Table of Figures

1.	Site Planning	
	Figure 1-1 Solar Path Chart	4
	Figure 1-2 Wind Roses Summer and Winter	5
	Figure 1-3 Natural Ventilation Design Strategies	6
	Figure 1-4 Stack Effect	7
	Figure 1-5 Overhang Types	7
	Figure 1-6 Site Planning	8
	Figure 1-7 Site Planning	9
2.	The House as a System	
	Figure 2-1 Home Losing Heat through Conduction in Winter	14
	Figure 2-2 Convection in the Home	15
	Figure 2-3 Radiation Entering House	15
	Figure 2-4 Air Quality Problems from "Fresh" Air	16
	Figure 2-5 Thermal Boundaries	17
	Figure 2-6 Conditions for Condensation	17
	Figure 2-7 Psychometric Chart	19
	Figure 2-8 Winter Dew Point Temperature Inside Walls	19
	Figure 2-9 Summer Condensation in Walls	20
	Figure 2-10 Relative Humidity Ranges	21
	Figure 2-11 Bulk Moisture Transport	
	Figure 2-12 Drainage Plane	24
	Figure 2-13 Capillary Action	25
	Figure 2-14 Typical Water Vapor Transport	26
	Figure 2-15 Drying to the Interior	27
3.	Energy Efficient Features	
	Figure 3-1 International Residential Code (2006) Climate Zone Map	
	Figure 3-2 Envelope Construction Ideas	34
	Figure 3-3 Sealing Holes in Framing	
	Figure 3-4 More Sealing Techniques	35
	Figure 3-5 Typical Insulated Concrete Forms (ICF)	44
	Figure 3-6 Typical Structural Insulated Panel	45

Table of Figures iii

4.	Air Leakage Sealing - Materials and Techniques	
	Figure 4-1 Creating a Pressure Boundary	54
	Figure 4-2 Wind Driven Infiltration	55
	Figure 4-3 The Stack Effect	
	Figure 4-4 Mechanical System Driven Infiltration	56
	Figure 4-5 Blower Door	
	Figure 4-6 Home Blower Door Test	
	Figure 4-7 Air Leakage through Bypass	
	Figure 4-8 Typical Home Air Leakage Sites	60
	Figure 4-9 Sealing Bypasses	62
	Figure 4-10 Sealing More Bypasses	63
	Figure 4-11 Airtight Drywall Method Air Barrier	64
	Figure 4-12 Creating an Air Barrier Between Floors	
	Figure 4-13 Housewrap – Window Connection	
	Figure 4-14 Recommended Housewrap Installation Process & Procedure	
	Figure 4-15 Sealing Sheathing as Exterior Air Barrier	70
_	Insulation Materials and Tashniques	
ο.	Insulation Materials and Techniques	72
	Figure 5-1 Insulating the Building Envelope Recommended Insulation Values	
	Figure 5-2 Insulating Concrete Block Cores Figure 5-2 Relative Hymidity (RH) and Foundation Vents	
	Figure 5-3 Relative Humidity (RH) and Foundation Vents	
	Figure 5-4 Interior Foam Wall InsulationFigure 5-5 Interior Framed Wall	
	Figure 5-6 Insulated Concrete Form Wall Systems	
	Figure 5-7 Insulated Wood Framed Floors	80 81
	Figure 5-8 Insulated Floor over Pier Foundation	82
	Figure 5-9 Insulated, Sealed Crawlspace Walls	
	Figure 5-10 Floor Insulation Details	
	Figure 5-11 Let-in Bracing	06
	Figure 5-12 Advanced Framing Insulation Details	
	Figure 5-13 Standard Framing versus Advanced Framing	
	Figure 5-14 Insulating Walls with Batts	
	Figure 5-15 Blown Sidewall Insulation Options	90
	Figure 5-16 Spray Foam Insulation	91
	Figure 5-17 Structural Insulated Panels (SIP)	92
	Figure 5-18 Structural Insulated Panels Construction	93
	Figure 5-19 Foam Sheathing Keeps Walls Warmer	
	Figure 5-20 Average Wall R-Value	<u> </u>
	Figure 5-21 Ridge and Soffit Vents	98
	Figure 5-22 Pressure Problems Due to Powered Attic Ventilators	99
	Figure 5-23 Attic Blocking Requirements	101
	Figure 5-24 Full Width Batts	102
	Figure 5-25 Insulating under Attic Floors	
	Figure 5-26 Insulation Options for Eaves	104
	Figure 5-27Airtigt, IC-rated Recessed Lamps	105
	Figure 5-28 Cathedral Ceiling Insulation Options	
	Figure 5-29 Cathedral Ceiling – Exterior Roof Insulation	107

6.	Windows and Doors	
	Figure 6-1 Window Anatomy	110
	Figure 6-2 Winter Heat Loss in a Typical Double-glazed Window	111
	Figure 6-3 Summer Heat Gain in a Typical Double-glazed, Low-e Window	111
	Figure 6-4 Relative Intensity of the Solar Spectrum	112
	Figure 6-5 Metal Window with Thermal Break	115
	Figure 6-6 Low-e, Gas-filled Windows	116
	Figure 6-7 NFRC Label	117
	Figure 6-8 Inside Window Temperatures in Cold Weather	118
	Figure 6-9 Composition of Solar Heat Gain into Home	118
	Figure 6-10 Guidelines for Overhangs	119
7.	Heating, Ventilation, and Air Conditioning	
	Figure 7-1 Components of Forced-Air Systems	123
	Figure 7-2 Automatic Zoned System with Dampered Bypass Duct	
	Figure 7-3 Air Conditioning with the Vapor Compression Cycle	127
	Figure 7-4 Air Source Heat Pump	130
	Figure 7-5 Sealed Mechanical Room Design for Non-direct Vent Furnace	132
	Figure 7-6 Integrated Space and Water Heating System	134
	Figure 7-7 Efficient Wood Heater Design	136
	Figure 7-8 Direct Vent Heaters	
	Figure 7-9 Ventilation with Spot Fans	
	Figure 7-10 Whole House Ventilation System	
	Figure 7-11 Heat Recovery Ventilation (HRV) System	141
8.	Duct Design and Sealing	
	Figure 8-1 Types of Ductwork	143
	Figure 8-2 Efficiency Losses Due to Attic Return Leaks	
	Figure 8-3 Sealing Flex-duct Collar with Mastic	146
	Figure 8-4 Disconnected Ducts are High Priorities	148
	Figure 8-5 Duct Test on Return Grille	
	Figure 8-6 Duct Leaks in Inside Spaces	149
	Figure 8-7 Seal All Leaks in Air Handling Unit	150
	Figure 8-8 Shelf-Mounted Systems without Returns	
	Figure 8-9 Seal All Leaky Takeoffs	151
	Figure 8-10 Sealing Leaky Boots	151
	Figure 8-11 Comparison of Air Flow in Different 6-inch Ducts	152
	Figure 8-12 Jump Duct	154
	Figure 8-13 Transfer Grills – Over Doors	155
	Figure 8-14 Transfer Grills – In Wall	156
	Figure 8-15 Louvered Passage Doors	156

Table of Figures

9.	Water Heating, Appliances and Lighting	
	Figure 9-1 Typical Breakdown of Hot Water Use	160
	Figure 9-2 Insulating Jackets for Electric and Gas Water Heaters	161
	Figure 9-3 Heat Pump Water Heaters	162
	Figure 9-4 Active Solar Water Heating Systems	163
	Figure 9-5 Batch Solar Water Heating Systems	164
	Figure 9-6 EnergyGuide Label	166
	Figure 9-7 Efficacy of Different Lighting Types	169
10	. Energy Efficient Roofing	
	Figure 10-1 Color Standard Cool Roof Color Materials	176
	Figure 10-2 Laminated Shingles	178
	Figure 10-3 Natural Slate Tiles	178
	Figure 10-4 Concrete Tiles	179
	Figure 10-5 Rubber Shingles	179
	Figure 10-6 Landscaped "Green Roof"	185