Class II – Salt Water Disposal and Enhanced Oil Recovery Wells

Presented by Cody Todd & Addie Roberts, Petroleum Engineers

Louisiana Department of Natural Resources

Office of Mineral Resources

Office of Conservation

Office of Coastal Management

Pipelines Division Environmental Division

Geological
Oil and Gas

Engineering Regulatory Engineering Administrative Injection and Mining

Presentation Outline

- I. The Underground Injection Control (UIC) Program
- II. UIC Application Process
- III. UIC Application Guidance
- IV. Forms
- V. Useful Links
- VI. Contact Information
- VII. Questions

Underground Injection Control (UIC) Program

The 1974 Safe Drinking Water Act (SDWA) established national UIC Program under the EPA and charged them to:

- * Establish Technical Regulations for UIC Program
- Define the Underground Source of Drinking Water (USDW)
- Establish Injection Well Classifications

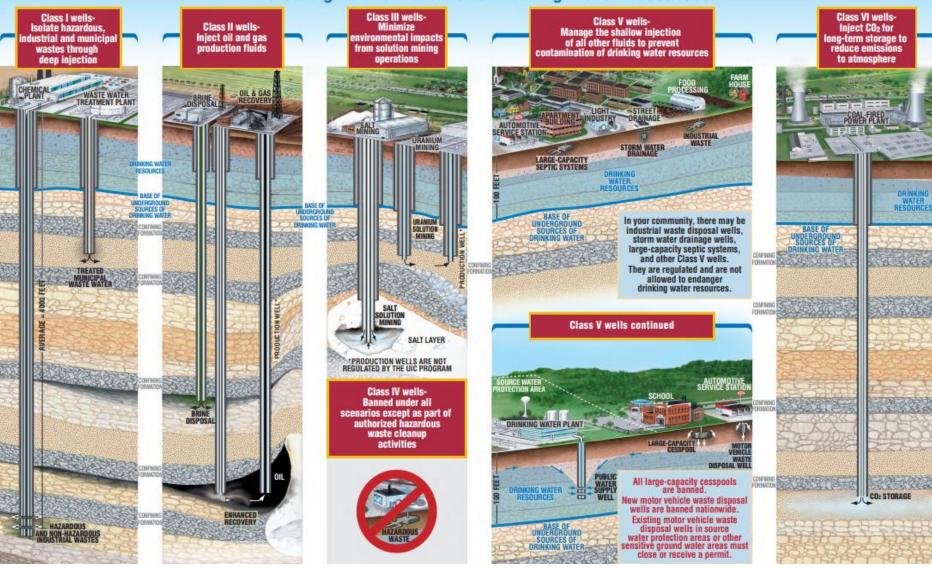
Office of Conservation was granted primacy of the UIC program in 1982.

Regulations

* The basic regulations of the Office of Conservation are a series of documents called Statewide Orders. These Orders form the backbone of the regulatory scheme and provide structure for operational requirements. The regulations are lawfully codified in the Louisiana Administrative Code and are prefixed by the letters LAC

Louisiana Administrative Code	Statewide Order	Subject or Regulation
LAC 43:XIX.Chapter 3	Statewide Order No. 29-B, Chapter 3	Onsite storage, treatment and disposal of oilfield waste. Primarily oilfield pit regulations, but also has some general requirements for Class II disposal wells
LAC 43:XIX.Chapter 4	Statewide Order No. 29-B, Chapter 4	General regulations for a Class II produced fluids disposal well
LAC 43:XIX.Chapter 5	Statewide Order No. 29-B, Chapter 5	Regulations specific to commercial oilfield waste facilities

Injection Well Class Types


Class I	Industrial (Hazardous & Non-Hazardous) or Municipal Waste
Class II	Oil & Gas Related (SWD, EOR, Storage)
Class III	Solution Mining (Caverns)
Class IV	Hazardous Waste above or into USDW
Class V	Wells not covered under the remaining classifications
Class VI	Carbon Sequestration

Office of Water

EPA 816-H-10-001 November 2010 Washington, DC 20460 http://water.epa.gov/drink

Safe Drinking Water Act Underground Injection Control (UIC) Program Protecting Public Health and Drinking Water Resources

Source: US Environmental Protection Agency http://water.epa.gov/type/groundwater/uic/wells drawings.cfm

Injection wells in Louisiana

As of fiscal year 2021

Total Wells	4570
Class I	34
Class II	3425
Class III	81
Class IV	0
Class V	1030
Class VI	o yet

Salt Water Disposal (SWD) Wells

- Class II Classification (injects oil and gas production) fluids)
- Different Types:
 - New Drill SWD Form UIC-2

- Community SWD Form UIC-2
- Enhanced Recovery Form UIC-2 EOR
- * 3 5 month review process for New Drill/Conversion **SWD Applications**
 - Expedited 4-6 week review time

Majority of Class II Wells & today's focus

Get it even faster!

- La. Revised Statute 30:4(Q) allows authorized staff to review expedited permits outside of customary work hours while being paid time and one-half.
- Applicants setup and pay into an escrow account (\$1,500 minimum). Expedited permitting fees are held in escrow while staff work on the permit requests. This escrow fund, established specifically for expediting permitting, serves as the financial source from which overtime compensation is paid. Thus, the monies expended neither pose a financial liability nor directly impact the budget for Office of Conservation.
- Once the permitting process is complete, any remaining escrow balance is released to the applicant.
- Expedited permitting is strictly performed by applicable staff during overtime hours, so as not to negatively impact non-expedited permitting conducted during regular business hours.

OF.

OFFICE OF CONSERVATION

MAILING ADDRESS

OFFICE OF CONSERVATION P.O. BOX 94275-CAPITOL STATION BATON ROUGE, LA 70804-9275

IMD-1 Request for Expedited Review (For Office DATE STA			e Use Only) MP					
UNDERGROUND INJECTION CONTROL PR	ROGRAM							
☐ SURFACE MINING PROGRAM: PERMIT NO)	-						
OPERATOR NAME							OPERA	TOR CODE
OPERATOR MAILING ADDRESS CI			Y STATE				ZIP CODE	
CONTACT NAME	CONTACT TO	ELEPH	IONE NUME	ER	CONTACT EMAIL ADDRESS			SS
	Well	Dat	a					
APPLICATION/PERMIT TYPE (CHECK THE APPROPRIATE BOX)								
☐ CLASS I ☐ CLASS	II SWD		☐ CLAS	SS II EOR	[CLA	SS II ST	ORAGE
☐ CLASS II SWD COM ☐ CLASS	Ш		☐ CLAS	SS V	[□ WOF	RK PERM	ΛIT
☐ OTHER								
WELL NAME AND NUMBER					SERIA	L NUMBE	₹	
APPLICATON/PERMIT NUMBER				CAVERN CODE				
FIELD NAME			FIELD N	UMBER	S	EC	TWN	RNG
PARISH NAME			PARISH CODE					
PARISH NAME			FARISH	SITCODE				
Doscripti	on of Exped	itoo	Dovio	w Pogu	oct			
Descripti	on or Exped	nec	Revie	w Requ	esi			
DATE PERMIT APPLICATION SUBMITTED TO IMD								
REQUESTED DATE FOR PERMIT ISSUANCE								
MAXIMUM AMOUNT APPLICANT IS WILLING TO PAY								
PRINT NAME	,		PRINT TITLE					
SIGNATURE			DATE					
	OFFICE U	SE O	NLY:					
ESTIMATED # HOURS TO COMPLETE REVIEW				COMMENTS	S:			
ESTIMATED COST								
ESTIMATED DATE OF COMPLETION								
SUFFICIENT WORK FORCE AVAILABLE?	COD DEVIEW							
IF NOT, EXPECTED DATE PERSONNEL AVAILABLE F				YES		NO		
DOES APPLICANT HAVE OUTSTANDING FEES OR PENALTIES?			120					

11/15

UIC-2 Application Process

UIC-2 Attachments

Attachment 1	Location Plat
Attachment 2	Area of Review
Attachment 3	Facility Diagram
Attachment 4A, 4B, 4C, 4D	Current Wellbore Schematic (Conversion), Wellhead Diagram, Proposed Wellbore Schematic, Work Prognosis
Attachment 5	Sources of Produced Water List
Attachment 6	Fluid Source Analysis
Attachment 7	Electric Logs
Attachment 8	Public Notice
Attachment 9 (Conversions)	Work History Resume (Historical WH1s)

Part 1: Review Process

Operator mails to IMD:

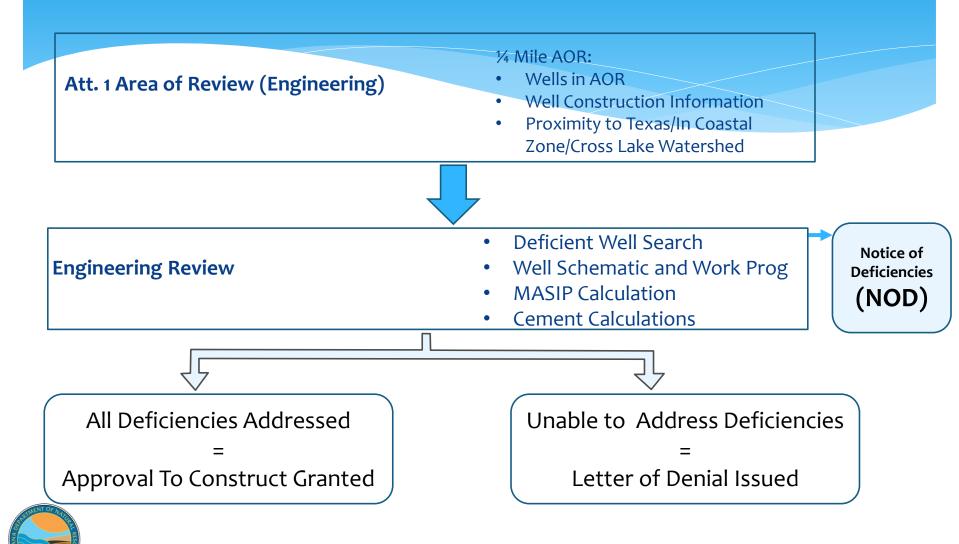
- Application Form (Paper Copy)
- Attachments (Paper Copy)

- MD-10-R-A (pink card) (conversion only)
- Fees
- Proof of publication

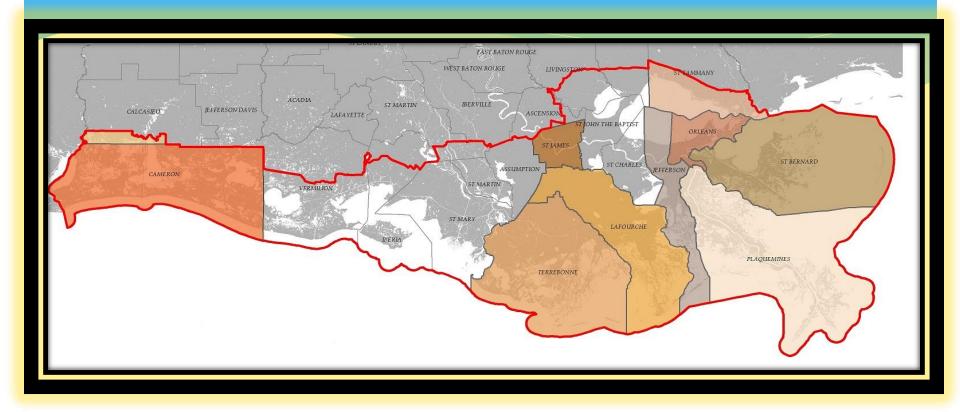
Application Processed

IMD Notifies operator of:

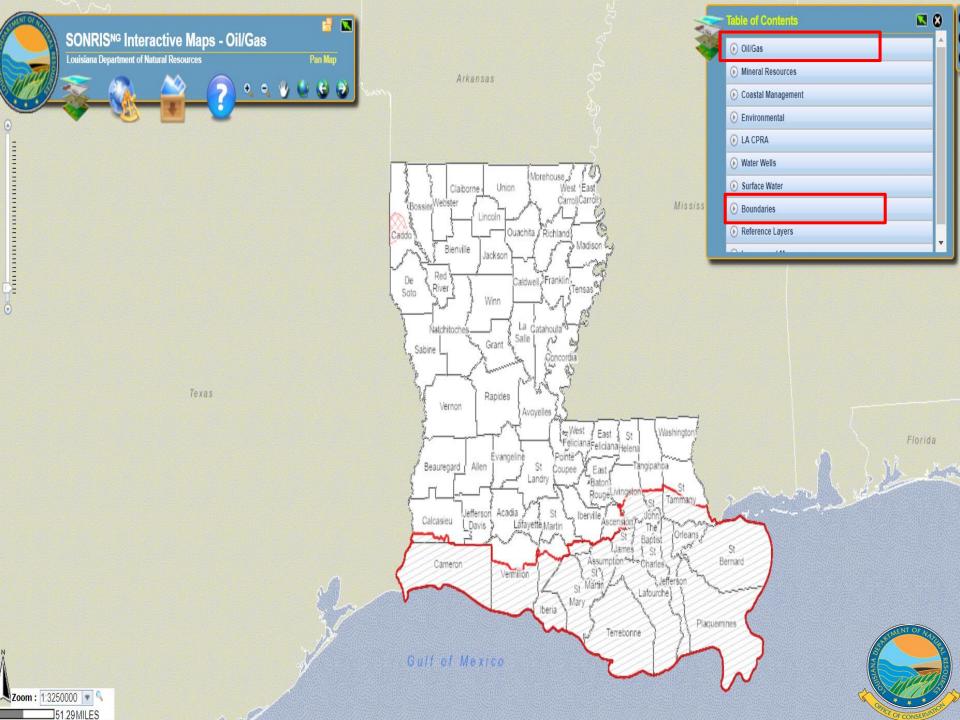
- Application Number
- Missing/Incorrect Information
- Receipt of Fees


Geologic Review

- Location Plat Review
- Water/Fluid Source Analysis
- USDW and Well Log Review
- Injection Zone Isolation
- Productive Zone Protection
- Proximity to Salt Domes



Part 1: Review Process (Continued)


Louisiana Coastal Zone & Cross Lake Watershed

SONRIS - GIS - Boundaries - Check the State Coastal Zone Boundary

Part 2: Final Review for Permit-to-Inject

* NEW SWD WELL

Operator mails to IMD:

- One (1) Original Signed Form UIC-WH1
- Two (2) Copies of Signed Form UIC-WH1
- Two (2) Copy of the Electric Log(s)
 - 1 Hardcopy 1 Digital
- Two (2) Copy of the Cement Bond Log (CBL)
 - 1 Hardcopy 1 Digital
- Form CSG-T for Each Casing String
- ENG-16 if necessary

* CONVERTED SWD WELL

Operator mails to IMD:

- One (1) Original Signed Form UIC-WH1
- Two (2) Copies of Signed Form UIC-WH1
- Two (2) Copies of the Cement Bond Log (CBL)
 - 1 Hardcopy 1 Digital
- Form CSG-T for Each Casing String
- ENG-16 if necessary

Geologic Review

Review Form WH-1 and confirm:

- Approved Zone
- Perforation Depths
- Base of USDW

Notice of Deficiencies (NOD)

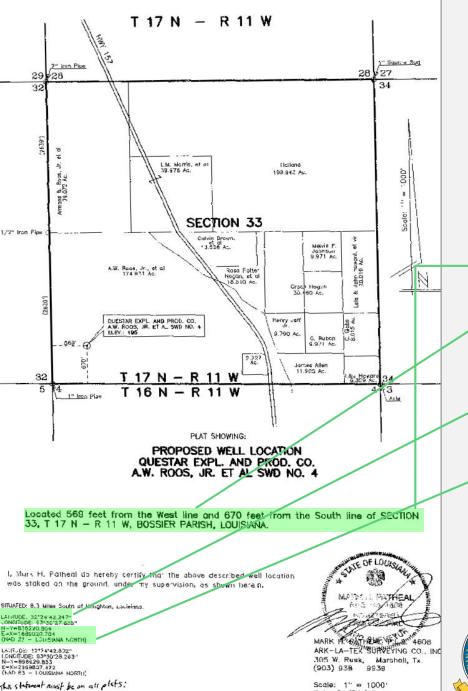
Part 2: Final Review for Permit-to-Inject (Cont.)

All Deficiencies Addressed

Unable to Address Deficiencies

Letter of Denial Issued

Financial Security


FOOTAGE						
<u>Depth</u>	Land Locations	<u>Water - Coastal</u>	<u>Water - Offshore</u>			
≤ 3,000 ft.	<u>\$2/ft.</u>	<u>\$8/ft.</u>	<u>\$12/ft.</u>			
<u>3,001 - 10,000 ft.</u>	<u>\$5/ft.</u>	<u>\$8/ft.</u>	<u>\$12/ft.</u>			
≥ 10,001 ft.	<u>\$4/ft.</u>	<u>\$8/ft.</u>	<u>\$12/ft.</u>			

BLANKET ← After August 12, 2016 Number of wells **Land Locations** Water - Offshore Water - Coastal <u>≤ 10</u> \$250,000 \$500,000 \$50,000 <u>11-99</u> \$250,000 \$1,250,000 \$2,500,000 <u>> 100</u> \$500,000 \$2,500,000 \$5,000,000

UIC Application Guidance

SALTWATER DISPOSAL WELL PERMIT APPLICATION

OFFICE OF CONSERVATION INJECTION & MINING DIVISION P.O. BOX 94275 BATON ROUGE, LA 70804-9275

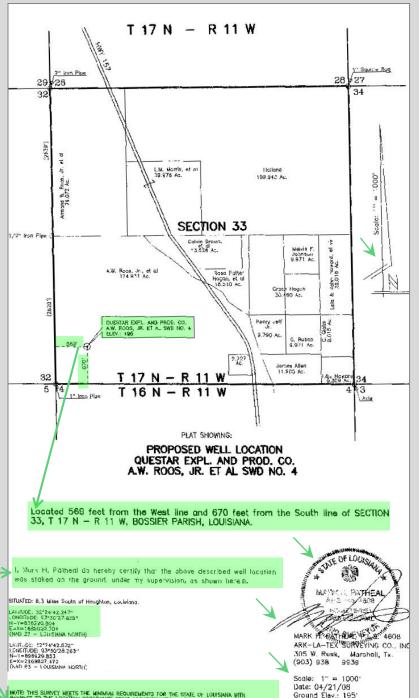
UIC-2 SWD		PLEASE READ APP	LICATION PROCE	DURES		TYPE ONLY		
1. APPLICATION TO:	PLICATION TO: DRILL NEW SWD WELL CONVERT TO SWD WELL			RE-DRILL FOR SALTWATER DISPOSAL (SN:) RE-PERMIT SWD WELL				
2. OPERATOR'S NAME AND A	DDRESS:			3. OPERATO				
EMAIL:				4. PHONE:	FA	x:		
		WELL I	NFORMATION					
5. PROPOSED WELL NAME AT	ND NUMBER:			6. SERIAL N	O. (CONVERSION & RE-	PERMIT ONLY)		
7. FIELD:	8.	PARISH:	-	9. SEC.	TWP.	RNG.		
10. LEGAL LOCATION DESCR	PTION (FROM LOCA	TION PLAT):						
11. LOCATION COORDINATES	S: GEOGRAPHIC LATITUDE: LONGITUDE:	° MIN	SEC	STATE PLAI	NE COORDINATES (LAM ZONE : Y:	BERT, NAD 27) SOUTH ZONE		
			ICTION INFORMA					
12. CASING HOLE SIZE (IN.) SIZE (IN.	CASING WEIGHT	_	H SET BOTTOM (FT.)	SACKS CEMENT		TOP OF CEMENT		
13. TUBING: STEEL	OTHER (IDEN	ПFY)		\$	SIZE:	DEPTH: FT.		
14. PACKER: TENSIONAL	PERMANENT	COMPRESSIONA	L MAKE:	мо	DEL: DEF	PTH SET: FT.		
15. PLUGGED-BACK DEPTH: FT.		16. DRILLED-OUT DEF	PTH: FT.	17.	TOTAL DEPTH OF WELL	ŧ		
OFFICE OF CONSERVATION			1		(JIC-2 SWD APPLICATION REV 1/01		

Date: 04/21/08

Ground Elev.: 195' Job No.: 27640

Injection and Mining Location Plat Requirements

Policy No. IMD-GS-10


Effective November 1, 2010

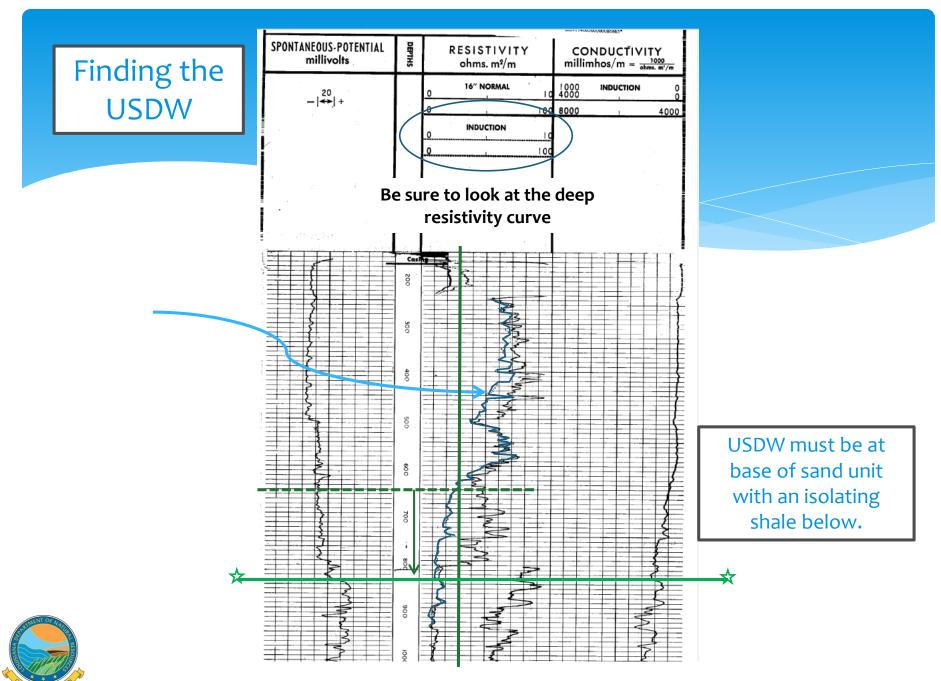
http://www.dnr.louisiana.gov >>

Conservation >> Divisions >> Injection & Mining >> IMD-GS-10 (under "Injection & Mining Policy Statements")

"I, [insert license name], Professional Land Surveyor, certify that the well location depicted and described in this plat [staked or located] and surveyed in the field by me or under my direction with accuracy and precision to the nearest foot. I have properly examined this plat and have determined that it complies with the existing local Louisiana codes, and has been properly site adapted to use in this area."

***NOTE: Policy No. IMD-GS-10 requires that the location must be surveyed on the ground with measurements that are accurate to the nearest foot.

Joh No.: 27640



NOTE: THIS SURVEY MEETS THE MINIMUM REQUIREMENTS FOR THE STATE OF LOUISIANA WITH RESPECT TO THE LOCATION GOODDINATE BEING ACCURATE WITHIN A SUBMETER.

Underground Source of Drinking Water (USDW)

- EPA Definition of USDW
 - Supplies any public water system; OR
 - * Contains a quantity of ground water sufficient to supply a public water system; AND
 - * Contains fewer than 10,000 mg/l Total Dissolved Solids (TDS) and is not an exempted aquifer (prior to 1981, the Office of Conservation used 3,000 mg/l TDS as the base of the freshwater).
- * One-Mile Search from the Proposed Well Location
 Locate the closest well with an e-log and approximate the base of the
 USDW in sands at the following depths:
 - Ground surface to 1,000 feet: 3 ohms or greater is considered USDW
 - * 1,000 feet to 2,000 feet: 2 ½ ohms or greater is considered USDW
 - * 2,000 feet and deeper: 2 ohms or greater is considered USDW
- * 100 Feet of Net Shale Must Exist Between the Top of Zone and the Base of the USDW

Access Data

SONRIS Data Portal GIS Access Oil, gas, and injection well Retrieve information using information, state land interactive, geographically leasing, ground water information, and more at your

priented map capabilities and select from a variety of layers of backgrounds.

Document Access Millions of documents in various formats readily available for view and print.

Data Subscription Service Get a monthly download of all the data for integration into your databases and applications.

Submit Applications/Reports

Online Oil/Gas Well Online Production Log Submission Reporting

Electronically submit your oil/gas well log information.

Electronically report oil and gas production and transportation related monthly reports.

Online Royalty Reporting

Submit mineral royalty reports online.

Online UIC Reporting

Submit UIC-10 and UIC-24 reports electronically or upload files to IMD.

Online Surface Water

Apply for and track surface water applications online.

Well Test/Inactive Report Submission

finger tips.

Submit your Well Test/Inactive Report electronically.

Online OR1 Submission

Submit your OR1 application electronically.

Invoice Payments

Pay invoices online using your invoice number and the provided security code.

Tract Nominations

Submit your nominations, attachments, and payment electronically.

Need Help?

Contact Us Click here to view phone directory and contact

FAQ Click here to view SONRIS frequently asked questions and learn more about Sonris.com

Useful SONRIS Documents

Research guides, past presentations on accessing data and reporting, and more!

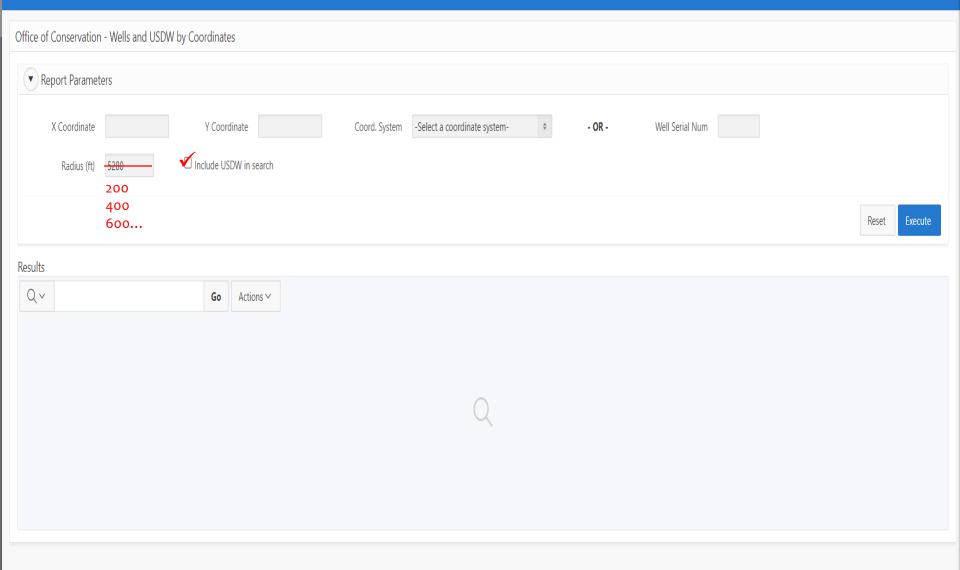
Codes and Definitions

Blackbooks - Field Order Index			
Financial Security - Wells			
Offshore Wells by Parish		?	
Operator History by Well	0		
Orphan Well Inspection			
Orphan Wells by Parish	0	?	
Permitted Wells by Date/Parish		?	Ш
Well Casings			
Well Count for Field by Organization		?	
Well Count for Organization by Field		©	
Well History (All Records)			
Well History by Operator			
Well Information	0	©	
Well Information Details by Operator (OJC)		©	
Well Logs	0		
Wells (Excluding Well Status 03,28,29,30)		©	
Wells and USDW by Coordinates		?	Ш
Wells by API Number		?	
Wells by Field ID		?	Ш
Wells by Organization Name		©	
Wells by Parish		♀ ≣	
Wells by Section, Township, and Range		₽	Ħ

▼ Injection and Mining

Class I Manifest

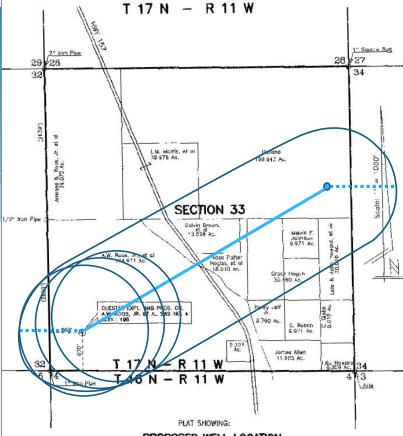
UIC 33/34 Class III Daily Logs


USDW Area Information

UIC Detailed Report of Wells in a Defined AOR

Wells by Serial Number

SONRIS Data Portal



Area of Review & Area of Review List

The AOR search must include:

- Conducting a foot-search of the AOR to identify any wells in the field;
- Searching SONRIS for wells in the DNR database; AND
- Researching field maps and company files.
- * Applicants must complete the AOR Well List that is included in the Form UIC-2 SWD Application package or create an AOR List with <u>only the requested information</u>.
- * Adequate cement in an offset well is defined as:
 - A surface casing set through and cemented above the base of the USDW;
 - * A cemented long string whose calculated top of cement is above the proposed injection zone; **OR**
 - * A well with an open-hole plug set between the base of the USDW and the proposed injection zone.

AOR in Directional Wells

PROPOSED WELL LOCATION QUESTAR EXPL. AND PROD. CO. A.W. ROOS, JR. ET AL SWD NO. 4

Located 569 feet from the West line and 670 feet from the South line of SECTION 33, T 17 N - R 11 W, BOSSIER PARISH, LOUISIANA.

I, Murk H. Patheal do hereby certify that the above described well location was staked on the ground, under my supervision, as shown berein.

SITUATED: 8.3 Miles South of Houghton, Louisiana.

LATITUDE: 32°24°42.247° LONGITUDE: 53°30°27.635° N=Y#536220.804 E=X=1689020.704 (NAD 27 = LODSIANA NORTH)

LANT. DE: 52°74°42.602° I.SNG(TUDE: 93°50'28.283° N-1 = 596929.853 E-X=2369837,472 (NAD 93 - LOUISMNA NORTH)

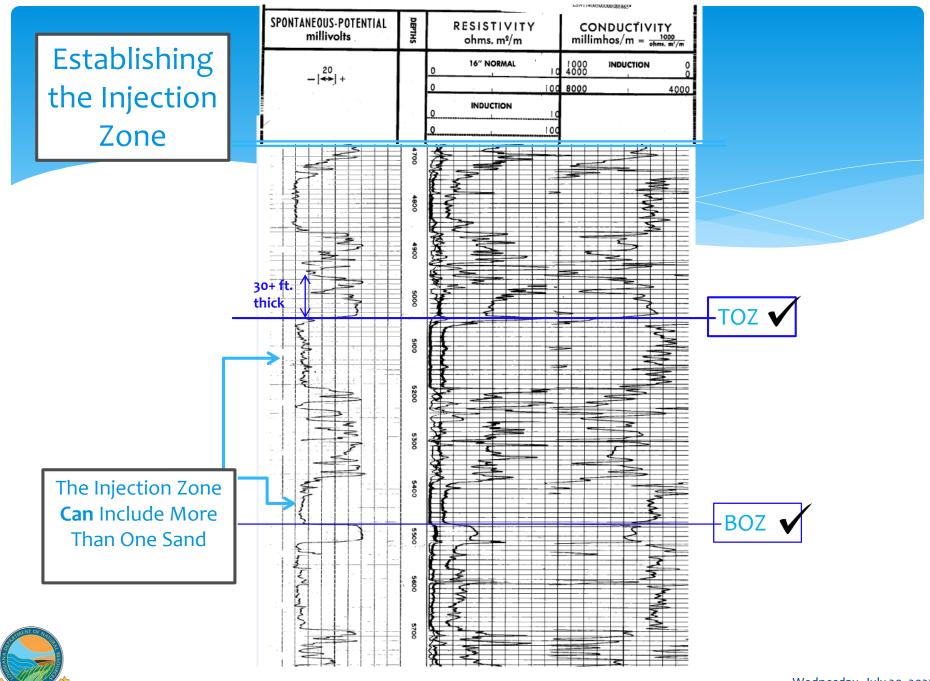
NOTE: THIS SURVEY MEETS THE MINIMUM, REQUIREMENTS FOR THE STATE OF LOUISIANA WITH RESPECT TO THE LOCATION COORDINATE BEING ACCURATE WITHIN A SUBMETER.

the statement must be an all plats:

(903) 93B 9939 Scale: 1" = 1000" Date: 04/21/08 Ground Elev.: 1951 Joh No.: 27640

MARK H GATHELE VELS 4608 ARK-LA-TEX SURVEYING CO., INC

305 W. Rusk, Marsholl, Tx.


Injection Fluid Source List & Analyses

The Injection Fluid Source List should include:

- Each well that will contribute fluid to the proposed injection well
- Only wells that are operated by the applicant.
- * Applicants must complete the Injection Fluid Source List that is included in the Form UIC-2 SWD Application package or create an Injection Fluid Source Well List with <u>only the requested information</u>.
- * Laboratory analyses must include:
 - * Signed originals from a LDEQ LELAP accredited laboratory;
 - * Measurements of Chloride (mg/l), Specific Gravity or Density (g/cc or ppg), Total Dissolved Solids (mg/l), and the Temperature when the specific gravity was measured; AND
 - * Sample name(s) that correlates to the well(s) on the Injection Fluid Source List.

Establishing an Injection Zone

- * 100 Feet of Net Shale Must Exist Between the Injection Zone and Productive Intervals
 - Conduct a one-mile search from the proposed well location
 - Correlate e-logs of productive wells to the e-log of the proposed well
 - * Ensure 100 feet of net shale
 - * < 100 feet leads to enhanced geologic review
- Sufficient Shale Must Confine the Top and Bottom of Zone
 - Rule-of-Thumb: Look for <u>30 foot continuous</u> shale interval
- Permitting Multiple Sands
 - * The proposed injection zone may contain more than one sand unit, provided that the USDW and productive intervals are isolated
 - Permitting a zone of multiple sand units will allow for future perforations within the permitted injection zone by applying for a work permit (Form UIC-17)

Well Design

Surface Casing

- Regulations: Must be set below the base of the USDW
- * IMD policy: Must be set at least 100 feet below the base of the USDW

* Packer

- * Regulations: The packer may not be set more than 150 feet above the top of the proposed injection zone; AND
- * IMD policy: Set the packer deeper than the bottom of the minimum required continuous interval of 60% bonded cement in the first continuous confining shale formation immediately above the approved injection zone

Cement Isolation

- Must be confirmed by Cement Bond Log (CBL)
- * CBL must show 60% (≤10mv) bonded cement to first isolating shale formation
- * Amount of bonded cement depends on casing size (e.g. 7-5/8" csg \rightarrow 12 feet)

Well Design (Cont'd)

Examples of Plugs to Isolate Productive Pools 10.750 in Csg 32.75 lbm/ft 3,000 ft CIBP with 10 feet of cement on top or a cement retainer with 20 feet of cement on POOL₁ top Cement across perfs/ perfs squeezed w/ 100 feet of POOL 2 cement above upper perforation 100 foot balanced plug POOL 3 immediately above upper perforation 7.625 in Csg 24.00 lbm/ft

10,000 ft

Well Design (Cont'd) Plug to Isolate Bottom of Zone 10.750 in Csg 32.75 lbm/ft 3,000 ft **TOP OF ZONE** INJECTION **PERFORATIONS BOTTOM OF ZONE** Must be within or CIBP with 10 feet of shallower than the first cement on top; **Isolating Shale Formation** CR with 20 feet of immediately below the cement on top; or a 100 proposed Bottom of Zone foot cement plug **POOL** 7.625 in Csg 24.00 lbm/ft

10,000 ft

Work Prog

New Drill Wells: Must record reservoir pressure and submit to IMD after perforating and prior to injecting

- *Bottomhole Pressure Gauge
- *Static Fluid Level

Logging the Well

- * Provide Open-Hole E-Logs of the <u>USDW</u> and the <u>Proposed Injection Zone</u>
 New-Drill Wells
 - * Must run open-hole e-log (dual induction or triple combo) of the <u>injection</u> zone; **AND**
 - * If USDW <u>cannot</u> be identified from offset well within ¼-mile, must run open-hole e-log from total depth to surface before running surface casing; **OR**
 - * If USDW <u>can</u> be identified from offset well within ¼-mile, only need to run open-hole e-log from total depth THROUGH THE BASE OF the surface casing shoe.

Conversions or New Drills

- * Must submit an open-hole e-log (dual induction or triple combo) from the well itself or from the closest well within a 1-mile AOR, that shows:
 - * USDW
 - * Proposed Injection Zone
- May be shown on separate e-logs

Logging the Well (Cont'd)

Provide Cased-Hole Logs to prove no fluid migration behind Long String:

Applicants must submit (or propose to run):

- * Cement Bond Log (CBL)* detects cement by measuring the loss of acoustic energy as it passes through casing. We do not accept pipe-inside-of-pipe.
- * Radioactive Tracer Survey (RTS)** detects RA "tagged" fluid movement through channels while on injection. Can also be used to detect height of stimulation.
- * Temperature Log** able to locate top of cement outside larger heavier casings and also detect channels and height of stimulation due to acidizing/fracturing.
- * Oxygen Activation Log** detects channels by identifying movement of water.
- * Other Acceptable Tests**
- * = required. ** = may be required.

Guideline for running CBLs and RTSs:

http://www.dnr.louisiana.gov >> Conservation >> Forms >> Injection & Mining Division

Cement Bond Logs

- CBLs are required to be run on all new drills, conversions, and zone changes
- IMD cannot accept "pipe-in-pipe" CBL
- Minimum interval of continuous 60% bonded cement in a continuous confining shale
- Rule of Thumb: <10mV on amplitude curve for x-amount of feet

Cement Bond Log Interpretation Guide

		Free	Class H	Class H Cement	
	Time	Pipe	3000 psi	60% bond	for
Weight	μ-sec	Signal	100% cmt	cut off	Isolation
9.5			0.2 mu	2.3 my	
	254	81 my			5 feet
	204	011110			o ices
15.0					
18.0	258	76 mv	0.9 mv	5.5 mv	
21.0			2.2 mv	10.0 mv	5 feet
			3.6 mv	15.0 mv	
	269	72 mv			6 feet
23.0			3.5 mv	13.0 mv	
23.0			1.0 mv	5.5 mv	
26.0			1.7 mv	7.5 mv	
29.0			2.4 mv	9.3 mv	
32.0	289	62 mv	3.3 mv	13.0 mv	11 feet
35.0			4.0 mv	14.0 mv	
38.0			5.0 mv	15.0 mv	
40.0			6.0 mv	17.0 mv	
26.4			1.1 my	5.5 mv	
33.7	302	59 mv	2.6 mv	10.0 my	12 feet
39.0			3.5 mv	13.0 mv	
40.0			1.8 my	6.8 my	
	332	51 mv			15 feet
53.5			4.0 mv	12.0 mv	
40.5			1.2 mu	5.1 mu	
	352	48 mu			18 feet
	302	40 1117			10 leet
	9.5 11.6 13.5 15.0 18.0 21.0 21.0 21.0 23.0 23.0 25.0 29.0 32.0 35.0 38.0 40.0 26.4 29.7 33.7 39.0 40.0 43.5 47.0	Weight μ-sec 9.5 11.6 13.5 15.0 18.0 258 21.0 258 21.0 269 23.0 26.0 29.0 32.0 289 35.0 38.0 40.0 26.4 29.7 33.7 39.0 40.0 43.5 47.0 332 53.5 40.5 45.5 48.0 51.0 352 54.0	Time μ-sec Signal 9.5 11.6 15.0 18.0 258 76 mv 21.0 15.5 17.0 20.0 26.0 29.0 32.0 26.0 29.0 32.0 38.0 40.0 40.0 43.5 47.0 332 51 mv 53.5 40.5 45.5 48.0 51.0 352 48 mv	Weight Time μ-sec Pipe Signal 3000 psi 100% cmt 9.5 0.2 mv 11.6 254 81 mv 0.6mv 13.5 1.0 mv 1.0 mv 1.0 mv 15.0 18.0 258 76 mv 0.9 mv 21.0 2.2 mv 3.6 mv 15.5 0.7 mv 1.0 mv 17.0 20.0 269 72 mv 2.1 mv 23.0 1.0 mv 2.4 mv 3.5 mv 29.0 24 mv 3.3 mv 4.0 mv 35.0 4.0 mv 5.0 mv 4.0 mv 38.0 4.0 mv 5.0 mv 4.0 mv 26.4 1.1 mv 1.8 mv 2.6 mv 33.7 302 59 mv 2.6 mv 3.5 mv 40.0 1.8 mv 2.2 mv 4.0 mv 40.5 4.0 mv 4.0 mv 1.8 mv 2.7 mv 40.5 48.0 2.1 mv 54.0 2.5 mv 54.0 352 48 mv 2.5 mv	Weight Time μ=80C Pipe Signal 3000 psi 100% cmt 60% bond cut off 9.5 0.2 mv 2.3 mv 11.6 254 81 mv 0.6 mv 4.6 mv 13.5 1.0 mv 7.0 mv 1.0 mv 7.0 mv 15.0 258 76 mv 0.9 mv 5.5 mv 21.0 258 76 mv 0.9 mv 5.5 mv 21.0 2.2 mv 10.0 mv 3.6 mv 15.0 mv 15.5 0.7 mv 4.8 mv 15.0 mv 5.0 mv 20.0 269 72 mv 2.1 mv 9.0 mv 23.0 1.0 mv 5.5 mv 13.0 mv 25.0 1.7 mv 7.5 mv 13.0 mv 32.0 289 62 mv 3.3 mv 13.0 mv 35.0 3.3 mv 13.0 mv 14.0 mv 14.0 mv 40.0 4.0 mv 14.0 mv 15.0 mv 40.0 1.8 mv 5.5 mv 13.0 mv 40.0 1.8 mv 6.8 mv 2.2 mv

CBL EXAMPLE

USDW: 300ft

Surface Casing: 16" (84 #/ft) @ 500 ft

Long String: 10-3/4" (40.5 #/ft) @ 2000 ft

Proposed Zone: 1276 – 1326 ft

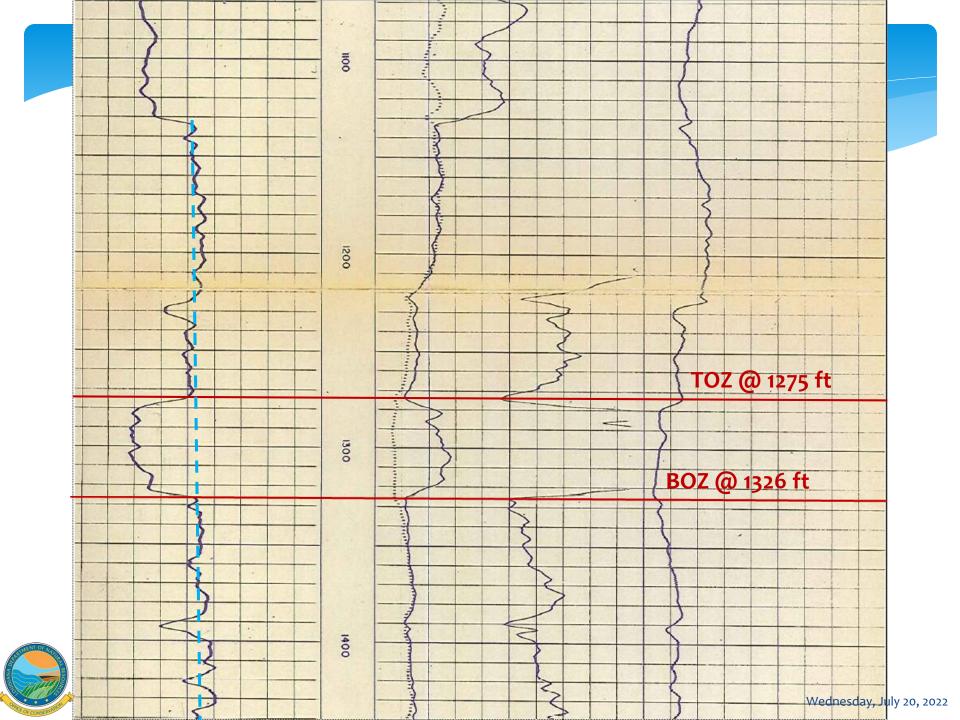
How many feet of isolating cement do we need for:

TOZ:?

BOZ:?

Where would you call the bottom of the required cement interval?

Where is the shallowest allowed packer depth?

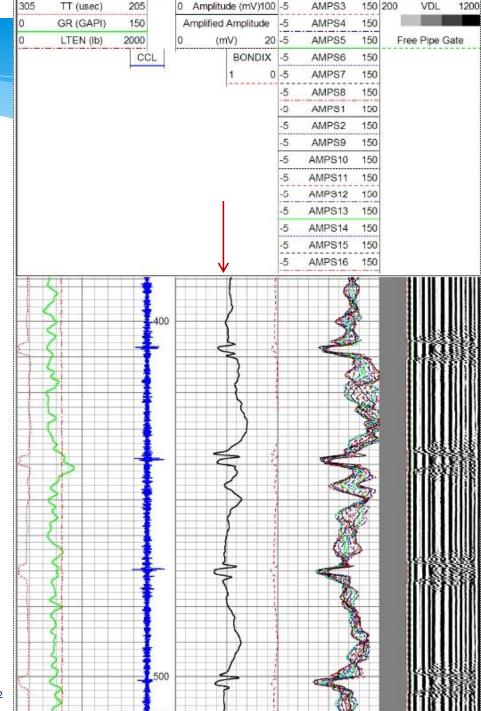


Open-Hole Log scale:

Wednesday, July 20, 2022

SELF-POTENTIAL millivolts	DEPTHS	RESISTIVITY -ohms. m²/m.	RESISTIVITY -ohms. m²/m.
- 30 +	100		0 5
		0 50 100 0 AMP. 1 NORM. 2	The same of the sa
		0 5 1	<u> </u>
		0 50 10	
<u>\$</u>			
		5	
	02		

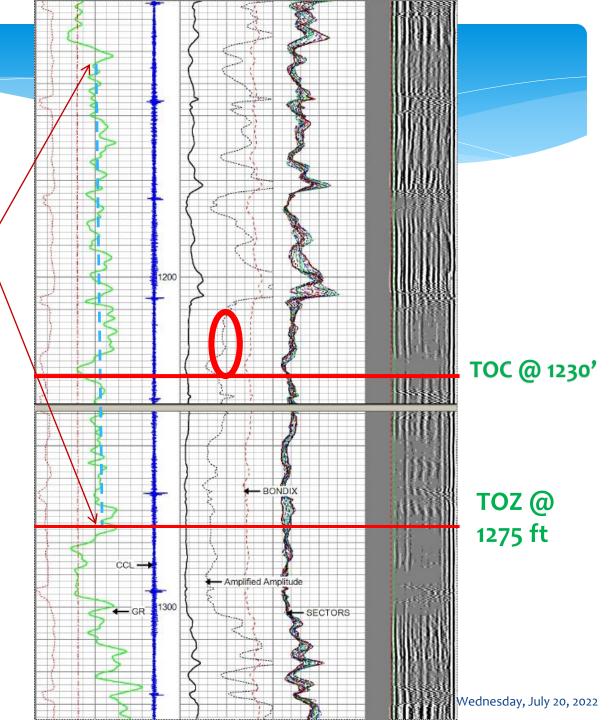
Recall this CBL Interpretation Guide:


Cement Bond Log Interpretation Guide

		Travel	Free	Class H Cement		Interval
Casing		Time	Pipe	3000 psi	60% bond	for
Size	Weight	μ-sec	Signal	100% cmt	cut off	Isolation
4 1/2"	9.5			0.2 mv	2.3 mv	
	11.6	254	81 mv	D.6mv	4.6 mv	5 feet
	13.5			1.0 mv	7.0 mv	
5"	15.0					
	18.0	258	76 mv	0.9 mv	5.5 my	
	21.0			2.2 mv	10.0 mv	5 feet
				3.6 mv	15.0 mv	
5 1/2"	15.5			0.7 mv	4.8 mv	
	17.0			1.0 mv	5.0 mv	
	20.0	269	72 mv	2.1 mv	9.0 mv	6 feet
	23.0			3.5 mv	13.0 mv	
7"	23.0			1.0 mv	5.5 mv	
	26.0			1.7 mv	7.5 mv	+4
	29.0			2.4 mv	9.3 mv	
	32.0	289	62 mv	3.3 mv	13.0 mv	11 feet
	35.0			4.0 mv	14.0 mv	
	38.0			5.0 mv	15.0 mv	
	40.0			6.0 mv	17.0 mv	
7 5/8"	26.4			1.1 mv	5.5 mv	
	29.7			1.8 mv	7.5 mv	
	33.7	302	59 mv	2.6 mv	10.0 my	12 feet
	39.0			3.5 mv	13.0 mv	
9 5/8*	40.0			1.8 mv	6.8 my	
a arb	43.5			2.2 mv	8.5 mv	
	47.0	332	51 mv	2.7 mv	9.0 my	15 feet
	53.5	332	311110	4.0 mv	12.0 mv	Dieel
	55.5			4.01110	12.0 1110	
10 3/4"	40.5			1.2	5.1 mv	
	45.5			1.8 mv	6.5 mv	
	48.0			2.1 mv	7.6 mv	
	51.0	352	48 mv	2.5 mv	8.0 mv	18 feet
	54.0			2.7 mv	8.4 mv	
	55.5			2.8 mv	8.8 mv	

FREE PIPE SECTION – verifies tool is calibrated:

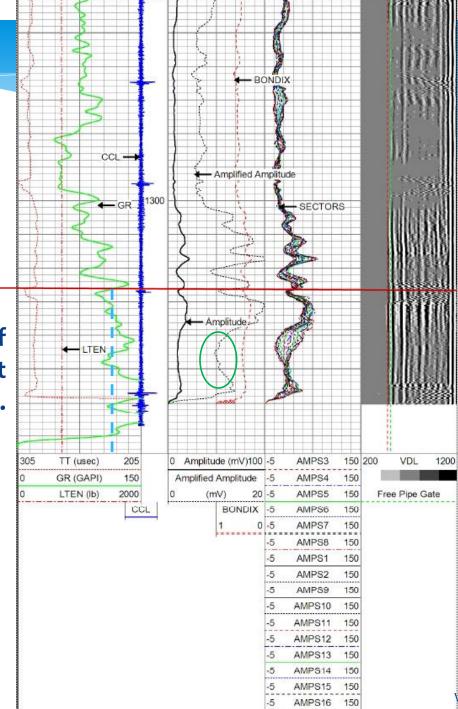
48mV is considered "free pipe" (meaning no cement behind the pipe) for a 10-3/4" casing.



Continuous confining shale: 1134' – 1275'

Start at top of shale and work your way down until you hit the required 18' of continuous cement (<10mV)

*** PACKER MUST BE SET AT OR BELOW 1230' ***



Bottom of Zone (BOZ) is at 1326 feet:

BOZ @ 1326 ft

There is "evidence of cement" at the BOZ – i.e. not "free pipe".

Proof of Publication

- SWD Well associated with Oil and Gas Production
 - Must be published for at least 15 days before application can be approved
 - * Notice only in State Journal, The Advocate
 - Submit original notarized copy of Proof of Publication with application
 - * Check accuracy of Serial Number; Well Name and Number; Sec/Twn/Rng; Operator Name and Address; Operator Code; Field Name and Field Code.

Form UIC-2 SWD Signature

Application must contain a signature from an associate of the Operating Company:

- * Officer
- * Manager
- * General Partner
- * Proprietor
- Operator of the Well
- Direct Employee in decision-making role

Agent or Contact authorized to act for Operator

- * Operator must designate who receives correspondence regarding the application.
- * Operator will receive <u>all</u> correspondence. Authorized agent will only be cc'd if the box is selected.

FormsApplicable to SWD Wells

IMD Forms

Form UIC-5

Injection Well Integrity Affidavit

Form UIC-7
 Injection Well Inspection Form- MIT (for CES use only)

* Form UIC-10

Annual Disposal / Injection Well Monitoring Report – Online Reporting via SONRIS

* Form UIC-13
Community Saltwater Disposal System Initial Notification

Form UIC-17
 Injection Well Work Permit

* Form UIC-32
Application to Change Disposal/Injection Zone

IMD Forms

Form UIC-P&A (Don't need UIC-WH-1 with this!)

Injection Well Plug and Abandonment Report

* Form UIC–WH1

Well History & Work Resume Report for Injection Wells

* Form IMD-1

Request for Expedited Review

* Form CSG-T

Affidavit of Test of Casing in Well

Engineering Division Forms

- * Form MD-10-R (yellow card) no longer necessary for new-drill SWD wells
 Application for Permit to Drill for Minerals
- * Form MD-10-R-A-1 (pink sheet) required for conversions

 Application to Amend Permit to Drill for Minerals for a Single Well
- Form MD-10-R-AO (blue sheet)
 Optional Application to Amend Operator for Multiple Wells Only
- Form WH-1Well History and Work Resume Report
- * Form P&A
 Plug and Abandon Report

Enhanced Recovery Wells

Use Form UIC-2 EOR

The application process is the same as with Class II UIC-2 SWDs except for the following:

- An Order creating a Secondary Recovery or Enhanced Recovery (EOR) project, signed by the Commissioner of Conservation must exist before a permit can be issued for an ER well.
- EOR projects and Orders associated with them are under the jurisdiction of the Engineering and Geological Divisions of Conservation.
- Pilot projects must first have approval through the Engineering and Geological Divisions of Conservation before the Injection and Mining Division can approve the permit

Internet Links Applicable to SWD Wells

Internet Links

DNR Regulations

http://www.dnr.louisiana.gov >> Conservation >> Rules and Rulemaking/Fees

- * Downloadable DNR Application Forms http://www.dnr.louisiana.gov >> Conservation >> Forms >> Injection & Mining Division
- * DNR Online Public Database Access (SONRIS) http://www.dnr.louisiana.gov >> SONRIS (orange box on left side of page) >> Data Portal >> Injection Information (under "Conservation")
- * DNR Scanned Documents (SONRIS)

 http://www.dnr.louisiana.gov">http://www.dnr.louisiana.gov >> SONRIS >> Document Access >> Permitting >> UIC

 Well File Historic
- * Great Information!!! UIC Permitting Workshop Outlines & Presentations http://www.dnr.louisiana.gov >> Conservation >> Divisions >> Injection & Mining

Internet Links (Cont'd)

SONRIS Registered Water Well Database

http://www.dnr.louisiana.gov >> SONRIS (orange box on left side of page) >>
SONRIS Data Portal>> Groundwater Well Information >> Water Wells by <several
options>

LDEQ LELAP Accredited Laboratories

http://www.deq.louisiana.gov >> About LDEQ >> Public Participation and Permit Support >> Louisiana Laboratory Accreditation >> Accredited Laboratories >> LELAP Accredited Labs* (scroll down the list of Accredited Laboratories or you can export to an Excel spreadsheet)

Fees can be found in LAC 43:XIX Chapter 7, aka Statewide Order No. 29-R.

IMD FEES FY 18-19					
					UIC-42S
	Description:	Rev Code		Fee	
ON UIC-1 FORM	Application for Class I Commercial Well	05	\$	1,264	
	Additional Wells (must put on separate invoice)		\$	631	
UIC-1	Application for Class I Non-Commercial Well	20	\$	252	
UIC-2 SWD COM	Application for Class II Commercial Well	05	\$	631	
	Additional Wells (must put on separate invoice)		\$	314	
UIC-2 SWD	SWD NEW WELL	20 6			
UIC-2 EOR	EOR (If a conversion, check notes before invoicing)	20	\$	252	
UIC-2 MASIP		U7	\$	300	
UIC-2 SWD	SWD Conversion (Total Charge is \$378=\$252 + \$126)	20 & 27	\$	378	
UIC-2 HSW	Application for Class II Hydrocarbon Storage Well	20	\$	252	
UIC-3 BR	Application for Class III Solution Mining Well	20	\$	252	
UIC-9	Annular Saltwater Disposal	20	\$	252	
UIC-13	Community Saltwater Disposal System Initial Notification	U4	\$	125	
UIC-14	Subsurface Disposal of Reserve Pit Fluids	44	\$	252	
UIC-17	Application for Work Permit	U5	\$	125	
UIC-25	Application for Class V Well	20	\$	252	
UIC-25R	Class V Remediation Area Permit Application				
UIC-25S	Class V Subsidence Control Area Permit Application Request for variance to Class V Well Permitting/Class V Waiver Request*	U8	\$	250	
UIC-30	Work Permit to Plug & Abandon Utilized for NORM disposal		\$	500	SIANA OF
UIC-32	Application for Change of Zone	46	\$	126	

Work Resume Report for Class V Remediation Well

Work Resume Report for Class V Subsidence Well

Waiver, Exception, Exemption, etc. (Not HSWs)

Application to Amend Permit (per well)

Application for Surface Mining Permit

(ask Kellie before invoicing)

Extension Requests

Request to Modify Well Permit (ask Kellie before invoicing)

Changes to operating conditions, e.g. MASIP, UIC-2 MASIP
Application for Exception to 29-B for Class II Injection Well

Witnessed Verification of Mechanical Integrity Tests (MIT)

and the second of the state of the second of the second

MD-10-R-A-1, MD-10-R-AO e.g. change operator, well name, etc.

20

U7

U0

U9 \$

27

10

EP

DP

25

15

\$ 2,212

300

504

250

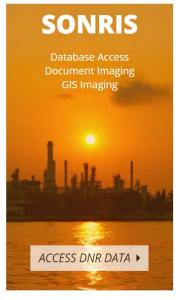
126

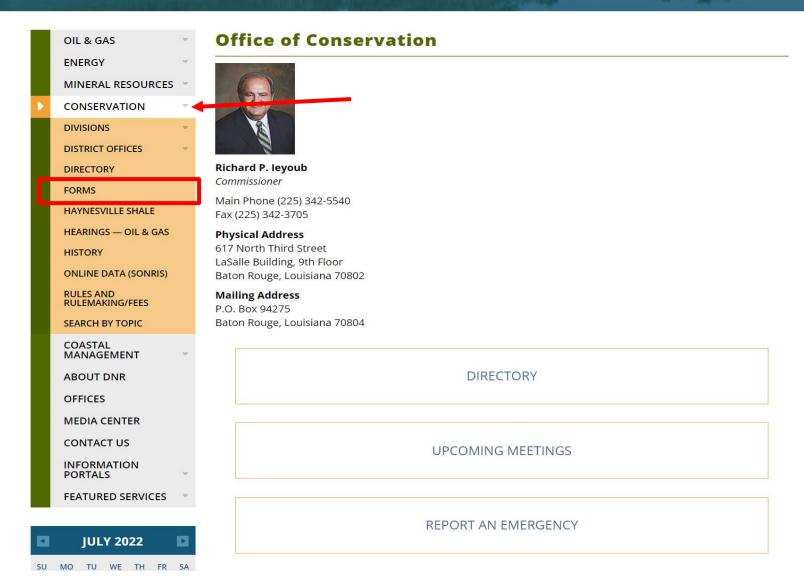
65

94

755

Varies


Varies



Department of Natural Resource: X +

RECENT NEWS

For VISITORS > For EMPLOYEES >

For VISITORS For EMPLOYEES

Office of Conservation

Forms, Reports & Documents

This page contains links to various Office of Conservation documents of interest to the public, including data, forms, reports, publications, newsletters, and other items.

Q

Search

Forms Assistance >>

The Office of Conservation has begun to incorporate some forms that can be Filled-in, Saved & Printed using Adobe Reader. Look for the symbol in the table below for forms that have been converted to this format. Please refer to the Forms Assistance page for guidance in using these forms.

- Forms Home
- **▶** Engineering Division
- **▶** Environmental Division
- ▶ Geological Division
- ▶ Injection & Mining Division
- ▶ Pipeline Division

Thank you!

QUESTIONS?

Cody Todd – Cody.Todd@LA.gov Addie Roberts – Addie.Roberts@LA.gov

