
Food ingestion Rate (kg/kgBW/d)	0.035	FIR		Calculations
Proportion of diet, plants	0.743	Рр		
Proportion of diet, soil inverts	0.123	Pi		
Proportion of diet, mammals	0.089	Pm		
Proportion of diet, birds	0.02	Pb		
Proportion of diet, benthic inverts	0.021	Pbi		
Proportion of diet, fish	0.004	Pf		
Spatial factor	0.00027	SF		
Temporal factor	0.3	TF		
Area use factor	0.000081	AUF		
			Absorbed Fraction (AF)	

Area use factor	0.000081	AUF								-							
				Absorbed Fraction (AF)					Absorbed Concentration from Medium and Biota								
	Maximum Soil Concentration		Soil bio-		BCF soil	BCF		BCF benthic		Soil/					Benthic		
COPEC	(0-4')	TRV	factor	BCF plants	inverts	mammals	BCF birds	inverts	BCF fish	Sediment	Plants	Soil Inverts	Mammals	Birds	Inverts	Fish	HQ
Barium	2670	5433	0.0002	0.0046	0.091	0.0566	0.0566	NA	NA	0.00176	0.319	1.05	0.471	0.106	NA	NA	0.000000290

Notes:

Soil concentrations are in mg/kg dry weight.

Maximum soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

Where:

HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)

Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)

- N = Number of different biota types in diet (food types)
- B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
- P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
- P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

naximum values

Soil HQ Calculations (Maximum Conc.): Area 2 Prelim AOI 2 (0-4'): Coyote Henning Management, L.L.C. v. Chevron U.S.A. Inc., et al.

Haves Oil & Gas Fields. Calcasieu and Jefferson Davis Parishes. Louisiana

Coyote									
Parameter	Value	Symbol							
Body weight (kg)	14	BW							
Soil ingestion proportion	0.028	Ps							
Food ingestion Rate (kg/kgBW/d)	0.028	FIR				Calculations b	ased on max	imum values	5
Proportion of diet, plants	0.1	Рр							
Proportion of diet, mammals	0.9	Pm							
Spatial factor	0.0000014	SF							
Temporal factor	0.3	TF							
Area use factor	0.0000004	AUF							
	Abso	rbed Fraction	(AF)	Absorbed Cor					
	Maximum Soil Concentration		Soil bio-		BCF	Soil/			
COPEC	(0-4')	TRV	factor	BCF plants	mammals	Sediment	Plants	Mammals	HQ
Barium	2670	5433	0.0002	0.0046	0.0566	0.000419	0.0344	3.81	0.00000000297

Notes:

Soil concentrations are in mg/kg dry weight. Maximum soil concentrations in Area 2 Prelim AOI 2.

$$\frac{\left(\left[Soil_{a} \ x \ P_{s} \ x \ FIR \ x \ AF_{as}\right] + \left[\sum_{i}^{N} B_{i} \ x \ P_{i} \ x \ FIR \ x \ AF_{ai} \ \right]\right) x \ AUF}{TRV} = HQ$$

- nere.
- HQ_a = Hazard Quotient for analyte a (COPEC a) (unitless)
- Soil_a = Concentration of analyte a (COPEC a) in soil (mg/kg dry weight)
 - N = Number of different biota types in diet (food types)
 - B_i = Analyte a (COPEC a) in biota type (i) (mg/kg dry weight)
 - P_i = Proportion of biota type (i) in diet
- FIR = Food ingestion rate (kg food [dry weight]/kg BW [wet weight]/day); BW = body weight
- AF_{ai} = Absorbed fraction of analyte a (COPEC a) from biota type (i)
- AF_{as} = Absorbed fraction of analyte a (COPEC a) from soil (s)
- TRV_a = The estimated no adverse effect dose (mg/kg BW/day) for the surrogate species
 - P_s = Soil ingestion as a proportion of diet
- AUF = Area use factor ([spatial factor, SF] x [temporal factor, TF])

ERM has over 160 offices across the following countries and territories worldwide

Argentina Australia Belgium Brazil Canada Chile China Colombia France Germany Ghana Guyana Hong Kong India Indonesia Ireland Italy Japan Kazakhstan Kenya Malaysia Mexico Mozambique Myanmar

The Netherlands New Zealand Norway Panama Peru Poland Portugal Puerto Rico Romania Russia Senegal Singapore South Africa South Korea Spain Sweden Switzerland Taiwan Tanzania Thailand UAE UK US Vietnam

ERM's Baton Rouge Office

804 Main Street, Suite A-113 Baton Rouge, Louisiana 70802 +1 225 292 3001

www.erm.com

